Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (17,900)

Search Parameters:
Keywords = community integration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2258 KB  
Article
A Mathematical Analysis of Wind-Driven Bottom-Up Interactions in a Plant–Ungulate–Wolf Ecosystem
by Ashraf Adnan Thirthar, Mustafa Jumaah, Shireen Jawad, Bipin Kumar and Mohammed Ahmed Alomair
Mathematics 2026, 14(3), 418; https://doi.org/10.3390/math14030418 (registering DOI) - 25 Jan 2026
Abstract
Understanding how abiotic influences affect organisms and their interactions within ecological communities has long been of interest to ecologists. The significance of this comprehension has increased given rapid human-induced climate change. Wind speed variation is one of the less researched effects of climate [...] Read more.
Understanding how abiotic influences affect organisms and their interactions within ecological communities has long been of interest to ecologists. The significance of this comprehension has increased given rapid human-induced climate change. Wind speed variation is one of the less researched effects of climate change, as wind speeds worldwide are generally falling. Although wind is a fairly universal component of the environment, relatively little work has been conducted to integrate our knowledge of how wind affects interactions between different species. In this study, the influence of wind on bottom-up trophic interactions in the plant–ungulate–wolf food chain has been investigated through mathematical modeling. Positivity and boundedness of the model have been proven, and the existence of equilibrium points and their stability have been established. Saddle-node, transcritical, and Hopf bifurcations are discussed. Finally, all theoretical results are confirmed by numerical simulations. Full article
(This article belongs to the Topic A Real-World Application of Chaos Theory)
24 pages, 1098 KB  
Review
The Tip-of-the-Tongue Phenomenon: Cognitive, Neural, and Neurochemical Perspectives
by Chenwei Xie and William Shiyuan Wang
Biomedicines 2026, 14(2), 269; https://doi.org/10.3390/biomedicines14020269 (registering DOI) - 25 Jan 2026
Abstract
The tip-of-the-tongue (TOT) phenomenon is a transient state in which speakers momentarily fail to retrieve a known word despite preserved semantic knowledge and a strong sense of imminent recall. This review integrates cognitive and neural evidence with emerging neurochemical perspectives to develop a [...] Read more.
The tip-of-the-tongue (TOT) phenomenon is a transient state in which speakers momentarily fail to retrieve a known word despite preserved semantic knowledge and a strong sense of imminent recall. This review integrates cognitive and neural evidence with emerging neurochemical perspectives to develop a comprehensive biomedical framework for word-finding failures. Cognitive models of semantic–phonological transmission and interloper interference have been refined through structural, functional, and metabolic imaging to elucidate the mechanisms underlying TOT states across the lifespan. Functional neuroimaging implicates a left-lateralized fronto-temporal network, particularly the inferior frontal gyrus (IFG), anterior cingulate cortex (ACC), and temporal pole, in retrieval monitoring and conflict resolution. Structural MRI and diffusion imaging link increased TOT frequency to reduced integrity of the arcuate and uncinate fasciculi and diminished network efficiency. Proton magnetic resonance spectroscopy (1H-MRS) introduces a neurochemical dimension, with studies of related language tasks implicating lower γ-aminobutyric acid (GABA) and altered glutamate concentrations in frontal and temporal cortices as potential contributors to slower naming and heightened retrieval interference. Together, these findings converge on a model in which transient lexical blocks arise from local disruptions in excitation–inhibition (E/I) balance that impair signal propagation within language circuits. By uniting behavioral, neuroimaging, and neurochemical perspectives, TOT research reveals how subtle perturbations in cortical homeostasis manifest as everyday cognitive lapses and highlights potential biomedical strategies to maintain communicative efficiency across the lifespan. Full article
Show Figures

