Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,029)

Search Parameters:
Keywords = community development scenario

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1033 KiB  
Article
Internet of Things Platform for Assessment and Research on Cybersecurity of Smart Rural Environments
by Daniel Sernández-Iglesias, Llanos Tobarra, Rafael Pastor-Vargas, Antonio Robles-Gómez, Pedro Vidal-Balboa and João Sarraipa
Future Internet 2025, 17(8), 351; https://doi.org/10.3390/fi17080351 (registering DOI) - 1 Aug 2025
Abstract
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and [...] Read more.
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and autonomous IoT solutions. To help overcome this gap, this paper presents the Smart Rural IoT Lab, a modular and reproducible testbed designed to replicate the deployment conditions in rural areas using open-source tools and affordable hardware. The laboratory integrates long-range and short-range communication technologies in six experimental scenarios, implementing protocols such as MQTT, HTTP, UDP, and CoAP. These scenarios simulate realistic rural use cases, including environmental monitoring, livestock tracking, infrastructure access control, and heritage site protection. Local data processing is achieved through containerized services like Node-RED, InfluxDB, MongoDB, and Grafana, ensuring complete autonomy, without dependence on cloud services. A key contribution of the laboratory is the generation of structured datasets from real network traffic captured with Tcpdump and preprocessed using Zeek. Unlike simulated datasets, the collected data reflect communication patterns generated from real devices. Although the current dataset only includes benign traffic, the platform is prepared for future incorporation of adversarial scenarios (spoofing, DoS) to support AI-based cybersecurity research. While experiments were conducted in an indoor controlled environment, the testbed architecture is portable and suitable for future outdoor deployment. The Smart Rural IoT Lab addresses a critical gap in current research infrastructure, providing a realistic and flexible foundation for developing secure, cloud-independent IoT solutions, contributing to the digital transformation of rural regions. Full article
Show Figures

Figure 1

20 pages, 1457 KiB  
Article
A Semi-Random Elliptical Movement Model for Relay Nodes in Flying Ad Hoc Networks
by Hyeon Choe and Dongsu Kang
Telecom 2025, 6(3), 56; https://doi.org/10.3390/telecom6030056 (registering DOI) - 1 Aug 2025
Abstract
This study presents a semi-random mobility model called Semi-Random Elliptical Movement (SREM), developed for relay-oriented Flying Ad Hoc Networks (FANETs). In FANETs, node distribution has a major impact on network performance, making the mobility model a critical design element. While random models offer [...] Read more.
This study presents a semi-random mobility model called Semi-Random Elliptical Movement (SREM), developed for relay-oriented Flying Ad Hoc Networks (FANETs). In FANETs, node distribution has a major impact on network performance, making the mobility model a critical design element. While random models offer simplicity and path diversity, they often result in unstable relay paths due to inconsistent node placement. In contrast, planned path models provide alignment but lack the flexibility needed in dynamic environments. SREM addresses these challenges by enabling nodes to move along elliptical trajectories, combining autonomous movement with alignment to the relay path. This approach encourages natural node concentration along the relay path while maintaining distributed mobility. The spatial characteristics of SREM have been analytically defined and validated through the Monte Carlo method, confirming stable node distributions that support effective relaying. Computer simulation results show that SREM performs better than general mobility models that do not account for relaying, offering more suitable performance in relay-focused scenarios. These findings suggest that SREM provides both structural consistency and practical effectiveness, making it a strong candidate for improving the realism and reliability of FANET simulations involving relay-based communication. Full article
Show Figures

