Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,230)

Search Parameters:
Keywords = combined heat and power systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4181 KiB  
Article
Research on Optimal Scheduling of the Combined Cooling, Heating, and Power Microgrid Based on Improved Gold Rush Optimization Algorithm
by Wei Liu, Zhenhai Dou, Yi Yan, Tong Zhou and Jiajia Chen
Electronics 2025, 14(15), 3135; https://doi.org/10.3390/electronics14153135 - 6 Aug 2025
Abstract
To address the shortcomings of poor convergence and the ease of falling into local optima when using the traditional gold rush optimization (GRO) algorithm to solve the complex scheduling problem of a combined cooling, heating, and power (CCHP) microgrid system, an optimal scheduling [...] Read more.
To address the shortcomings of poor convergence and the ease of falling into local optima when using the traditional gold rush optimization (GRO) algorithm to solve the complex scheduling problem of a combined cooling, heating, and power (CCHP) microgrid system, an optimal scheduling model for a microgrid based on the improved gold rush optimization (IGRO) algorithm is proposed. First, the Halton sequence is introduced to initialize the population, ensuring a uniform and diverse distribution of prospectors, which enhances the algorithm’s global exploration capability. Then, a dynamically adaptive weighting factor is applied during the gold mining phase, enabling the algorithm to adjust its strategy across different search stages by balancing global exploration and local exploitation, thereby improving the convergence efficiency of the algorithm. In addition, a weighted global optimal solution update strategy is employed during the cooperation phase, enhancing the algorithm’s global search capability while reducing the risk of falling into local optima by adjusting the balance of influence between the global best solution and local agents. Finally, a t-distribution mutation strategy is introduced to improve the algorithm’s local search capability and convergence speed. The IGRO algorithm is then applied to solve the microgrid scheduling problem, with the objective function incorporating power purchase and sale cost, fuel cost, maintenance cost, and environmental cost. The example results show that, compared with the GRO algorithm, the IGRO algorithm reduces the average total operating cost of the microgrid by 3.29%, and it achieves varying degrees of cost reduction compared to four other algorithms, thereby enhancing the system’s economic benefits. Full article
Show Figures

Figure 1

21 pages, 3334 KiB  
Article
Market Research on Waste Biomass Material for Combined Energy Production in Bulgaria: A Path Toward Enhanced Energy Efficiency
by Penka Zlateva, Angel Terziev, Mariana Murzova, Nevena Mileva and Momchil Vassilev
Energies 2025, 18(15), 4153; https://doi.org/10.3390/en18154153 - 5 Aug 2025
Abstract
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle [...] Read more.
Using waste biomass as a raw material for the combined production of electricity and heat offers corresponding energy, economic, environmental and resource efficiency benefits. The study examines both the performance of a system for combined energy production based on the Organic Rankine Cycle (ORC) utilizing wood biomass and the market interest in its deployment within Bulgaria. Its objective is to propose a technically and economically viable solution for the recovery of waste biomass through the combined production of electricity and heat while simultaneously assessing the readiness of industrial and municipal sectors to adopt such systems. The cogeneration plant incorporates an ORC module enhanced with three additional economizers that capture residual heat from flue gases. Operating on 2 t/h of biomass, the system delivers 1156 kW of electric power and 3660 kW of thermal energy, recovering an additional 2664 kW of heat. The overall energy efficiency reaches 85%, with projected annual revenues exceeding EUR 600,000 and a reduction in carbon dioxide emissions of over 5800 t/yr. These indicators can be achieved through optimal installation and operation. When operating at a reduced load, however, the specific fuel consumption increases and the overall efficiency of the installation decreases. The marketing survey results indicate that 75% of respondents express interest in adopting such technologies, contingent upon the availability of financial incentives. The strongest demand is observed for systems with capacities up to 1000 kW. However, significant barriers remain, including high initial investment costs and uneven access to raw materials. The findings confirm that the developed system offers a technologically robust, environmentally efficient and market-relevant solution, aligned with the goals of energy independence, sustainability and the transition to a low-carbon economy. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