Figure 1

33 pages, 1642 KB  
Review
Controlling Biogenesis and Engineering of Exosomes to Inhibit Growth and Promote Death in Glioblastoma Multiforme
by Srikar Alapati and Swapan K. Ray
Brain Sci. 2026, 16(2), 130; https://doi.org/10.3390/brainsci16020130 (registering DOI) - 25 Jan 2026
Abstract
Glioblastoma multiforme (GBM) is characterized by aggressive growth, extensive vascularization, high metabolic malleability, and a striking capacity for therapy resistance. Current treatments involve surgical resection and concomitant radiation therapy and chemotherapy, prolonging survival times marginally due to the therapy resistance that is built [...] Read more.
Glioblastoma multiforme (GBM) is characterized by aggressive growth, extensive vascularization, high metabolic malleability, and a striking capacity for therapy resistance. Current treatments involve surgical resection and concomitant radiation therapy and chemotherapy, prolonging survival times marginally due to the therapy resistance that is built up by the tumor cells. A growing body of research has identified exosomes as critical enablers of therapy resistance. These nanoscale vesicles enable GBM cells to disseminate oncogenic proteins, nucleic acids, and lipids that collectively promote angiogenesis, maintain autophagy under metabolic pressure, and suppress apoptosis. As interest grows in targeting tumor communication networks, exosome-based therapeutic strategies have emerged as promising avenues for improving therapeutic outcomes in GBM. This review integrates current insights into two complementary therapeutic strategies: inhibiting exosome biogenesis and secretion, and engineering exosomes as precision vehicles for the delivery of anti-tumor molecular cargo. Key molecular regulators of exosome formation—including the endosomal sorting complex required for transport (ESCRT) machinery, tumor susceptibility gene 101 (TSG101) protein, ceramide-driven pathways, and Rab GTPases—govern the sorting and release of factors that enhance GBM survival. Targeting these pathways through pharmacological or genetic means has shown promise in suppressing angiogenic signaling, disrupting autophagic flux via modulation of autophagy-related gene (ATG) proteins, and sensitizing tumor cells to apoptosis by destabilizing mitochondria and associated survival networks. In parallel, advances in exosome engineering—encompassing siRNA loading, miRNA enrichment, and small-molecule drug packaging—offer new routes for delivering therapeutic agents across the blood–brain barrier with high cellular specificity. Engineered exosomes carrying anti-angiogenic, autophagy-inhibiting, or pro-apoptotic molecules can reprogram the tumor microenvironment and activate both the intrinsic mitochondrial and extrinsic ligand-mediated apoptotic pathways. Collectively, current evidence underscores the potential of strategically modulating endogenous exosome biogenesis and harnessing exogenous engineered therapeutic exosomes to interrupt the angiogenic and autophagic circuits that underpin therapy resistance, ultimately leading to the induction of apoptotic cell death in GBM. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
16 pages, 1079 KB  
Article
Differential Reflecting Frequency Modulation with QAM for RIS-Based Communications
by Yajun Fan, Le Zhao, Wencai Yan and Haihua Ma
Sensors 2026, 26(3), 802; https://doi.org/10.3390/s26030802 (registering DOI) - 25 Jan 2026
Abstract
Reconfigurable intelligent surface (RIS)-aided index modulation (IM) shows great potential for next-generation wireless communications. Nevertheless, obtaining channel state information (CSI) for RIS-based IM incurs high pilot overhead, particularly for multi-domain IM. In this paper, we integrate orthogonal frequency division multiplexing into RIS-aided differential [...] Read more.
Reconfigurable intelligent surface (RIS)-aided index modulation (IM) shows great potential for next-generation wireless communications. Nevertheless, obtaining channel state information (CSI) for RIS-based IM incurs high pilot overhead, particularly for multi-domain IM. In this paper, we integrate orthogonal frequency division multiplexing into RIS-aided differential reflecting modulation (DRM) communications, introducing the differential reflecting frequency modulation (DRFM) system. In DRFM, information bits are jointly conveyed through the activation permutations of reflecting patterns, grouped carriers, and constellation symbols. The transmitter combines the differentially coded reflecting-time block and the time–frequency block using the Kronecker product. This allows DRFM to operate without relying on CSI at the transmitter, RIS, or receiver. Moreover, we design a novel high-rate quadrature amplitude modulation (QAM) scheme for DRFM. Compared to PSK-based DRFM, this QAM scheme can boost either the throughput or the performance of DRFM. Simulation results illustrate the superiority of the DRFM system, along with an acceptable SNR penalty, compared to non-differential modulation with coherent detection. At the same spectral efficiency, the proposed QAM-aided DRFM outperforms schemes using traditional PSK, amplitude phase shift keying (APSK), and star-QAM constellation modulations. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