Figure 1

14 pages, 1502 KiB  
Review
A Bibliographic Analysis of Multi-Risk Assessment Methodologies for Natural Disaster Prevention
by Gilles Grandjean
GeoHazards 2025, 6(3), 41; https://doi.org/10.3390/geohazards6030041 (registering DOI) - 1 Aug 2025
Abstract
In light of the increasing frequency and intensity of natural phenomena, whether climatic or telluric, the relevance of multi-risk assessment approaches has become an important issue for understanding and estimating the impacts of disasters on complex socioeconomic systems. Two aspects contribute to the [...] Read more.
In light of the increasing frequency and intensity of natural phenomena, whether climatic or telluric, the relevance of multi-risk assessment approaches has become an important issue for understanding and estimating the impacts of disasters on complex socioeconomic systems. Two aspects contribute to the worsening of this situation. First, climate change has heightened the incidence and, in conjunction, the seriousness of geohazards that often occur with each other. Second, the complexity of these impacts on societies is drastically exacerbated by the interconnections between urban areas, industrial sites, power or water networks, and vulnerable ecosystems. In front of the recent research on this problem, and the necessity to figure out the best scientific positioning to address it, we propose, through this review analysis, to revisit existing literature on multi-risk assessment methodologies. By this means, we emphasize the new recent research frameworks able to produce determinant advances. Our selection corpus identifies pertinent scientific publications from various sources, including personal bibliographic databases, but also OpenAlex outputs and Web of Science contents. We evaluated these works from different criteria and key findings, using indicators inspired by the PRISMA bibliometric method. Through this comprehensive analysis of recent advances in multi-risk assessment approaches, we highlight main issues that the scientific community should address in the coming years, we identify the different kinds of geohazards concerned, the way to integrate them in a multi-risk approach, and the characteristics of the presented case studies. The results underscore the urgency of developing robust, adaptable methodologies, effectively able to capture the complexities of multi-risk scenarios. This challenge should be at the basis of the keys and solutions contributing to more resilient socioeconomic systems. Full article
Show Figures

Figure 1

25 pages, 17227 KiB  
Article
Distributed Online Voltage Control with Feedback Delays Under Coupled Constraints for Distribution Networks
by Jinxuan Liu, Yanjian Peng, Xiren Zhang, Zhihao Ning and Dingzhong Fan
Technologies 2025, 13(8), 327; https://doi.org/10.3390/technologies13080327 (registering DOI) - 31 Jul 2025
Abstract
High penetration of photovoltaic (PV) generation presents new challenges for voltage regulation in distribution networks (DNs), primarily due to output intermittency and constrained reactive power capabilities. This paper introduces a distributed voltage control method leveraging reactive power compensation from PV inverters. Instead of [...] Read more.
High penetration of photovoltaic (PV) generation presents new challenges for voltage regulation in distribution networks (DNs), primarily due to output intermittency and constrained reactive power capabilities. This paper introduces a distributed voltage control method leveraging reactive power compensation from PV inverters. Instead of relying on centralized computation, the proposed method allows each inverter to make local decisions using real-time voltage measurements and delayed communication with neighboring PV nodes. To account for practical asynchronous communication and feedback delay, a Distributed Online Primal–Dual Push–Sum (DOPP) algorithm that integrates a fixed-step delay model into the push–sum coordination framework is developed. Through extensive case studies on a modified IEEE 123-bus system, it has been demonstrated that the proposed method maintains robust performance under both static and dynamic scenarios, even in the presence of fixed feedback delays. Specifically, in static scenarios, the proposed strategy rapidly eliminates voltage violations within 50–100 iterations, effectively regulating all nodal voltages into the acceptable range of [0.95, 1.05] p.u. even under feedback delays with a delay step of 10. In dynamic scenarios, the proposed strategy ensures 100% voltage compliance across all nodes, demonstrating superior voltage regulation and reactive power coordination performance over conventional droop and incremental control approaches. Full article
26 pages, 2059 KiB  
Article
Integration and Development Path of Smart Grid Technology: Technology-Driven, Policy Framework and Application Challenges
by Tao Wei, Haixia Li and Junfeng Miao
Processes 2025, 13(8), 2428; https://doi.org/10.3390/pr13082428 - 31 Jul 2025
Abstract
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development [...] Read more.
As a key enabling technology for energy transition, the smart grid is propelling the global power system to evolve toward greater efficiency, reliability, and sustainability. Based on the three-dimensional analysis framework of “technology–policy–application”, this study systematically sorts out the technical architecture, regional development mode, and typical application scenarios of the smart grid, revealing the multi-dimensional challenges that it faces. By using the methods of literature review, cross-national case comparison, and technology–policy collaborative analysis, the differentiated paths of China, the United States, and Europe in the development of smart grids are compared, aiming to promote the integration and development of smart grid technologies. From a technical perspective, this paper proposes a collaborative framework comprising the perception layer, network layer, and decision-making layer. Additionally, it analyzes the integration pathways of critical technologies, including sensors, communication protocols, and artificial intelligence. At the policy level, by comparing the differentiated characteristics in policy orientation and market mechanisms among China, the United States, and Europe, the complementarity between government-led and market-driven approaches is pointed out. At the application level, this study validates the practical value of smart grids in optimizing energy management, enhancing power supply reliability, and promoting renewable energy consumption through case analyses in urban smart energy systems, rural electrification, and industrial sectors. Further research indicates that insufficient technical standardization, data security risks, and the lack of policy coordination are the core bottlenecks restricting the large-scale development of smart grids. This paper proposes that a new type of intelligent and resilient power system needs to be constructed through technological innovation, policy coordination, and international cooperation, providing theoretical references and practical paths for energy transition. Full article
Show Figures

