Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,255)

Search Parameters:
Keywords = combustion emissions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 7114 KB  
Article
CFD Analysis of Equivalence Ratio Effects on Combustion and Emissions in a Methanol–Diesel Dual-Fuel Marine Engine
by Van Chien Pham, Van Vang Le, Jae-Hyuk Choi and Won-Ju Lee
Energies 2026, 19(3), 626; https://doi.org/10.3390/en19030626 (registering DOI) - 25 Jan 2026
Abstract
Methanol is a promising alternative marine fuel due to its favorable combustion characteristics and potential to reduce exhaust emissions under increasingly stringent International Maritime Organization (IMO) regulations. This study presents a three-dimensional computational fluid dynamics (CFD) analysis of a four-stroke, medium-speed marine engine [...] Read more.
Methanol is a promising alternative marine fuel due to its favorable combustion characteristics and potential to reduce exhaust emissions under increasingly stringent International Maritime Organization (IMO) regulations. This study presents a three-dimensional computational fluid dynamics (CFD) analysis of a four-stroke, medium-speed marine engine operating in methanol–diesel dual-fuel (DF) mode. Simulations were performed using AVL FIRE for a MAN B&W 6H35DF engine, covering the in-cylinder process from intake valve closing to exhaust valve opening. Nine operating cases were investigated, including seven methanol–diesel DF cases with equivalence ratios (Φ) from 0.18 to 0.30, one methane–diesel DF case (Φ = 0.22), and one pure diesel baseline. A power-matched condition (IMEP ≈ 20 bar) enabled consistent comparison among fueling strategies. The results show that methanol–diesel DF operation reduces peak in-cylinder pressure, heat-release rate, turbulent kinetic energy, and wall heat losses compared with diesel operation. At low to moderate Φ, methanol DF combustion significantly suppresses nitric oxide (NO), soot, and carbon monoxide (CO emissions), while carbon dioxide (CO2) emissions increase with Φ and approach diesel levels under power-matched conditions. These results highlight methanol’s potential as a viable low-carbon fuel for marine engines. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

29 pages, 2200 KB  
Article
Method of Comparative Analysis of Energy Consumption in Passenger Car Fleets with Internal Combustion, Hybrid, Battery Electric, and Hydrogen Powertrains in Long-Term European Operating Conditions
by Lech J. Sitnik and Monika Andrych-Zalewska
Energies 2026, 19(3), 616; https://doi.org/10.3390/en19030616 (registering DOI) - 25 Jan 2026
Abstract
Accurately determining actual energy consumption is essential for guiding technological developments in the transport sector, assessing vehicle development outcomes, and designing effective energy and climate policies. Although laboratory driving cycles such as the WLTP provide standardized benchmarks, they do not reflect the complex [...] Read more.
Accurately determining actual energy consumption is essential for guiding technological developments in the transport sector, assessing vehicle development outcomes, and designing effective energy and climate policies. Although laboratory driving cycles such as the WLTP provide standardized benchmarks, they do not reflect the complex interactions between human behavior, environmental conditions, and vehicle dynamics under real-world operating conditions. This article presents an integrated framework for assessing long-term, actual energy carrier consumption in four main vehicle categories: internal combustion engine vehicles (ICEVs), hybrid electric vehicles (HEVs), hydrogen fuel cell electric vehicles (H2EVs), and battery electric vehicles (BEVs). The entire discussion here is based on the results of data analysis from natural operation using the so-called vehicle energy footprint. This framework provides a method for determining the average energy carrier consumption for each group of vehicles with the specified drivetrains. This information formed the basis for assessing the total energy demand for the operation of the analyzed vehicle types in normal operation. The simulations show that among mid-range passenger vehicles, ICEVs are the most energy-intensive in normal operation, followed by H2EVs and HEVs, and BEVs are the least. This study highlights the methodological challenges and implications of accurately quantifying energy consumption. The presented method for assessing energy demand in vehicle operation can be useful for manufacturers, consumers, fleet operators, and policymakers, particularly in terms of energy efficiency, emission reduction, and public health protection. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