18 pages, 1760 KB  
Article
The Prognostic Nutritional Index and Glycemic Status Synergistically Predict Early Renal Function Decline in Type 2 Diabetes: A Community-Based Cohort Study
by Yuting Yu, Jianguo Yu, Jing Li, Jiedong Xu, Yunhui Wang, Lihua Jiang, Genming Zhao and Yonggen Jiang
Nutrients 2026, 18(3), 395; https://doi.org/10.3390/nu18030395 (registering DOI) - 25 Jan 2026
Abstract
Background/Objectives: The Prognostic Nutritional Index (PNI), which integrates serum albumin and lymphocyte count, reflects both nutritional and inflammatory status. However, its role in early renal function decline among patients with type 2 diabetes (T2D), particularly in relation to glycemic control, remains unclear. [...] Read more.
Background/Objectives: The Prognostic Nutritional Index (PNI), which integrates serum albumin and lymphocyte count, reflects both nutritional and inflammatory status. However, its role in early renal function decline among patients with type 2 diabetes (T2D), particularly in relation to glycemic control, remains unclear. This study aimed to: (1) characterize the dose–response relationship between PNI and early renal function decline in type 2 diabetes using restricted cubic splines; (2) identify whether glycemic control (HbA1c) modifies the PNI–renal decline association; and (3) evaluate the clinical utility of combining PNI and HbA1c for risk stratification. Methods: We analyzed data from 1711 community-based participants with T2D who had preserved renal function at baseline. The PNI was calculated as serum albumin (g/L) + 5 × lymphocyte count (×109/L). The primary outcome was a composite of rapid estimated glomerular filtration rate (eGFR) decline (>3 mL/min/1.73 m2 per year) or incident chronic kidney disease (CKD) stage 3. Restricted cubic spline models, multivariable regression, and Johnson–Neyman analyses were used to examine non-linearity and effect modification by glycated hemoglobin (HbA1c). Results: A consistent inverse linear association was observed between PNI and the rate of eGFR decline (P for non-linearity > 0.05). Johnson–Neyman analysis further demonstrated that the protective association of PNI was statistically significant within an HbA1c range of 7.24% to 8.71%. Stratification by clinical cut-offs revealed a significant effect modification by glycemic status. The inverse linear association between PNI and renal risk was most pronounced under hyperglycemic stress, as evidenced by the markedly elevated incidence (50.0%) among individuals with both poor glycemic control (HbA1c ≥ 8%) and low PNI (<50). Conversely, under good glycemic control (HbA1c < 8%), this inverse association was substantially attenuated, with a lower incidence observed in the low-PNI subgroup (6.7%) than in the high-PNI subgroup (15.9%). These findings indicate that the protective role of PNI is conditional upon the glycemic milieu. Conclusions: The PNI demonstrates a stable linear association with early renal function decline in T2D, with its protective effect most pronounced at suboptimal HbA1c levels. Combining PNI and HbA1c effectively identifies a high-risk subgroup characterized by synergistic risk, underscoring the need for integrated nutritional and glycemic management. Full article
Show Figures