Figure 1

14 pages, 243 KiB  
Article
Building Safe Emergency Medical Teams with Emergency Crisis Resource Management (E-CRM): An Interprofessional Simulation-Based Study
by Juan Manuel Cánovas-Pallarés, Giulio Fenzi, Pablo Fernández-Molina, Lucía López-Ferrándiz, Salvador Espinosa-Ramírez and Vanessa Arizo-Luque
Healthcare 2025, 13(15), 1858; https://doi.org/10.3390/healthcare13151858 - 30 Jul 2025
Viewed by 25
Abstract
Background/Objectives: Effective teamwork is crucial for minimizing human error in healthcare settings. Medical teams, typically composed of physicians and nurses, supported by auxiliary professionals, achieve better outcomes when they possess strong collaborative competencies. High-quality teamwork is associated with fewer adverse events and [...] Read more.
Background/Objectives: Effective teamwork is crucial for minimizing human error in healthcare settings. Medical teams, typically composed of physicians and nurses, supported by auxiliary professionals, achieve better outcomes when they possess strong collaborative competencies. High-quality teamwork is associated with fewer adverse events and complications and lower mortality rates. Based on this background, the objective of this study is to analyze the perception of non-technical skills and immediate learning outcomes in interprofessional simulation settings based on E-CRM items. Methods: A cross-sectional observational study was conducted involving participants from the official postgraduate Medicine and Nursing programs at the Catholic University of Murcia (UCAM) during the 2024–2025 academic year. Four interprofessional E-CRM simulation sessions were planned, involving randomly assigned groups with proportional representation of medical and nursing students. Teams worked consistently throughout the training and participated in clinical scenarios observed via video transmission by their peers. Post-scenario debriefings followed INACSL guidelines and employed the PEARLS method. Results: Findings indicate that 48.3% of participants had no difficulty identifying the team leader, while 51.7% reported minor difficulty. Role assignment posed moderate-to-high difficulty for 24.1% of respondents. Communication, situation awareness, and early help-seeking were generally managed with ease, though mobilizing resources remained a challenge for 27.5% of participants. Conclusions: This study supports the value of interprofessional education in developing essential competencies for handling urgent, emergency, and high-complexity clinical situations. Strengthening interdisciplinary collaboration contributes to safer, more effective patient care. Full article
33 pages, 9323 KiB  
Article
The Creation of Humor Modality Through Pragmemic Triggers: Cross-Linguistic Dynamics
by William O. Beeman
Languages 2025, 10(8), 184; https://doi.org/10.3390/languages10080184 - 29 Jul 2025
Viewed by 231
Abstract
Humor creation is presented as a modality in human communication involving “double framing”, in which a scenario, understanding, or agreed-upon reality is presented and is suddenly revealed to be something else by being recontextualized during the humorous presentation. This analysis utilizes Ba Theory, [...] Read more.
Humor creation is presented as a modality in human communication involving “double framing”, in which a scenario, understanding, or agreed-upon reality is presented and is suddenly revealed to be something else by being recontextualized during the humorous presentation. This analysis utilizes Ba Theory, as articulated in the philosophy of Kitaro Nishida and Shimizu. Ba is a cognitive space for developing relationships, both interpersonal and in relationships to shared environments. A state of Ba arises in social interaction, requiring the need for pragmemic triggers to initiate creation and sustaining of a Ba state. The creation of humor requires that participants be in a state of Ba with each other, sharing the knowledge and understanding of the frames to which they are exposed. Examples are provided from Japanese, Chinese, German, Persian, Arabic, and English humor creation. Full article
(This article belongs to the Special Issue Exploring Pragmatics in Contemporary Cross-Cultural Contexts)
Show Figures