19 pages, 883 KB  
Article
Smokers, a Way of Harnessing Broadleaf Wood as a Non-Standard Biofuel
by Alessio Ilari, Davide Di Giacinto, Ester Foppa Pedretti, Daniele Duca, Elena Leoni, Thomas Gasperini, Lucia Olivi and Kofi Armah Boakye-Yiadom
Appl. Sci. 2026, 16(3), 1200; https://doi.org/10.3390/app16031200 - 23 Jan 2026
Abstract
Residential barbecuing is becoming increasingly popular worldwide, especially in cities, where it is not only a leisure activity but also an important social and cultural practice. Consequently, the number of grills and smokers in use continues to grow. This study evaluated the environmental [...] Read more.
Residential barbecuing is becoming increasingly popular worldwide, especially in cities, where it is not only a leisure activity but also an important social and cultural practice. Consequently, the number of grills and smokers in use continues to grow. This study evaluated the environmental performance of a household wood-pellet barbecue dual-function smoker/grill using a life cycle assessment (LCA) approach. The functional units selected were per cooking time (1 h) and per unit of energy delivered (1 kWh) at different cooking settings on the smoker. The results show that most of the impacts, including global warming potential (GWP) and resource use, originate from the production of the smoker itself, whereas emissions released during combustion, especially NOx, are the main contributors to impacts such as acidification and smog formation. The GWP per hour of operation ranged from 0.44 to 0.63 kg CO2 eq. From an operational perspective, cooking at intermediate temperatures (between 110 and 175 °C) generally leads to lower impacts per hour than very low-temperature smoking. When considering entire meals, meat typically accounts for most of the total impact, with the smoker’s contribution comparatively small. Overall, the study provides a useful reference and shows that both equipment design and food choices play a role in barbecue sustainability. Full article
(This article belongs to the Special Issue Innovative Engineering Technologies for the Agri-Food Sector)
23 pages, 3178 KB  
Article
Numerical Study on the Combustion Process of the First Cycle of Diesel Engine Start-Up Based on Target Torque Control
by Yingshu Liu, Degang Li, Miao Yang, Hao Zhang, Liang Guo, Dawei Qu, Yun Zhang and Xuedong Lin
Energies 2026, 19(3), 595; https://doi.org/10.3390/en19030595 (registering DOI) - 23 Jan 2026
Abstract
During the diesel engine start-up phase, low rotational speed and coolant temperature result in poor fuel atomization and prolonged ignition delay. This impedes the in-cylinder combustion process and directly impacts the engine’s emission performance. As the first combustion cycle during the starting process, [...] Read more.
During the diesel engine start-up phase, low rotational speed and coolant temperature result in poor fuel atomization and prolonged ignition delay. This impedes the in-cylinder combustion process and directly impacts the engine’s emission performance. As the first combustion cycle during the starting process, the initial starting cycle significantly influences subsequent combustion cycles and overall starting performance. This paper proposes a target-torque-based control strategy for fuel injection quantity during the starting process. It optimally determines the target acceleration curve for the starting process, thereby calculating the optimal fuel injection quantity for the initial starting cycle. Based on this, a combustion system simulation model of the diesel engine was established using the 3D CFD software AVL FIRE v2010. The simulation investigated the impact of first injection speed on the combustion process and performance of the first firing cycle under different ambient temperatures: normal temperature (20 °C), low temperature (5 °C), and cold start (−10 °C). The results indicate that the optimal first cycle injection quantities under normal, low, and cold start conditions are 17.3 mg, 18.5 mg, and 20.4 mg, respectively. The impact of first injection speed on the first firing cycle combustion process primarily manifests in the mixture formation rate and time, and higher speeds do not necessarily yield better results. The optimal first injection speeds at normal temperature (20 °C), low temperature (5 °C), and cold start (−10 °C) were 220 r/min, 240 r/min, and 220 r/min, respectively. Corresponding indicated thermal efficiencies were 30.74%, 28.67%, and 28.7%, with relatively low emissions of pollutants such as CO, NOx, and HC. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
13 pages, 1671 KB  
Article
Experimental Study of Hydrogen Combustion and Emissions for a Self-Developed Microturbine
by István Péter Kondor
Energies 2026, 19(3), 577; https://doi.org/10.3390/en19030577 - 23 Jan 2026
Viewed by 60
Abstract
This paper presents an experimental investigation of hydrogen enrichment effects on combustion behavior and exhaust emissions in a self-developed micro gas turbine fueled with a propane–butane mixture. Hydrogen was blended with the base fuel in volume fractions of 0–30%, and combustion was examined [...] Read more.
This paper presents an experimental investigation of hydrogen enrichment effects on combustion behavior and exhaust emissions in a self-developed micro gas turbine fueled with a propane–butane mixture. Hydrogen was blended with the base fuel in volume fractions of 0–30%, and combustion was examined under unloaded operating conditions at three global equivalence ratios (ϕ = 0.7, 1.1, and 1.3). The global equivalence ratio (ϕ) is defined as the ratio of the actual fuel–air ratio to the corresponding stoichiometric fuel–air ratio, with ϕ < 1 representing lean, ϕ = 1 stoichiometric, and ϕ > 1 fuel-rich operating conditions. The micro gas turbine is based on an automotive turbocharger coupled with a custom-designed counterflow combustion chamber developed specifically for alternative gaseous fuel research. Exhaust gas emissions of CO, CO2, and NOx were measured using a laboratory-grade FTIR analyzer (Horiba Mexa FTIR Horiba Ltd., Kyoto, Japan), while combustion chamber temperature was monitored with thermocouples. The results show that hydrogen addition significantly influences flame stability, combustion temperature, and emission characteristics. Increasing the hydrogen fraction led to a pronounced reduction in CO emissions across all equivalence ratios, indicating enhanced oxidation kinetics and improved combustion completeness. CO2 concentrations decreased monotonically with hydrogen enrichment due to the reduced carbon content of the blended fuel and the shift of combustion products toward higher H2O fractions. In contrast, NOx emissions increased with increasing hydrogen content for all tested equivalence ratios, which is attributed to elevated local flame temperatures, enhanced reaction rates, and the formation of locally near-stoichiometric zones in the compact combustor. A slight reduction in NOx at low hydrogen fractions was observed under near-stoichiometric conditions, suggesting a temporary shift toward a more distributed combustion regime. Overall, the findings demonstrate that hydrogen–propane–butane blends can be stably combusted in a micro gas turbine without major operational issues under unloaded conditions. While hydrogen addition offers clear benefits in terms of CO reduction and carbon-related emissions, effective NOx mitigation strategies will be essential for future high-hydrogen microturbine applications. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