Figure 1

20 pages, 6620 KB  
Article
Study of Fecal Microbiota Transplantation Ameliorates Colon Morphology and Microbiota Function in High-Fat Diet Mice
by Xinyu Cao, Lu Zhou, Yuxia Ding, Chaofan Ma, Qian Chen, Ning Li, Hao Ren, Ping Yan and Jianlei Jia
Vet. Sci. 2026, 13(2), 116; https://doi.org/10.3390/vetsci13020116 (registering DOI) - 25 Jan 2026
Abstract
This study investigates whether fecal microbiota transplantation (FMT) can alleviate gut microbiota dysbiosis induced by a high-fat diet (HFD) through modulation of fatty acid metabolism, competition for nutrients, production of short-chain fatty acids (SCFAs), and restoration of mucus layer integrity. To elucidate the [...] Read more.
This study investigates whether fecal microbiota transplantation (FMT) can alleviate gut microbiota dysbiosis induced by a high-fat diet (HFD) through modulation of fatty acid metabolism, competition for nutrients, production of short-chain fatty acids (SCFAs), and restoration of mucus layer integrity. To elucidate the mechanisms by which FMT regulates colonic microbial function and host metabolic responses, 80 male Bal b/c mice were randomly assigned to four experimental groups (n = 20 per group): Normal Diet Group (NDG), High-Fat Diet Group (HDG), Restrictive Diet Group (RDG), and HDG recipients of NDG-derived fecal microbiota (FMT group). The intervention lasted for 12 weeks, during which body weight was monitored biweekly. At the end of the experiment, tissue and fecal samples were collected to assess digestive enzyme activities, intestinal histomorphology, gene expression related to gut barrier function, and gut microbiota composition via 16S rRNA gene sequencing. Results showed that mice in the HDG exhibited significantly higher final body weight and greater weight gain compared to those in the NDG and RDG (p < 0.05). Notably, FMT treatment markedly attenuated HFD-induced weight gain (p < 0.05), reducing it to levels comparable with the NDG (p > 0.05). While HFD significantly elevated the activities of α-amylase and trypsin (p < 0.05), FMT supplementation effectively suppressed these enzymatic activities (p < 0.05). Moreover, FMT ameliorated HFD-induced intestinal architectural damage, as evidenced by significant increases in villus height and the villus height-to-crypt depth ratio (V/C) (p < 0.05). At the molecular level, FMT significantly downregulated the expression of pro-inflammatory cytokines (IL-1β, IL-1α, TNF-α) and upregulated key tight junction proteins (Occludin, Claudin-1, ZO-1) and mucin-2 (MUC2) relative to the HDG (p < 0.05). 16S rRNA analysis demonstrated that FMT substantially increased the abundance of beneficial genera such as Lactobacillus and Bifidobacterium while reducing opportunistic pathogens including Romboutsia (p < 0.05). Furthermore, alpha diversity indices (Chao1 and ACE) were significantly higher in the FMT group than in all other groups (p < 0.05), indicating enhanced microbial richness and community stability. Functional prediction using PICRUSt2 revealed that FMT-enriched metabolic pathways (particularly those associated with SCFA production) and enhanced gut barrier-related functions. Collectively, this study deepens our understanding of host–microbe interactions under HFD-induced metabolic stress and provides mechanistic insights into how FMT restores gut homeostasis, highlighting its potential as a therapeutic strategy for diet-induced dysbiosis and associated metabolic disorders. Full article
(This article belongs to the Special Issue The Role of Gut Microbiome in Regulating Animal Health)
Show Figures

Figure 1

19 pages, 1188 KB  
Review
Advances in Microbial Fuel Cells Using Carbon-Rich Wastes as Substrates
by Kexin Ren, Jianfei Wang, Xurui Hou, Jiaqi Huang and Shijie Liu
Processes 2026, 14(3), 416; https://doi.org/10.3390/pr14030416 (registering DOI) - 25 Jan 2026
Abstract
Microbial fuel cells (MFCs) have attracted increasing attention due to their potential applications in renewable energy generation, waste utilization, and biomass upgrading, offering a promising alternative to traditional fossil fuels. By directly converting carbon-rich wastes into electricity, MFCs provide a unique approach to [...] Read more.
Microbial fuel cells (MFCs) have attracted increasing attention due to their potential applications in renewable energy generation, waste utilization, and biomass upgrading, offering a promising alternative to traditional fossil fuels. By directly converting carbon-rich wastes into electricity, MFCs provide a unique approach to simultaneously address energy demand and waste management challenges. This review systematically examines the effects of various carbon-rich substrates on MFC performance, including lignocellulosic biomasses, molasses, lipid waste, crude glycerol, and C1 compounds. These substrates, characterized by wide availability, low cost, and high carbon content, have demonstrated considerable potential for efficient bioelectricity generation and resource recovery. Particular emphasis is placed on the roles of microbial community regulation and genetic engineering strategies in enhancing substrate utilization efficiency and power output. Additionally, the application of carbon-rich wastes in electrode fabrication is discussed, highlighting their contributions to improved electrical conductivity, sustainability, and overall system performance. The integration of carbon-rich substrates into MFCs offers promising prospects for alleviating energy shortages, improving wastewater treatment efficiency, and reducing environmental pollution, thereby supporting the development of a circular bioeconomy. Despite existing challenges related to scalability, operational stability, and system cost, MFCs exhibit strong potential for large-scale implementation across diverse industrial sectors. Full article
(This article belongs to the Special Issue Study on Biomass Conversion and Biorefinery)
Show Figures