Figure 1

25 pages, 10205 KiB  
Article
RTLS-Enabled Bidirectional Alert System for Proximity Risk Mitigation in Tunnel Environments
by Fatima Afzal, Farhad Ullah Khan, Ayaz Ahmad Khan, Ruchini Jayasinghe and Numan Khan
Buildings 2025, 15(15), 2667; https://doi.org/10.3390/buildings15152667 - 28 Jul 2025
Viewed by 146
Abstract
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location [...] Read more.
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location systems (RTLS) with long-range (LoRa) wireless communication and ultra-wideband (UWB) positioning. The system comprises Arduino nano microcontrollers, organic light-emitting diode (OLED) displays, and piezo buzzers to detect and signal proximity breaches between workers and equipment. Using an action research approach, three pilot case studies were conducted in a simulated tunnel environment to test the system’s effectiveness in both static and dynamic risk scenarios. The results showed that the system accurately tracked proximity and generated timely alerts when safety thresholds were crossed, although minor delays of 5–8 s and slight positional inaccuracies were noted. These findings confirm the system’s capacity to enhance situational awareness and reduce reliance on manual safety protocols. The study contributes to the tunnel safety literature by demonstrating the feasibility of low-cost, real-time monitoring solutions that simultaneously track labour and machinery. The proposed RTLS framework offers practical value for safety managers and informs future research into automated safety systems in complex construction environments. Full article
(This article belongs to the Special Issue AI in Construction: Automation, Optimization, and Safety)
Show Figures

Figure 1

15 pages, 319 KiB  
Article
It Depends on What the Meaning of the Word ‘Person’ Is: Using a Human Rights-Based Approach to Training Aged-Care Workers in Person-Centred Care
by Kieran J. Flanagan, Heidi M. Olsen, Erin Conway, Patrick Keyzer and Laurie Buys
J. Ageing Longev. 2025, 5(3), 24; https://doi.org/10.3390/jal5030024 - 28 Jul 2025
Viewed by 145
Abstract
Aged-care services are in crisis through a combination of rising demand and increasing costs. Quality of care is often reported to be insufficient. Medical science has increased lifespans but the overmedicalisation of aged care may affect the financial sustainability and quality of care. [...] Read more.
Aged-care services are in crisis through a combination of rising demand and increasing costs. Quality of care is often reported to be insufficient. Medical science has increased lifespans but the overmedicalisation of aged care may affect the financial sustainability and quality of care. Person-centred care was developed as a solution and is generally interpreted as being concerned with consumer choice. This study presents a human rights-based approach to a code of conduct for aged-care consumers and workers to ensure autonomy and participation in aged-care communities, which are fundamental to person-centred care. A test–retest cohort study was used to investigate the impact of a training module about a human rights-based code of conduct on the perspectives of new aged-care workers (n = 11) on a case scenario involving conflicting care priorities. Qualitative content analysis was used to categorise and count the participants’ responses. The analysis found that prior to training the majority of participants were focused on a medical and risk reduction model of care. After the training participants had a more expansive understanding of care needs and recognised the importance of client empowerment to enable clients to participate in decisions affecting their care. The results support the implementation of a human rights-based approach to worker training and client care; such an approach is consistent with person-centred care. Full article
Show Figures