17 pages, 5214 KiB  
Article
Geothermal–Peltier Hybrid System for Air Cooling and Water Recovery
by Michele Spagnolo, Paolo Maria Congedo, Alessandro Buscemi, Gianluca Falcicchia Ferrara, Marina Bonomolo and Cristina Baglivo
Energies 2025, 18(15), 4115; https://doi.org/10.3390/en18154115 - 3 Aug 2025
Viewed by 177
Abstract
This study proposes a new air treatment system that integrates dehumidification, cooling, and water recovery using a Horizontal Air–Ground Heat Exchanger (HAGHE) combined with Peltier cells. The airflow generated by a fan flows through an HAGHE until it meets a septum on which [...] Read more.
This study proposes a new air treatment system that integrates dehumidification, cooling, and water recovery using a Horizontal Air–Ground Heat Exchanger (HAGHE) combined with Peltier cells. The airflow generated by a fan flows through an HAGHE until it meets a septum on which Peltier cells are placed, and then separates into two distinct streams that lap the two surfaces of the Peltier cells: one stream passes through the cold surfaces, undergoing both sensible and latent cooling with dehumidification; the other stream passes through the hot surfaces, increasing its temperature. The two treated air streams may then pass through a mixing chamber, where they are combined in the appropriate proportions to achieve the desired air supply conditions and ensure thermal comfort in the indoor environment. A Computational Fluid Dynamics (CFD) analysis was carried out to simulate the thermal interaction between the HAGHE and the surrounding soil. The simulation focused on a system installed under the subtropical climate conditions of Nairobi, Africa. The simulation results demonstrate that the HAGHE system is capable of reducing the air temperature by several degrees under typical summer conditions, with enhanced performance observed when the soil is moist. Condensation phenomena were triggered when the relative humidity of the inlet air exceeded 60%, contributing additional cooling through latent heat extraction. The proposed HAGHE–Peltier system can be easily powered by renewable energy sources and configured for stand-alone operation, making it particularly suitable for off-grid applications. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

23 pages, 2593 KiB  
Article
Preliminary Comparison of Ammonia- and Natural Gas-Fueled Micro-Gas Turbine Systems in Heat-Driven CHP for a Small Residential Community
by Mateusz Proniewicz, Karolina Petela, Christine Mounaïm-Rousselle, Mirko R. Bothien, Andrea Gruber, Yong Fan, Minhyeok Lee and Andrzej Szlęk
Energies 2025, 18(15), 4103; https://doi.org/10.3390/en18154103 - 1 Aug 2025
Viewed by 267
Abstract
This research considers a preliminary comparative technical evaluation of two micro-gas turbine (MGT) systems in combined heat and power (CHP) mode (100 kWe), aimed at supplying heat to a residential community of 15 average-sized buildings located in Central Europe over a year. Two [...] Read more.
This research considers a preliminary comparative technical evaluation of two micro-gas turbine (MGT) systems in combined heat and power (CHP) mode (100 kWe), aimed at supplying heat to a residential community of 15 average-sized buildings located in Central Europe over a year. Two systems were modelled in Ebsilon 15 software: a natural gas case (benchmark) and an ammonia-fueled case, both based on the same on-design parameters. Off-design simulations evaluated performance over variable ambient temperatures and loads. Idealized, unrecuperated cycles were adopted to isolate the thermodynamic impact of the fuel switch under complete combustion assumption. Under these assumptions, the study shows that the ammonia system produces more electrical energy and less excess heat, yielding marginally higher electrical efficiency and EUF (26.05% and 77.63%) than the natural gas system (24.59% and 77.55%), highlighting ammonia’s utilization potential in such a context. Future research should target validating ammonia combustion and emission profiles across the turbine load range, and updating the thermodynamic model with a recuperator and SCR accounting for realistic pressure losses. Full article
(This article belongs to the Special Issue Clean and Efficient Use of Energy: 3rd Edition)
Show Figures