Figure 1

19 pages, 10092 KB  
Article
Short-Term Degradation of Aquatic Vegetation Induced by Demolition of Enclosure Aquaculture Revealed by Remote Sensing
by Sheng Xu, Ying Xu, Guanxi Chen and Juhua Luo
Remote Sens. 2026, 18(3), 400; https://doi.org/10.3390/rs18030400 (registering DOI) - 24 Jan 2026
Abstract
Aquatic vegetation (AV) forms the structural and functional basis of lake ecosystems, providing irreplaceable ecological functions such as water self-purification and the sustenance of biodiversity. Under the “Yangtze River’s Great Protection Strategy”, the action of returning nets to the lake has significantly improved [...] Read more.
Aquatic vegetation (AV) forms the structural and functional basis of lake ecosystems, providing irreplaceable ecological functions such as water self-purification and the sustenance of biodiversity. Under the “Yangtze River’s Great Protection Strategy”, the action of returning nets to the lake has significantly improved water-quality in the middle and lower reaches of the Yangtze River (MLRYR) basin. However, its ecological benefits for key biotic components, particularly AV communities, remain unclear. To address this knowledge gap, this study utilized Landsat and Sentinel-1 satellite imagery to analyze the dynamic evolution of enclosure aquaculture (EA) and AV in 25 lakes (>10 km2) within the MLRYR basin from 1989 to 2023. A U-Net deep learning model was employed to extract EA data (2016–2023), and a vegetation and bloom extraction algorithm was applied to map different AV groups (1989–2023). Results indicate that by 2023, 88% (22/25) of the lakes had completed EA removal. Over the 34-year period, floating/emergent aquatic vegetation (FEAV) exhibited fluctuating trends, while submerged aquatic vegetation (SAV) demonstrated a significant decline, particularly during the EA demolition phase (2016–2023), when its area sharply decreased from 804.8 km2 to 247.3 km2—a reduction of 69.3%. Spatial comparative analysis further confirmed that SAV degradation was substantially more severe in EA removal areas than in EA retention areas. This study demonstrates that EA demolition, while beneficial for improving water quality, exerts significant short-term negative impacts on AV. These findings highlight the urgent need for lake governance policies to shift from single-objective management toward integrated strategies that equally prioritize water-quality improvement and ecological restoration. Future efforts should enhance targeted restoration in EA removal areas through active vegetation recovery and habitat reconstruction, thereby preventing catastrophic regime shifts to phytoplankton-dominated turbid-water states in lake ecosystems. Full article
23 pages, 3795 KB  
Article
Aligning Supply and Demand: The Evolution of Community Public Sports Facilities in Shanghai, China
by Lyu Hui and Peng Ye
Sustainability 2026, 18(3), 1209; https://doi.org/10.3390/su18031209 (registering DOI) - 24 Jan 2026
Abstract
Community public sport facilities are core carriers of the national fitness public service system, with their supply–demand alignment directly linked to megacity governance efficiency and residents’ well-being. To address structural issues, such as “human–land imbalance” in facility layout, this study uses the 2010–2024 [...] Read more.
Community public sport facilities are core carriers of the national fitness public service system, with their supply–demand alignment directly linked to megacity governance efficiency and residents’ well-being. To address structural issues, such as “human–land imbalance” in facility layout, this study uses the 2010–2024 panel data from Shanghai’s 16 districts, applies supply–demand equilibrium theory, and integrates quantitative methods to analyze spatio-temporal supply–demand coupling and identify key influencing factors. The study yields four key findings: (1) The spatial distribution of facilities and population demonstrates a differentiated evolutionary trajectory marked by “central dispersion and suburban stability”. (2) Supply–demand alignment has continuously improved, as evidenced by the increase in coordinated administrative districts from six to thirteen. Nonetheless, the distance between sports facilities and population centers widened, suggesting that spatial adaptation remains incomplete. (3) Urban population growth exerts a significant positive impact on facility supply. Elasticity coefficients are generally high in suburban areas, while negative elasticity is detected in some central urban areas due to population outflow. (4) Facility construction intensity and residential activity intensity are core driving factors, with economic conditions, transportation infrastructure, and housing prices acting as key supporting factors. This study overcomes traditional aggregate-quantity research limitations, reveals megacity facility supply–demand “spatial mismatch” dynamics, and provides a scientific basis for targeted public sports facility layout and refined governance. Full article
(This article belongs to the Section Health, Well-Being and Sustainability)
Show Figures