Figure 1

20 pages, 2352 KiB  
Article
Three-Dimensional Physics-Based Channel Modeling for Fluid Antenna System-Assisted Air–Ground Communications by Reconfigurable Intelligent Surfaces
by Yuran Jiang and Xiao Chen
Electronics 2025, 14(15), 2990; https://doi.org/10.3390/electronics14152990 - 27 Jul 2025
Viewed by 161
Abstract
Reconfigurable intelligent surfaces (RISs), recognized as one of the most promising key technologies for sixth-generation (6G) mobile communications, are characterized by their minimal energy expenditure, cost-effectiveness, and straightforward implementation. In this study, we develop a novel communication channel model that integrates RIS-enabled base [...] Read more.
Reconfigurable intelligent surfaces (RISs), recognized as one of the most promising key technologies for sixth-generation (6G) mobile communications, are characterized by their minimal energy expenditure, cost-effectiveness, and straightforward implementation. In this study, we develop a novel communication channel model that integrates RIS-enabled base stations with unmanned ground vehicles. To enhance the system’s adaptability, we implement a fluid antenna system (FAS) at the unmanned ground vehicle (UGV) terminal. This innovative model demonstrates exceptional versatility across various wireless communication scenarios through the strategic adjustment of active ports. The inherent dynamic reconfigurability of the FAS provides superior flexibility and adaptability in air-to-ground communication environments. In the paper, we derive and study key performance characteristics like the autocorrelation function (ACF), validating the model’s effectiveness. The results demonstrate that the RIS-FAS collaborative scheme significantly enhances channel reliability while effectively addressing critical challenges in 6G networks, including signal blockage and spatial constraints in mobile terminals. Full article
Show Figures

Figure 1

18 pages, 5991 KiB  
Article
Sustainability Assessment of Rural Biogas Production and Use Through a Multi-Criteria Approach: A Case Study in Colombia
by Franco Hernan Gomez, Nelson Javier Vasquez, Kelly Cristina Torres, Carlos Mauricio Meza and Mentore Vaccari
Sustainability 2025, 17(15), 6806; https://doi.org/10.3390/su17156806 - 26 Jul 2025
Viewed by 706
Abstract
There is still a need to develop scenarios and models aimed at substituting fuelwood and reducing the use of fossil fuels such as liquefied petroleum gas (LPG), on which low-income rural households in the Global South often depend. The use of these fuels [...] Read more.
There is still a need to develop scenarios and models aimed at substituting fuelwood and reducing the use of fossil fuels such as liquefied petroleum gas (LPG), on which low-income rural households in the Global South often depend. The use of these fuels for cooking and heating in domestic and productive activities poses significant health and environmental risks. This study validated, in three different phases, the sustainability of a model for the production and use of biogas from the treatment of swine-rearing wastewater (WWs) on a community farm: (i) A Multi-Criteria Analysis (MCA), incorporating environmental, social/health, technical, and economic criteria, identified the main weighted criterion to C8 (use of small-scale technologies and low-cost access), with a score of 0.44 points, as well as the Tubular biodigester (Tb) as the most suitable option for the study area, scoring 8.1 points. (ii) Monitoring of the Tb over 90 days showed an average biogas production of 2.6 m3 d−1, with average correlation 0.21 m3 Biogas kg Biomass−1. Using the experimental biogas production rate (k = 0.0512 d−1), the process was simulated with the BgMod model, achieving an average deviation of only 10.4% during the final production phase. (iii) The quantification of benefits demonstrated significant reductions in firewood use: in Scenario S1 (kitchen energy needs), biogas replaced 83.1% of firewood, while in Scenario S2 (citronella essential oil production), the substitution rate was 24.1%. In both cases, the avoided emissions amounted to 0.52 tons of CO2eq per month. Finally, this study proposes a synthesised, community-based rural biogas framework designed for replication in regions with similar socio-environmental, technical, and economic conditions. Full article
Show Figures