17 pages, 1972 KB  
Article
Using Low-Cost Sensors for Fenceline Monitoring to Measure Emissions from Prescribed Fires
by Annamarie Guth, Marissa Dauner, Evan R. Coffey and Michael Hannigan
Sensors 2026, 26(2), 745; https://doi.org/10.3390/s26020745 (registering DOI) - 22 Jan 2026
Viewed by 38
Abstract
Prescribed burning is a highly effective way to reduce wildfire risk; however, prescribed fires release harmful pollutants. Quantifying emissions from prescribed fires is valuable for atmospheric modeling and understanding impacts on nearby communities. Emissions are commonly reported as emission factors, which are traditionally [...] Read more.
Prescribed burning is a highly effective way to reduce wildfire risk; however, prescribed fires release harmful pollutants. Quantifying emissions from prescribed fires is valuable for atmospheric modeling and understanding impacts on nearby communities. Emissions are commonly reported as emission factors, which are traditionally calculated cumulatively over an entire combustion event. However, cumulative emission factors do not capture variability in emissions throughout a combustion event. Reliable emission factor calculations require knowledge of the state of the plume, which is unavailable when equipment is deployed for multiple days. In this study, we evaluated two different methods used to detect prescribed fire plumes: the event detection algorithm and a random forest model. Results show that the random forest model outperformed the event detection algorithm, with a detection accuracy of 61% and a 3% false positive rate, compared to 51% accuracy and a 31% false positive rate for the event detection algorithm. Overall, the random forest model provides more robust emission factor calculations and a promising framework for plume detection on future prescribed fires. This work provides a unique approach to fenceline monitoring, as it is one of the only projects to our knowledge using fenceline monitoring to measure emissions from prescribed fire plumes. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