Figure 1

26 pages, 3647 KB  
Article
Study on Auxiliary Rehabilitation System of Hand Function Based on Machine Learning with Visual Sensors
by Yuqiu Zhang and Guanjun Bao
Sensors 2026, 26(3), 793; https://doi.org/10.3390/s26030793 (registering DOI) - 24 Jan 2026
Abstract
This study aims to assess hand function recovery in stroke patients during the mid-to-late Brunnstrom stages and to encourage active participation in rehabilitation exercises. To this end, a deep residual network (ResNet) integrated with Focal Loss is employed for gesture recognition, achieving a [...] Read more.
This study aims to assess hand function recovery in stroke patients during the mid-to-late Brunnstrom stages and to encourage active participation in rehabilitation exercises. To this end, a deep residual network (ResNet) integrated with Focal Loss is employed for gesture recognition, achieving a Macro F1 score of 91.0% and a validation accuracy of 90.9%. Leveraging the millimetre-level precision of Leap Motion 2 hand tracking, a mapping relationship for hand skeletal joint points was established, and a static assessment gesture data set containing 502,401 frames was collected through analysis of the FMA scale. The system implements an immersive augmented reality interaction through the Unity development platform; C# algorithms were designed for real-time motion range quantification. Finally, the paper designs a rehabilitation system framework tailored for home and community environments, including system module workflows, assessment modules, and game logic. Experimental results demonstrate the technical feasibility and high accuracy of the automated system for assessment and rehabilitation training. The system is designed to support stroke patients in home and community settings, with the potential to enhance rehabilitation motivation, interactivity, and self-efficacy. This work presents an integrated research framework encompassing hand modelling and deep learning-based recognition. It offers the possibility of feasible and economical solutions for stroke survivors, laying the foundation for future clinical applications. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

33 pages, 1798 KB  
Review
Animals as Communication Partners: Ethics and Challenges in Interspecies Language Research
by Hanna Mamzer, Maria Kuchtar and Waldemar Grzegorzewski
Animals 2026, 16(3), 375; https://doi.org/10.3390/ani16030375 (registering DOI) - 24 Jan 2026
Abstract
Interspecies communication is increasingly recognized as an affective–cognitive process co-created between humans and animals rather than a one-directional transmission of signals. This review integrates findings from ethology, neuroscience, welfare science, behavioral studies, and posthumanist ethics to examine how emotional expression, communicative intentionality, and [...] Read more.
Interspecies communication is increasingly recognized as an affective–cognitive process co-created between humans and animals rather than a one-directional transmission of signals. This review integrates findings from ethology, neuroscience, welfare science, behavioral studies, and posthumanist ethics to examine how emotional expression, communicative intentionality, and relational engagement shape understanding across species. Research on primates, dogs, elephants, and marine mammals demonstrates that empathy, consolation, cooperative signaling, and multimodal perception rely on evolutionarily conserved mechanisms, including mirror systems, affective contagion, and oxytocin-mediated bonding. These biological insights intersect with ethical considerations concerning animal agency, methodological responsibility, and the interpretation of non-human communication. Emerging technological tools—bioacoustics, machine vision, and AI-assisted modeling—offer new opportunities to analyze complex vocal and behavioral patterns, yet they require careful contextualization to avoid anthropocentric misclassification. Synthesizing these perspectives, the review proposes a relational framework in which meaning arises through shared emotional engagement, embodied interaction, and ethically grounded interpretation. This approach highlights the importance of welfare-oriented, minimally invasive methodologies and supports a broader shift toward recognizing animals as communicative partners whose emotional lives contribute to scientific knowledge. This review primarily synthesizes empirical and theoretical research on primates and dogs, complemented by selected examples from elephants and marine mammals, which provide the most developed evidence base for the affective–cognitive and relational mechanisms discussed. Full article
(This article belongs to the Section Human-Animal Interactions, Animal Behaviour and Emotion)
Show Figures

Figure 1

21 pages, 3270 KB  
Article
Reliability Case Study of COTS Storage on the Jilin-1 KF Satellite: On-Board Operations, Failure Analysis, and Closed-Loop Management
by Chunjuan Zhao, Jianan Pan, Hongwei Sun, Xiaoming Li, Kai Xu, Yang Zhao and Lei Zhang
Aerospace 2026, 13(2), 116; https://doi.org/10.3390/aerospace13020116 (registering DOI) - 24 Jan 2026
Abstract
In recent years, the rapid development of commercial satellite projects, such as low-Earth orbit (LEO) communication and remote sensing constellations, has driven the satellite industry toward low-cost, rapid development, and large-scale deployment. Commercial off-the-shelf (COTS) components have been widely adopted across various commercial [...] Read more.
In recent years, the rapid development of commercial satellite projects, such as low-Earth orbit (LEO) communication and remote sensing constellations, has driven the satellite industry toward low-cost, rapid development, and large-scale deployment. Commercial off-the-shelf (COTS) components have been widely adopted across various commercial satellite platforms due to their advantages of low cost, high performance, and plug-and-play availability. However, the space environment is complex and hostile. COTS components were not originally designed for such conditions, and they often lack systematically flight-verified protective frameworks, making their reliability issues a core bottleneck limiting their extensive application in critical missions. This paper focuses on COTS solid-state drives (SSDs) onboard the Jilin-1 KF satellite and presents a full-lifecycle reliability practice covering component selection, system design, on-orbit operation, and failure feedback. The core contribution lies in proposing a full-lifecycle methodology that integrates proactive design—including multi-module redundancy architecture and targeted environmental stress screening—with on-orbit data monitoring and failure cause analysis. Through fault tree analysis, on-orbit data mining, and statistical analysis, it was found that SSD failures show a significant correlation with high-energy particle radiation in the South Atlantic Anomaly region. Building on this key spatial correlation, the on-orbit failure mode was successfully reproduced via proton irradiation experiments, confirming the mechanism of radiation-induced SSD damage and providing a basis for subsequent model development and management decisions. The study demonstrates that although individual COTS SSDs exhibit a certain failure rate, reasonable design, protection, and testing can enhance the on-orbit survivability of storage systems using COTS components. More broadly, by providing a validated closed-loop paradigm—encompassing design, flight verification and feedback, and iterative improvement—we enable the reliable use of COTS components in future cost-sensitive, high-performance satellite missions, adopting system-level solutions to balance cost and reliability without being confined to expensive radiation-hardened products. Full article
(This article belongs to the Section Astronautics & Space Science)
27 pages, 7306 KB  
Article
Design and Implementation of the AquaMIB Unmanned Surface Vehicle for Real-Time GIS-Based Spatial Interpolation and Autonomous Water Quality Monitoring
by Huseyin Duran and Namık Kemal Sonmez
Appl. Sci. 2026, 16(3), 1209; https://doi.org/10.3390/app16031209 (registering DOI) - 24 Jan 2026
Abstract
This article introduces the design and implementation of an Unmanned Surface Vehicle (USV), named “AquaMIB”, which introduces a novel and integrated approach for real-time and autonomous water quality monitoring in aquatic environments. The system integrates modular hardware and software, combining sensors for temperature, [...] Read more.
This article introduces the design and implementation of an Unmanned Surface Vehicle (USV), named “AquaMIB”, which introduces a novel and integrated approach for real-time and autonomous water quality monitoring in aquatic environments. The system integrates modular hardware and software, combining sensors for temperature, pH, conductivity, dissolved oxygen, and oxidation reduction potential with GPS, LiDAR, a digital compass, communication modules, and a dedicated power unit. Software components include Python on a Raspberry Pi for navigation and control, C on an Atmega 324P for sensing, C++ on an Arduino Uno for remote control, and C#/JavaScript for the web-based control center. Users assign task points, and the USV autonomously navigates, collects data, and transmits it via RESTful API. Field trials showed 96.5% navigation accuracy over 2.2 km, with 66% of task points reached within 3 m. A total of 120 measurements were processed in real time and visualized as GIS-based spatial maps. The system demonstrates a cost-effective, modular solution for aquatic monitoring. The system’s ability to generate real-time GIS maps enables immediate identification of environmental anomalies, transforming raw sensor data into an actionable decision-support tool for aquatic management. Full article
Show Figures

Figure 1

26 pages, 634 KB  
Article
Policy Priorities Linking Seafood Supply Chain Stability and Seafood Food Security for Sustainable Food Systems: An IPA Case Study of Busan
by Hyun Ki Jeong and Se Hyun Park
Sustainability 2026, 18(3), 1188; https://doi.org/10.3390/su18031188 (registering DOI) - 24 Jan 2026
Abstract
Coastal port cities depend on global seafood flows, yet their food security is increasingly exposed to price volatility and supply disruptions. This study examines Busan citizens’ perceptions of seafood-related food security and seafood supply chain stability, and derives actionable municipal policy priorities for [...] Read more.
Coastal port cities depend on global seafood flows, yet their food security is increasingly exposed to price volatility and supply disruptions. This study examines Busan citizens’ perceptions of seafood-related food security and seafood supply chain stability, and derives actionable municipal policy priorities for a trade-dependent port city. Anchored in the FAO four-dimensional framework—availability, access, utilization, and stability—we developed 20 seafood-related attributes and surveyed adult residents in Busan (n = 297). The measurement structure was assessed through reliability checks and exploratory factor analysis, and Importance–Performance Analysis (IPA) was used to map attribute-level priorities and identify the largest importance–performance gaps. Overall, respondents regard seafood food security as highly important but only moderately satisfactory. Availability and utilization perform relatively well, indicating perceived strengths in basic supply conditions and safe consumption, whereas access and stability show lower performance relative to importance, reflecting concerns about affordability, uneven physical access for vulnerable groups, price volatility, and exposure to external shocks. Notably, several stability-related attributes emerge as “Concentrate Here” priorities, highlighting the need for strengthened risk management, early warning communication, and resilience-oriented logistics planning at the city level. By integrating the FAO framework with attribute-level IPA, this study demonstrates how citizen perception data can translate macro food security debates into locally implementable priorities for building sustainable food systems in coastal cities. Full article
Show Figures

Figure 1

32 pages, 1831 KB  
Systematic Review
A Systematic Review of the Constraints, Food, and Income Contribution of Indigenous Leafy Vegetables by Small-Scale Farming Households in Sub-Saharan Africa
by Nkosingimele Ndwandwe, Melusi Sibanda and Nolwazi Zanele Khumalo
Sustainability 2026, 18(3), 1187; https://doi.org/10.3390/su18031187 (registering DOI) - 24 Jan 2026
Abstract
Food security and income generation remain a critical issue for small-scale farming households in Sub-Saharan Africa (SSA) due to population growth, climate change, and market instability. Indigenous leafy vegetables (ILVs) offer high nutritional value and have the capability to mitigate food insecurity but [...] Read more.
Food security and income generation remain a critical issue for small-scale farming households in Sub-Saharan Africa (SSA) due to population growth, climate change, and market instability. Indigenous leafy vegetables (ILVs) offer high nutritional value and have the capability to mitigate food insecurity but are underutilized due to social stigma. This review aims to systematically analyze the food and income contribution of cultivation and utilization of ILVs by small-scale farming households in Sub-Saharan Africa. This review analyses the literature on the role of ILV cultivation in enhancing food security and household income over the past two decades. A systematic search across five databases was conducted and identified 53 relevant studies. Findings indicate that ILVs contribute significantly to household nutrition and income through consumption and surplus sales. However, ILV cultivation faces barriers such as climate change, pest infestations, land degradation, water scarcity, insecure land tenure, limited agricultural training, poor communication networks, and restricted market access. Policy interventions are necessary to support small-scale farmers in ILV cultivation by providing agricultural extension services, promoting sustainable farming practices, and integrating ILVs into food security strategies. Further research should examine policy frameworks and supply chain mechanisms to enhance farmer participation and economic benefits from ILV production. Full article
Show Figures

Figure 1

Back to TopTop