Figure 1

16 pages, 1145 KiB  
Review
Beyond Global Metrics: The U-Smile Method for Explainable, Interpretable, and Transparent Variable Selection in Risk Prediction Models
by Katarzyna B. Kubiak, Agata Konieczna, Anna Tyranska-Fobke and Barbara Więckowska
Appl. Sci. 2025, 15(15), 8303; https://doi.org/10.3390/app15158303 - 25 Jul 2025
Viewed by 109
Abstract
Variable selection (VS) is a critical step in developing predictive binary classification (BC) models. Many traditional methods for assessing the added value of a candidate variable provide global performance summaries and lack an interpretable graphical summary of results. To address this limitation, we [...] Read more.
Variable selection (VS) is a critical step in developing predictive binary classification (BC) models. Many traditional methods for assessing the added value of a candidate variable provide global performance summaries and lack an interpretable graphical summary of results. To address this limitation, we developed the U-smile method, a residual-based, post hoc evaluation approach for assessing prediction improvements and worsening separately for events and non-events. The U-smile method produces three families of interpretable BA-RB-I coefficients at three levels of generality and a standardized graphical summary through U-smile and prediction improvement–worsening (PIW) plots, enabling transparent, interpretable, and explainable VS. Validated in balanced and imbalanced BC scenarios, the method proved robust to class imbalance and collinearity, and more sensitive than traditional metrics in detecting subtle but meaningful effects. Moreover, the method’s intuitive visual output (U-smile plot) facilitates the rapid communication of results to non-technical stakeholders, bridging the gap between data science and applied decision-making. The U-smile method supports both local and global evaluations and complements existing explainable machine learning (XML) and artificial intelligence (XAI) tools without overlapping in their functions. The U-smile method offers a transparency-enhancing and human-oriented approach for ethical and fair VS, making it highly suited for high-stakes domains, e.g., healthcare and public health. Full article
Show Figures

Figure 1

30 pages, 9606 KiB  
Article
A Visualized Analysis of Research Hotspots and Trends on the Ecological Impact of Volatile Organic Compounds
by Xuxu Guo, Qiurong Lei, Xingzhou Li, Jing Chen and Chuanjian Yi
Atmosphere 2025, 16(8), 900; https://doi.org/10.3390/atmos16080900 - 24 Jul 2025
Viewed by 331
Abstract
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and [...] Read more.
With the ongoing advancement of industrialization and rapid urbanization, the emission of volatile organic compounds (VOCs) has increased significantly. As key precursors of PM2.5 and ozone formation, VOCs pose a growing threat to the health of ecosystems. Due to their complex and dynamic transformation processes across air, water, and soil media, the ecological risks associated with VOCs have attracted increasing attention from both the scientific community and policy-makers. This study systematically reviews the core literature on the ecological impacts of VOCs published between 2005 and 2024, based on data from the Web of Science and Google Scholar databases. Utilizing three bibliometric tools (CiteSpace, VOSviewer, and Bibliometrix), we conducted a comprehensive visual analysis, constructing knowledge maps from multiple perspectives, including research trends, international collaboration, keyword evolution, and author–institution co-occurrence networks. The results reveal a rapid growth in the ecological impact of VOCs (EIVOCs), with an average annual increase exceeding 11% since 2013. Key research themes include source apportionment of air pollutants, ecotoxicological effects, biological response mechanisms, and health risk assessment. China, the United States, and Germany have emerged as leading contributors in this field, with China showing a remarkable surge in research activity in recent years. Keyword co-occurrence and burst analyses highlight “air pollution”, “exposure”, “health”, and “source apportionment” as major research hotspots. However, challenges remain in areas such as ecosystem functional responses, the integration of multimedia pollution pathways, and interdisciplinary coordination mechanisms. There is an urgent need to enhance monitoring technology integration, develop robust ecological risk assessment frameworks, and improve predictive modeling capabilities under climate change scenarios. This study provides scientific insights and theoretical support for the development of future environmental protection policies and comprehensive VOCs management strategies. Full article
Show Figures