13 pages, 748 KB  
Perspective
Perspectives on Biomass-to-Power for a Circular Bioeconomy in Taiwan
by Chi-Hung Tsai and Wen-Tien Tsai
Energies 2026, 19(2), 566; https://doi.org/10.3390/en19020566 - 22 Jan 2026
Viewed by 17
Abstract
To mitigate the emission of greenhouse gases (GHG) from fossil fuel combustion, biomass-to-power development via biochemical or thermochemical pathways has been recognized as a sustainable route for advancing towards a society based on a circular bioeconomy. The key differences between these pathways lie [...] Read more.
To mitigate the emission of greenhouse gases (GHG) from fossil fuel combustion, biomass-to-power development via biochemical or thermochemical pathways has been recognized as a sustainable route for advancing towards a society based on a circular bioeconomy. The key differences between these pathways lie in operating temperature, process design capacity, feedstock characteristics and primary products. The biochemical route focuses on specific biofuels (e.g., biogas), and the thermochemical route often offers broader energy forms like heat and electricity. This perspective paper updates Taiwan’s achievements of its installed capacity and power (electricity) generation over a period of five years (2020–2024) under regulatory promotion that echoes official policies for sustainable development goals (SDGs) and 2050 carbon neutrality. Furthermore, the challenges of the biomass-to-power development in Taiwan (especially biogas-to-power systems) are addressed in the present study. These key issues include biomass resource, promotion incentives, stationary air pollution, site land use requirements and units for meeting performance durability requirements. Based on installed capacity, the main findings showed that biomass-to-power systems using biochemical routes (i.e., anaerobic digestion) in Taiwan showed an increasing trend, as well as increasing results for those using thermochemical routes (direct combustion, gasification). Furthermore, the data on total power generation indicated an upward trend from 201.7 Gigawatt-hour (GWh) in 2021 to 237.7 GWh in 2024, regardless of the kind of route used, whether biochemical or thermochemical. In conclusion, biomass-to-power systems have provided sustainable waste management and a circular bioeconomy model in Taiwan, which can be linked to the targets of sustainable development goals (SDGs) like SDG-7 (i.e., affordable and clean energy) and SDG-12 (i.e., responsible consumption and production). Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

16 pages, 7138 KB  
Article
Characteristics of Plasma-Assisted Ammonia Jet Flame Under High-Pressure Conditions
by Zhicong Lv, Zhiwei Wang, Qifu Lin, Jiawei Gong, Yong Li, Yuchen Zhang and Longwei Chen
Processes 2026, 14(2), 373; https://doi.org/10.3390/pr14020373 - 21 Jan 2026
Viewed by 67
Abstract
A plasma-assisted ammonia jet flame igniter was developed in this study to address the limitations of conventional spark ignition at high pressures. The effect of pressure on plasma discharge characteristics, optical emission spectra, and exhaust gas emission was systematically investigated, providing new insights [...] Read more.
A plasma-assisted ammonia jet flame igniter was developed in this study to address the limitations of conventional spark ignition at high pressures. The effect of pressure on plasma discharge characteristics, optical emission spectra, and exhaust gas emission was systematically investigated, providing new insights into the mechanisms of plasma-assisted ammonia ignition under high-pressure conditions. The results indicate that increased chamber pressure elevates gas density, which in turn raises the voltage required to sustain an arc discharge at 0.4 MPa and markedly reduces the frequency of arc drift. Spectral analysis shows that higher pressure inhibits atomic oxygen lines (777.2 nm and 844.6 nm) while intensifying the molecular nitrogen bands between 350–450 nm. A corresponding decrease in electron excitation temperature is also observed. In terms of exhaust composition, hydrogen concentration demonstrates a bifurcated behavior, rising with pressure under fuel-rich conditions (the equivalence ratio φ > 1.2) and falling under fuel-lean conditions (φ ≤ 1). Conversely, NO concentration consistently decreases with increasing pressure across all test conditions. The ammonia concentration in the exhaust gas shows opposite pressure dependencies at different equivalence ratios. It increases with rising pressure for φ ≥ 1, while it decreases with increasing pressure for φ < 1. Full article
(This article belongs to the Special Issue Synthesis and Utilization of Clean Ammonia as Fuel)
Show Figures

Figure 1

18 pages, 5382 KB  
Article
Insight into the Formation of Winter Black Carbon and Brown Carbon over Xi’an in Northwestern China
by Dan Li, Qian Zhang, Ziqi Meng, Hongmei Xu, Peng Wei, Yu Wang and Zhenxing Shen
Toxics 2026, 14(1), 93; https://doi.org/10.3390/toxics14010093 - 20 Jan 2026
Viewed by 198
Abstract
This study evaluates the effectiveness of air pollution control measures in Xi’an, China, by investigating long-term changes in the concentrations, optical properties, and sources of black carbon (BC) and brown carbon (BrC). Wintertime observations of PM2.5 carbonaceous aerosols were conducted over multiple [...] Read more.
This study evaluates the effectiveness of air pollution control measures in Xi’an, China, by investigating long-term changes in the concentrations, optical properties, and sources of black carbon (BC) and brown carbon (BrC). Wintertime observations of PM2.5 carbonaceous aerosols were conducted over multiple years using a continuous Aethalometer. The data were analyzed using advanced aethalometer models, potential source contribution function (PSCF) analysis, and generalized additive models (GAMs) to deconstruct emission sources and formation pathways. Our results revealed a significant decrease in the mass concentration and light absorption coefficient of BC (babs-BC) between the earlier and later study periods, indicating successful emission reductions. In contrast, the light absorption from BrC (babs-BrC) remained relatively stable, suggesting persistent and distinct emission sources. Source apportionment analysis demonstrated a temporal shift in dominant regional influences, from biomass burning in the initial years to coal combustion in later years. In addition, GAMs showed that the primary driver for liquid fuel-derived BC transitioned from gasoline to diesel vehicle emissions. For solid fuels, residential coal combustion consistently contributed over 50% of BC, highlighting that improvements in coal combustion technology were effective in reducing BC emissions. Furthermore, a substantial fraction of BrC was increased, with nocturnal peaks associated with high relative humidity, emphasizing the aqueous-phase formation influences. Collectively, these findings demonstrated that although certain control strategies successfully mitigated BC, the persistent challenge of BrC pollution necessitates targeted measures addressing secondary formation and primary fossil fuel sources. Full article
Show Figures

Figure 1

14 pages, 5335 KB  
Article
An Experimental Study on the Effect of Compaction Pressure on Potassium Release During Biomass Briquette Combustion
by Huafeng Ye, Yisheng Mao, Zihan Yang, Bin Yao, Xinda Tan and Chun Lou
Energies 2026, 19(2), 511; https://doi.org/10.3390/en19020511 - 20 Jan 2026
Viewed by 75
Abstract
Biomass briquettes are an environmentally friendly fuel and have extensive utilization prospects. Compaction pressure is a crucial factor during the production of biomass briquettes, affecting its densification and subsequent potassium release behavior. The release of alkali metals during combustion is typically studied using [...] Read more.
Biomass briquettes are an environmentally friendly fuel and have extensive utilization prospects. Compaction pressure is a crucial factor during the production of biomass briquettes, affecting its densification and subsequent potassium release behavior. The release of alkali metals during combustion is typically studied using offline analytical techniques. However, these methods fail to provide real-time measurement of alkali metals release during the combustion process. Therefore, FES, through its equipment simplicity, low operational cost, real-time measurement, and robust adaptability to industrial environments, is commonly employed. In this study, the effect of compaction pressure (80, 130, and 180 MPa) of camphor wood briquettes on potassium release in a premixed flame was investigated by means of Flame Emission Spectroscopy. A spectrometer was used to obtain flame spontaneous emission spectra at three heights above the burner. Based on the proposed spectral analysis method and a calibration procedure, time-resolved flame temperature and concentration of gas-phase potassium in camphor wood briquette combustion were simultaneously measured. The experimental results at the three measurement heights showed that both peak concentration and the amount of gas-phase potassium released from biomass briquettes decreased with the increase in compaction pressure. Furthermore, the amount of potassium released from biomass briquettes at a compaction pressure of 180 MPa was the lowest at all three measurement heights, at 28.0, 14.5, and 21.8 ppm·s. Moreover, the potassium release rate from 0 to 63 s was rapid, and there was an exponential increase in the release ratio curve. The release ratio of potassium reached 50% before entering the ash stage under a compaction pressure of 80 and 130 MPa; in comparison, it only reached 35% under 180 MPa. The potassium release ratio at HAB = 4 cm under compaction pressures of 80, 130, and 180 MPa was 54%, 50%, and 35%, respectively. The findings of this study directly link compaction pressure to K release and demonstrate the applicability of FES for real-time alkali metal detecting, offering both theoretical and practical pathways toward cleaner biomass combustion. Full article
(This article belongs to the Topic Advances in Biomass Conversion, 2nd Edition)
Show Figures

Figure 1

18 pages, 941 KB  
Article
Investigations of the Use of Invasive Plant Biomass as an Additive in the Production of Wood-Based Pressed Biofuels, with a Focus on Their Quality and Environmental Impact
by Gvidas Gramauskas, Algirdas Jasinskas, Tomas Vonžodas, Egidijus Lemanas and Kęstutis Venslauskas
Plants 2026, 15(2), 303; https://doi.org/10.3390/plants15020303 - 20 Jan 2026
Viewed by 116
Abstract
The present study investigates the suitability of the invasive herbaceous species Sosnowsky’s hogweed (Heracleum sosnowskyi) and giant knotweed (Fallopia sachalinensis), together with reed (Phragmites australis), as feedstock for pressed biofuel pellets used alone and as additives to [...] Read more.
The present study investigates the suitability of the invasive herbaceous species Sosnowsky’s hogweed (Heracleum sosnowskyi) and giant knotweed (Fallopia sachalinensis), together with reed (Phragmites australis), as feedstock for pressed biofuel pellets used alone and as additives to pinewood. Biomass of the three herbaceous species and pinewood was harvested, dried, chopped, milled, and pelletized through a 6 mm die to obtain pure pellets and binary mixtures of each herbaceous biomass with pinewood (25, 50, and 75% by weight of herbaceous share). The pellets were characterized for physical and mechanical properties, elemental composition, calorific value, combustion emissions, and life cycle impacts per 1 GJ of heat. Pellet density ranged from 1145.60 to 1227.47 kg m−3, comparable to or higher than pinewood, while compressive resistance satisfied solid biofuel quality requirements. The lower calorific values of all herbaceous and mixed pellets varied between 16.29 and 17.78 MJ kg−1, with increased ash and nitrogen contents at higher herbaceous shares. Combustion tests showed substantially higher CO and NOx emissions for pure invasive and reed pellets than for pinewood, but all values remained within national regulatory limits. Life cycle assessment indicated the highest global warming and fossil fuel depletion potentials for reed systems, followed by Sosnowsky’s hogweed and giant knotweed, with pinewood consistently exhibiting the lowest impacts. Overall, invasive plants and reed are technically suitable as partial pinewood substitutes in pellet production, supporting simultaneous invasive biomass management and renewable heat generation. Full article
Show Figures

Figure 1

20 pages, 5007 KB  
Article
Influence Analysis of the Nozzle Numbers, Swirl Ratio and Bore-to-Stroke Ratio on the Performance of Biodiesel Engines Under Saddle-Shaped Injection Conditions
by Lei Zhou, Kun Yang, Jianhua Zhao, Tao Nie, Xiaofeng Li, Xianquan Zheng, Yuwei Zhang, Renjie Wu and Mingzhi Wang
Energies 2026, 19(2), 488; https://doi.org/10.3390/en19020488 - 20 Jan 2026
Viewed by 67
Abstract
With the increasingly stringent mandatory emission regulations for engines and the continuous growth of energy consumption, reducing energy consumption and emission pollution has become an inevitable choice for engine development. Against this backdrop, biodiesel and boot-shaped injection rates have attracted widespread attention. However, [...] Read more.
With the increasingly stringent mandatory emission regulations for engines and the continuous growth of energy consumption, reducing energy consumption and emission pollution has become an inevitable choice for engine development. Against this backdrop, biodiesel and boot-shaped injection rates have attracted widespread attention. However, research results on the combination of boot-shaped injection and biodiesel applied to engines have not yet been reported. In order to provide direction for the optimal matching of the combustion system parameters of biodiesel engines under saddle-shaped injection conditions, this paper achieves boot-shaped injection using a dual solenoid valve control strategy for ultra-high-pressure fuel injection devices, establishes a simulation model of biodiesel engines under saddle-shaped injection conditions using software and validates the model based on experiments. Subsequently, the model is used to study the influence of nozzle numbers, swirl ratio and bore-to-stroke ratio on the performance of biodiesel engines under saddle-shaped injection conditions. The results show that under saddle-shaped injection conditions, appropriately increasing the nozzle hole can refine the fuel spray, which is beneficial for fuel–air mixing and combustion in the cylinder. However, too many nozzle holes can lead to interference between adjacent fuel sprays. When the swirl ratio is large, air flow accelerates, and the oxygen concentration in the cylinder increases, which can effectively control soot formation. When the bore-to-stroke ratio is large, the fuel spray is farther away from the combustion chamber side wall, facilitating sufficient contact between fuel and air, resulting in better fuel–air mixing and effectively reducing soot formation. However, the cylinder temperature also increases, leading to higher NOx formation. Full article
(This article belongs to the Special Issue Combustion Systems for Advanced Engines)
Show Figures

Figure 1

20 pages, 2303 KB  
Article
Numerical Investigation of Sustainable Diesel Engine Performance and Emissions Using Directly Integrated Steam Methane Reforming Syngas
by Tolga Bayramoğlu, Kubilay Bayramoğlu, Semih Yılmaz and Kerim Deniz Kaya
Sustainability 2026, 18(2), 1012; https://doi.org/10.3390/su18021012 - 19 Jan 2026
Viewed by 106
Abstract
The transition toward sustainable energy systems necessitates innovative solutions that reduce greenhouse gas emissions while improving fuel efficiency in existing combustion technologies. Hydrogen has emerged as a promising clean energy carrier; however, its widespread deployment is limited by challenges associated with large-scale transportation [...] Read more.
The transition toward sustainable energy systems necessitates innovative solutions that reduce greenhouse gas emissions while improving fuel efficiency in existing combustion technologies. Hydrogen has emerged as a promising clean energy carrier; however, its widespread deployment is limited by challenges associated with large-scale transportation and storage. This study investigates a practical alternative in which hydrogen-rich syngas produced via steam methane reforming (SMR) is directly integrated into the diesel engine intake, thereby eliminating the need for fuel transport, storage, and separation while supporting a more sustainable fuel pathway. A validated computational fluid dynamics (CFD) model was developed to examine the effects of varying SMR gas mixture ratios (0–20%) on engine combustion, performance, and emissions. The findings reveal that increasing the SMR fraction enhances in-cylinder pressure by up to 15.7%, heat release rate by 100%, and engine power output by 102.5% compared to conventional diesel operation. Additionally, under SMR20 conditions, CO2 emissions are reduced by approximately 12%, demonstrating the potential contribution of this approach to decarbonization and climate mitigation efforts. However, the rise in in-cylinder temperatures was found to increase NOx formation, indicating the necessity for complementary emission control strategies. Overall, the results suggest that direct SMR syngas integration offers a promising pathway to improve the environmental and performance characteristics of conventional diesel engines while supporting cleaner energy transitions. Full article
Show Figures

Figure 1

28 pages, 3242 KB  
Article
Retrofitting Propulsion Systems for Sustainable Mobility: Integrating Future-Proof Technologies
by Cosmin Constantin Suciu, Sorin Vlad Igret, Daniel Ostoia and Ioana Ionel
Appl. Sci. 2026, 16(2), 1006; https://doi.org/10.3390/app16021006 - 19 Jan 2026
Viewed by 127
Abstract
The automotive industry faces unprecedented pressure to address stringent emissions regulations, evolving consumer expectations, and the urgent need for sustainable mobility solutions. As the global fleet transitions toward lower environmental impact, there is an increasing demand for engineering innovations that can rapidly and [...] Read more.
The automotive industry faces unprecedented pressure to address stringent emissions regulations, evolving consumer expectations, and the urgent need for sustainable mobility solutions. As the global fleet transitions toward lower environmental impact, there is an increasing demand for engineering innovations that can rapidly and cost-effectively modernize existing vehicles. This paper presents a quantitative control-variable analysis, attributing ECU remapping, hardware upgrades (capability envelopes), and water–methanol injection contributions in a production compression-ignited retrofit, achieving 211% power scaling alongside −18% NOx/−30% opacity compared to baseline values. The study specifically investigates the implementation of ECU tuning, hardware modifications, and auxiliary systems such as WMI, demonstrating their vital role in enhancing vehicle performance, reducing emissions, and extending the operational lifespan of current fleets. By providing actionable engineering solutions, this work supports the industry’s urgent transition to more sustainable and efficient mobility, positioning retrofitting as a cornerstone of future automotive development and environmental compliance. Full article
(This article belongs to the Special Issue Diesel Engine Combustion and Emissions Control)
Show Figures

Figure 1

16 pages, 1278 KB  
Article
Cost–Benefit Analysis of Greenhouse Gas Emissions Resulting from the Management of Low-Content Methane in Post-Mining Goafs
by Alicja Krzemień, Pedro Riesgo Fernández, Artur Badylak, Gregorio Fidalgo Valverde and Francisco Javier Iglesias Rodríguez
Appl. Sci. 2026, 16(2), 989; https://doi.org/10.3390/app16020989 - 19 Jan 2026
Viewed by 84
Abstract
Methane emissions from underground coal mines are a significant source of greenhouse gases (GHGs) and a major safety concern. In highly methane-prone operations, a large proportion of emissions comes from low-content abandoned mine methane (LCAMM) accumulated in post-mining goafs, where concentrations usually stay [...] Read more.
Methane emissions from underground coal mines are a significant source of greenhouse gases (GHGs) and a major safety concern. In highly methane-prone operations, a large proportion of emissions comes from low-content abandoned mine methane (LCAMM) accumulated in post-mining goafs, where concentrations usually stay below 30% CH4. Building on the Research Fund for Coal and Steel (RFCS) REM project, this paper presents a cost–benefit analysis of a comprehensive scheme for capturing, transporting, and utilising LCAMM from post-mining goafs for electricity generation. The concept involves long-reach directional boreholes drilled behind isolation dams, a dedicated methane-reduced drainage system connected to a surface methane drainage station, and four 2 MWe gas engines designed to run on a 20–40% CH4 mixture. Greenhouse gas performance is evaluated by comparing a “business-as-usual” scenario in which post-mining methane is combusted in gas engines to produce electricity without further GHG cost–benefit consideration. The results indicate that the project can achieve a positive net present value, highlighting the role of LCAMM utilisation for methane-intensive coal mines. The paper also explores the monetisation of non-emitted methane using the European Union Emissions Trading System (EU ETS), as well as social cost benchmarks and penalty levels consistent with the emerging EU Methane Emissions Regulation (EU MER). Full article
Show Figures

Figure 1

Back to TopTop