Figure 1

25 pages, 2474 KiB  
Article
Performance Analysis of a Novel Directly Combined Organic Rankine Cycle and Dual-Evaporator Vapor Compression Refrigeration Cycle
by Nagihan Bilir Sag and Metehan Isik
Appl. Sci. 2025, 15(15), 8545; https://doi.org/10.3390/app15158545 (registering DOI) - 31 Jul 2025
Viewed by 190
Abstract
Combining Organic Rankine Cycles (ORC) with cooling cycles offers a promising approach to achieving greater outputs within a single system. In this study, a novel directly combined ORC-VCC system has been designed to not only meet the cooling demand using a geothermal heat [...] Read more.
Combining Organic Rankine Cycles (ORC) with cooling cycles offers a promising approach to achieving greater outputs within a single system. In this study, a novel directly combined ORC-VCC system has been designed to not only meet the cooling demand using a geothermal heat source but also generate power. The proposed novel ORC-VCC system has been analyzed for its energetic performance using four selected fluids: R290, R600a, R601, and R1234ze(E). Parametric analysis has been conducted to investigate the effects of parameters of heat source temperature, heat source mass flow rate, cooling capacities, condenser temperature, ORC evaporator temperature, pinch point temperature difference and isentropic efficiencies on net power production. Among the working fluids, R290 has provided the highest net power production under all conditions in which it was available to operate. Additionally, the results have been analyzed concerning a reference cycle for comparative evaluation. The proposed novel cycle has outperformed the reference cycle in all investigated cases in terms of net power production such as demonstrating an improvement of approximately from 8.7% to 57.8% in geothermal heat source temperature investigations. Similar improvements have been observed over the reference cycle at lower heat source mass flow rates, where net power increases by up to 50.8%. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

7 pages, 481 KiB  
Proceeding Paper
Working Fluid Selection for Biogas-Powered Organic Rankine Cycle-Vapor Compression Cycle
by Muhammad Talha, Nawaf Mehmood Malik, Muhammad Tauseef Nasir, Waqas Khalid, Muhammad Safdar and Khawaja Fahad Iqbal
Mater. Proc. 2025, 23(1), 1; https://doi.org/10.3390/materproc2025023001 - 25 Jul 2025
Viewed by 111
Abstract
The worldwide need for energy as well as environmental challenges have promoted the creation of sustainable power solutions. The combination of different working fluids is used for an organic Rankine cycle-powered vapor compression cycle (ORC-VCC) to deliver cooling applications. The selection of an [...] Read more.
The worldwide need for energy as well as environmental challenges have promoted the creation of sustainable power solutions. The combination of different working fluids is used for an organic Rankine cycle-powered vapor compression cycle (ORC-VCC) to deliver cooling applications. The selection of an appropriate working fluid significantly impacts system performance, efficiency, and environmental impact. The research evaluates possible working fluids to optimize the ORC-VCC system. Firstly, Artificial Neural Network (ANN)-derived models are used for exergy destruction ( E d t o t ) and heat exchanger total heat transfer capacity ( U A t o t ). Later on, multi-objective optimization was carried out using the acquired models for E d t o t and U A t o t using the Genetic Algorithm (GA) followed by the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The optimization results showcase Decane ORC-R600a VCC as the best candidate for the ORC-VCC system; the values of E d t o t and U A t o t were found to be 24.50 kW and 6.71 kW/K, respectively. The research data show how viable it is to implement biogas-driven ORC-VCC systems when providing air conditioning capabilities. Full article
Show Figures

Figure 1

22 pages, 6221 KiB  
Article
Development and Experimental Validation of a Tubular Permanent Magnet Linear Alternator for Free-Piston Engine Applications
by Parviz Famouri, Jayaram Subramanian, Fereshteh Mahmudzadeh-Ghomi, Mehar Bade, Terence Musho and Nigel Clark
Machines 2025, 13(8), 651; https://doi.org/10.3390/machines13080651 - 25 Jul 2025
Viewed by 298
Abstract
The ongoing rise in global electricity demand highlights the need for advanced, efficient, and environmentally responsible energy conversion technologies. This research presents a comprehensive design, modeling, and experimental validation of a tubular permanent magnet linear alternator (PMLA) integrated with a free piston engine [...] Read more.
The ongoing rise in global electricity demand highlights the need for advanced, efficient, and environmentally responsible energy conversion technologies. This research presents a comprehensive design, modeling, and experimental validation of a tubular permanent magnet linear alternator (PMLA) integrated with a free piston engine system. Linear alternators offer a direct conversion of linear motion to electricity, eliminating the complexity and losses associated with rotary generators and enabling higher efficiency and simplified system architecture. The study combines analytical modeling, finite element simulations, and a sensitivity-based design optimization to guide alternator and engine integration. Two prototype systems, designated as alpha and beta, were developed, modeled, and tested. The beta prototype achieved a maximum electrical output of 550 W at 57% efficiency using natural gas fuel, demonstrating reliable performance at elevated reciprocating frequencies. The design and optimization of specialized flexure springs were essential in achieving stable, high-frequency operation and improved power density. These results validate the effectiveness of the proposed design approach and highlight the scalability and adaptability of PMLA technology for sustainable power generation. Ultimately, this study demonstrates the potential of free piston linear generator systems as efficient, robust, and environmentally friendly alternatives to traditional rotary generators, with applications spanning hybrid electric vehicles, distributed energy systems, and combined heat and power. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

22 pages, 6442 KiB  
Article
Study on Heat Transfer of Fluid in a Porous Media by VOF Method with Fractal Reconstruction
by Shuai Liu, Qingyong Zhu and Wenjun Xu
Energies 2025, 18(15), 3935; https://doi.org/10.3390/en18153935 - 23 Jul 2025
Viewed by 219
Abstract
This paper addresses the critical gap in the existing literature regarding the combined buoyancy–Marangoni convection of power-law fluids in three-dimensional porous media with complex evaporation surfaces. Previous studies have rarely investigated the convective heat transfer mechanisms in such systems, and there is a [...] Read more.
This paper addresses the critical gap in the existing literature regarding the combined buoyancy–Marangoni convection of power-law fluids in three-dimensional porous media with complex evaporation surfaces. Previous studies have rarely investigated the convective heat transfer mechanisms in such systems, and there is a lack of effective methods to accurately track fractal evaporation surfaces, which are ubiquitous in natural and engineering porous media (e.g., geological formations, industrial heat exchangers). This research is significant because understanding heat transfer in these complex porous media is essential for optimizing energy systems, enhancing thermal management in industrial processes, and improving the efficiency of phase-change-based technologies. For this scientific issue, a general model is designed. There is a significant temperature difference on the left and right sides of the model, which drives the internal fluid movement through the temperature difference. The upper end of the model is designed as a complex evaporation surface, and there is flowing steam above it, thus forming a coupled flow field. The VOF fractal reconstruction method is adopted to approximate the shape of the complex evaporation surface, which is a major highlight of this study. Different from previous research, this method can more accurately reflect the flow and phase change on the upper surface of the porous medium. Through numerical simulation, the influence of the evaporation coefficient on the flow and heat transfer rate can be determined. Key findings from numerical simulations reveal the following: (1) Heat transfer rates decrease with increasing fractal dimension (surface complexity) and evaporation coefficient; (2) As the thermal Rayleigh number increases, the influence of the Marangoni number on heat transfer diminishes; (3) The coupling of buoyancy and Marangoni effects in porous media with complex evaporation surfaces significantly alters flow and heat transfer patterns compared to smooth-surfaced porous media. This study provides a robust numerical framework for analyzing non-Newtonian fluid convection in complex porous media, offering insights into optimizing thermal systems involving phase changes and irregular surfaces. The findings contribute to advancing heat transfer theory and have practical implications for industries such as energy storage, chemical engineering, and environmental remediation. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

20 pages, 2071 KiB  
Article
Thermal Performance and Energy Efficiency Evaluation of Building Envelopes Incorporating Trombe Walls, PCM, and Multi-Alveolar Structures in Tunisian Climate
by Nour Lajimi, Noureddine Boukadida, Chemseddine Maatki, Bilel Hadrich, Walid Hassen, Lioua Kolsi and Habib Ben Aissia
Buildings 2025, 15(14), 2575; https://doi.org/10.3390/buildings15142575 - 21 Jul 2025
Viewed by 281
Abstract
Solar energy is one of the most promising solutions for improving building energy efficiency. Among passive heating systems, the combination of a Trombe wall, phase change materials (PCM), and multi-alveolar structures (MAS) stands out. This configuration enhances the wall’s ability to absorb solar [...] Read more.
Solar energy is one of the most promising solutions for improving building energy efficiency. Among passive heating systems, the combination of a Trombe wall, phase change materials (PCM), and multi-alveolar structures (MAS) stands out. This configuration enhances the wall’s ability to absorb solar heat and distribute it evenly throughout the interior. This study evaluated thermal comfort by examining the effects of phase change materials and multi-alveolar structures combined with a Trombe wall on the thermal behavior of a building and improving the thermal inertia of brick walls. Numerical simulations using Visual FORTRAN were conducted to evaluate the thermal properties of different configurations under the climatic conditions recorded in Hammam Sousse, Tunisia. The results show that the integration of the Trombe wall and PCM has a significant impact on interior temperature stability, energy consumption, and overall thermal comfort. The combined effect of the MAS and PCM with the Trombe wall improved heat gain in winter and spring, reaching a low thermal damping factor of 40% in March, reducing heating power, and optimizing thermal comfort for occupants. Full article
Show Figures

Figure 1

21 pages, 5122 KiB  
Article
Comparative Life Cycle Assessment of Solar Thermal, Solar PV, and Biogas Energy Systems: Insights from Case Studies
by Somil Thakur, Deepak Singh, Umair Najeeb Mughal, Vishal Kumar and Rajnish Kaur Calay
Appl. Sci. 2025, 15(14), 8082; https://doi.org/10.3390/app15148082 - 21 Jul 2025
Viewed by 932
Abstract
The growing imperative to mitigate climate change and accelerate the shift toward energy sustainability has called for a critical evaluation of heat and electricity generation methods. This article presents a comparative life cycle assessment (LCA) of solar and biogas energy systems on a [...] Read more.
The growing imperative to mitigate climate change and accelerate the shift toward energy sustainability has called for a critical evaluation of heat and electricity generation methods. This article presents a comparative life cycle assessment (LCA) of solar and biogas energy systems on a common basis of 1 kWh of useful energy using SimaPro, the ReCiPe 2016 methodology (both midpoint and endpoint indicators), and cumulative energy demand (CED) analysis. This study is the first to evaluate co-located solar PV, solar thermal compound parabolic concentrator (CPC) and biogas combined heat and power (CHP) systems with in situ data collected under identical climatic and operational conditions. The project costs yield levelized costs of electricity (LCOE) of INR 2.4/kWh for PV, 3.3/kWh for the solar thermal dish and 4.1/kWh for biogas. However, the collaborated findings indicate that neither solar-based systems nor biogas technology uniformly outperform the others; rather, their effectiveness hinges on contextual factors, including resource availability and local policy incentives. These insights will prove critical for policymakers, industry stakeholders, and local communities seeking to develop effective, context-sensitive strategies for sustainable energy deployment, emissions reduction, and robust resource management. Full article
Show Figures

Figure 1

20 pages, 6510 KiB  
Article
Research on the Operating Performance of a Combined Heat and Power System Integrated with Solar PV/T and Air-Source Heat Pump in Residential Buildings
by Haoran Ning, Fu Liang, Huaxin Wu, Zeguo Qiu, Zhipeng Fan and Bingxin Xu
Buildings 2025, 15(14), 2564; https://doi.org/10.3390/buildings15142564 - 20 Jul 2025
Viewed by 365
Abstract
Global building energy consumption is significantly increasing. Utilizing renewable energy sources may be an effective approach to achieving low-carbon and energy-efficient buildings. A combined system incorporating solar photovoltaic–thermal (PV/T) components with an air-source heat pump (ASHP) was studied for simultaneous heating and power [...] Read more.
Global building energy consumption is significantly increasing. Utilizing renewable energy sources may be an effective approach to achieving low-carbon and energy-efficient buildings. A combined system incorporating solar photovoltaic–thermal (PV/T) components with an air-source heat pump (ASHP) was studied for simultaneous heating and power generation in a real residential building. The back panel of the PV/T component featured a novel polygonal Freon circulation channel design. A prototype of the combined heating and power supply system was constructed and tested in Fuzhou City, China. The results indicate that the average coefficient of performance (COP) of the system is 4.66 when the ASHP operates independently. When the PV/T component is integrated with the ASHP, the average COP increases to 5.37. On sunny days, the daily average thermal output of 32 PV/T components reaches 24 kW, while the daily average electricity generation is 64 kW·h. On cloudy days, the average daily power generation is 15.6 kW·h; however, the residual power stored in the battery from the previous day could be utilized to ensure the energy demand in the system. Compared to conventional photovoltaic (PV) systems, the overall energy utilization efficiency improves from 5.68% to 17.76%. The hot water temperature stored in the tank can reach 46.8 °C, satisfying typical household hot water requirements. In comparison to standard PV modules, the system achieves an average cooling efficiency of 45.02%. The variation rate of the system’s thermal loss coefficient is relatively low at 5.07%. The optimal water tank capacity for the system is determined to be 450 L. This system demonstrates significant potential for providing efficient combined heat and power supply for buildings, offering considerable economic and environmental benefits, thereby serving as a reference for the future development of low-carbon and energy-saving building technologies. Full article
Show Figures

Figure 1

25 pages, 5272 KiB  
Review
Research Progress of Heat Damage Prevention and Control Technology in Deep Mine
by Yujie Xu, Liu Chen, Jin Zhang and Haiwei Ji
Sustainability 2025, 17(13), 6200; https://doi.org/10.3390/su17136200 - 6 Jul 2025
Viewed by 345
Abstract
As mine mining extends to greater depths, the challenge of heat damage in high-temperature and high-humidity deep mines has emerged as a significant obstacle to the safe mining of deep mines. This paper reviews the causes of mine heat damage, evaluates heat damage [...] Read more.
As mine mining extends to greater depths, the challenge of heat damage in high-temperature and high-humidity deep mines has emerged as a significant obstacle to the safe mining of deep mines. This paper reviews the causes of mine heat damage, evaluates heat damage mechanisms, and explores deep mine cooling technologies. Traditional deep mine cooling technologies employ mechanical refrigeration to cool air. While these technologies can mitigate heat damage, they are associated with issues including high energy consumption, insufficient dehumidification, and significant cold loss. To address the high energy consumption and fully utilize geothermal resources, heat pump technology and combined cooling, heating, and power technology are employed to recover waste heat from deep mines, thereby achieving efficient mine cooling and energy utilization. To enhance the effectiveness of air dehumidification, the integration of deep dehumidification with mine cooling technology addresses the high humidity ratio in mine working faces. To enhance the refrigeration capacity of the system, liquid-phase-change refrigeration technology is employed to boost the refrigeration capacity. For the future development of deep mine cooling technology, this paper identifies four key directions: the integration of diverse technologies, collaboration cooling and geothermal mining, deep dehumidification and cooling, and intelligent control. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

21 pages, 1468 KiB  
Article
Multi-Objective Energy-Saving Optimization and Analysis of a Combined Cooling, Heating, and Power (CCHP) System Driven by Geothermal Energy and LNG Cold Energy
by Xianfeng Gong and Jie Liu
Processes 2025, 13(7), 2135; https://doi.org/10.3390/pr13072135 - 4 Jul 2025
Viewed by 330
Abstract
In this paper, a new type of cogeneration system using LNG cold energy as a cooling source and geothermal energy as a heat source is designed and studied from the perspective of LNG cold energy gradient utilization. The system integrates power generation, cold [...] Read more.
In this paper, a new type of cogeneration system using LNG cold energy as a cooling source and geothermal energy as a heat source is designed and studied from the perspective of LNG cold energy gradient utilization. The system integrates power generation, cold storage, and district cooling. In order to provide more detailed information, the proposed system was analyzed in terms of energy, exergy, and economy. The effects of separator pressure, LNG pump outlet pressure, the mass flow rate of n-Pentane in ORC-I, liquefaction temperature of R23 in the cold storage module, and pump 5 outlet pressure in the refrigeration module on the performance of the system were also investigated. Additionally, the particle swarm algorithm (PSO) was used to optimize the CCHP system with multiple objectives to determine the system’s optimal operation. The optimization results show that the system’s thermal efficiency, exergy efficiency, and depreciation payback period are 66.06%, 42.52%, and 4.509 years, respectively. Full article
Show Figures

Figure 1

25 pages, 1549 KiB  
Article
Optimal Operating Patterns for the Energy Management of PEMFC-Based Micro-CHP Systems in European Single-Family Houses
by Santiago Navarro, Juan Manuel Herrero, Xavier Blasco and Alberto Pajares
Appl. Sci. 2025, 15(13), 7527; https://doi.org/10.3390/app15137527 - 4 Jul 2025
Viewed by 291
Abstract
Commercial proton exchange membrane fuel cell (PEMFC)-based micro-combined heat and power (micro-CHP) systems are operated by rule-based energy management systems (EMSs). These EMSs are easy to implement but do not perform an explicit economic optimization. On the other hand, an optimal EMS can [...] Read more.
Commercial proton exchange membrane fuel cell (PEMFC)-based micro-combined heat and power (micro-CHP) systems are operated by rule-based energy management systems (EMSs). These EMSs are easy to implement but do not perform an explicit economic optimization. On the other hand, an optimal EMS can explicitly incorporate an economic optimization, but its implementation is more complex and may not be viable in practice. In a previous contribution, it was shown that current rule-based EMSs do not fully exploit the economic potential of micro-CHP systems due to their inability to adapt to changing scenarios. This study investigates the economic performance and behavior of an optimal EMS in 46 scenarios within the European framework. This EMS is designed using a model predictive control approach, and it is formulated as a mixed integer linear programming problem. The results reveal that there are only four basic optimal operating patterns, which vary depending on the scenario. This finding enables the design of an EMS that is computationally simpler than the optimal EMS but capable of emulating it and, therefore, is able to adapt effectively to changing scenarios. This new EMS would improve the cost-effectiveness of PEMFC-based micro-CHP systems, reducing their payback period and facilitating their mass market uptake. Full article
(This article belongs to the Special Issue Advancements and Innovations in Hydrogen Energy)
Show Figures

Figure 1

26 pages, 14647 KiB  
Article
Coordinated Dispatch Between Agricultural Park and Distribution Network: A Stackelberg Game Based on Carbon Emission Flow
by Jiahao Gou, Hailong Cui and Xia Zhao
Processes 2025, 13(7), 2102; https://doi.org/10.3390/pr13072102 - 2 Jul 2025
Viewed by 283
Abstract
With the acceleration of global climate warming and agricultural modernization, the energy and carbon emission issues of agricultural parks (APs) have drawn increasing attention. An AP equipped with biogas-based combined heat and power (CHP) generation and photovoltaic systems serves as a prosumer terminal [...] Read more.
With the acceleration of global climate warming and agricultural modernization, the energy and carbon emission issues of agricultural parks (APs) have drawn increasing attention. An AP equipped with biogas-based combined heat and power (CHP) generation and photovoltaic systems serves as a prosumer terminal in a distribution network (DN). This paper introduces carbon emission flow (CEF) theory into the coordinated dispatch of APs and DNs. First, a CEF model for APs is established. Then, based on this model, a carbon–energy coordinated dispatch is carried out under bidirectional CEF interaction between the park and DN. A bidirectional carbon tax mechanism is adopted to explore the low-carbon synergy potential between them. Finally, the Stackelberg game approach is employed to address the pricing of electricity purchase/sale and carbon taxes in a DN, and the particle swarm optimization algorithm is used for rapid generating solutions. The case study shows that the proposed CEF model can effectively determine CEF distribution in the park. Moreover, the proposed bidirectional carbon tax mechanism significantly enhances the low-carbon economic benefits of both the AP and the DN. Full article
(This article belongs to the Special Issue Modeling, Optimization, and Control of Distributed Energy Systems)
Show Figures

Figure 1

Back to TopTop