Figure 1

18 pages, 2163 KiB  
Article
Transmission Opportunity and Throughput Prediction for WLAN Access Points via Multi-Dimensional Feature Modeling
by Wei Li, Xin Huang, Danju Lv, Yueyun Yu, Yan Zhang, Zhicheng Zhu and Ting Zhou
Electronics 2025, 14(15), 2941; https://doi.org/10.3390/electronics14152941 - 23 Jul 2025
Viewed by 223
Abstract
With the rapid development of wireless communication, Wireless Local Area Networks (WLANs) are widely deployed in high-density environments. Ensuring fast handovers and optimal AP selection during device roaming is critical for maintaining network throughput and user experience. However, frequent mobility, high access density, [...] Read more.
With the rapid development of wireless communication, Wireless Local Area Networks (WLANs) are widely deployed in high-density environments. Ensuring fast handovers and optimal AP selection during device roaming is critical for maintaining network throughput and user experience. However, frequent mobility, high access density, and dynamic channel fluctuations complicate throughput prediction. To address this, we propose a method combining the Snow-Melting Optimizer (SMO) with decision tree regression models to optimize feature selection and model transmission opportunities (TXOP) and AP throughput. Experimental results show that the Extreme Gradient Boosting (XGBoost) model performs best, achieving high prediction accuracy for TXOP (MSE = 1.3746, R2 = 0.9842) and AP throughput (MAE = 2.5071, R2 = 0.9896). This approach effectively captures the nonlinear relationships between throughput and network factors in dense WLAN scenarios, demonstrating its potential for real-world applications. Full article
(This article belongs to the Special Issue AI in Network Security: New Opportunities and Threats)
Show Figures

Figure 1

33 pages, 9781 KiB  
Article
Spatial Narrative Optimization in Digitally Gamified Architectural Scenarios
by Deshao Wang, Jieqing Xu and Luwang Chen
Buildings 2025, 15(15), 2597; https://doi.org/10.3390/buildings15152597 - 23 Jul 2025
Viewed by 205
Abstract
Currently, exploring digital immersive experiences is a new trend in the innovation and development of cultural tourism. This study addresses the growing demand for digital immersion in cultural tourism by examining the integration of spatial narrative and digitally gamified architectural scenarios. This study [...] Read more.
Currently, exploring digital immersive experiences is a new trend in the innovation and development of cultural tourism. This study addresses the growing demand for digital immersion in cultural tourism by examining the integration of spatial narrative and digitally gamified architectural scenarios. This study synthesizes an optimized framework for narrative design in digitally gamified architectural scenarios, integrating spatial narrative theory and feedback-informed design. The proposed model comprises four key components: (1) developing spatial narrative design methods for such scenarios; (2) constructing a spatial language system for spatial narratives using linguistic principles to organize narrative expression; (3) building a preliminary digitally gamified scenario based on the “Wuhu Jiaoji Temple Renovation Project” after architectural and environmental enhancements; and (4) optimization through thermal feedback experiments—collecting visitor trajectory heatmaps, eye-tracking heatmaps, and oculometric data. The results show that the optimized design, validated in the original game Dreams of Jiaoji, effectively enhanced spatial narrative execution by refining both on-site and in-game architectural scenarios. Post-optimization visitor feedback confirmed the validity of the proposed optimization strategies and principles, providing theoretical and practical references for innovative digital cultural tourism models and architectural design advancements. In the context of site-specific architectural conservation, this approach achieves two key objectives: the generalized interpretation of architectural cultural resources and their visual representation through gamified interactions. This paradigm not only enhances public engagement through enabling a multidimensional understanding of historical building cultures but also accelerates the protective reuse of heritage sites, allowing heritage value to be maximized through contemporary reinterpretation. The interdisciplinary methodology promotes sustainable development in the digital transformation of cultural tourism, fostering user-centered experiences and contributing to rural revitalization. Ultimately, this study highlights the potential use of digitally gamified architectural scenarios as transformative tools for heritage preservation, cultural dissemination, and rural community revitalization. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop