Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (164)

Search Parameters:
Keywords = combined heat and power (CHP) plant

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4688 KiB  
Article
How Best to Use Forest Wood for Energy: Perspectives from Energy Efficiency and Environmental Considerations
by John J. Fitzpatrick, Jack Carroll, Strahinja Macura and Neil Murphy
Eng 2025, 6(5), 95; https://doi.org/10.3390/eng6050095 - 8 May 2025
Viewed by 757
Abstract
This paper examines how best to use forest wood for energy application, considering that it is a limited natural resource. Eight systems are considered, including wood stoves, steam systems (boiler, power plant, and combined heat and power (CHP)), and gasification combined systems (gas [...] Read more.
This paper examines how best to use forest wood for energy application, considering that it is a limited natural resource. Eight systems are considered, including wood stoves, steam systems (boiler, power plant, and combined heat and power (CHP)), and gasification combined systems (gas turbine and combined cycle power plant, CHP, and Fischer–Tropsch). The methodology uses energy analysis and modelling and environmental/sustainability considerations to compare the energy systems. In terms of energy conversion efficiency, steam boilers and high-efficiency wood stoves for heating applications provide the highest efficiencies (~80 to 90%) and should be considered. Steam CHP systems provide lower overall energy conversion efficiencies (~75 to 80%) but do provide some electrical energy, and thus should be considered. The use of wood for the production of electricity on its own should not be considered due to low efficiencies (~20 to 30%). Particulate emissions hinder the application of high-efficiency stoves, especially in urban areas, whereas for industrial-scale steam boilers and CHP systems, particle separators can negate this problem. Gasification/Fischer–Tropsch systems have a lower energy efficiency (~30 to 50%); however, a sustainability argument could be made for liquid fuels that have few sustainable alternatives. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

17 pages, 4637 KiB  
Article
Energy Cost Optimisation in a Wastewater Treatment Plant by Balancing On-Site Electricity Generation with Plant Demand
by Nadja Hvala, Darko Vrečko, Peter Cerar, Gregor Žefran, Marjetka Levstek and Damir Vrančić
Water 2025, 17(8), 1170; https://doi.org/10.3390/w17081170 - 14 Apr 2025
Viewed by 939
Abstract
Wastewater treatment plants (WWTPs) consume a considerable amount of energy. They also generate energy in combined heat and power (CHP) units, which utilise biogas from the anaerobic digestion of sewage sludge to produce renewable electricity. Different prices apply to electricity generated on site [...] Read more.
Wastewater treatment plants (WWTPs) consume a considerable amount of energy. They also generate energy in combined heat and power (CHP) units, which utilise biogas from the anaerobic digestion of sewage sludge to produce renewable electricity. Different prices apply to electricity generated on site in CHP units, to the purchase of electricity from the grid, to the sale of surplus electricity to the grid and energy tariffs, which motivates the optimisation of energy costs. This paper presents a strategy for optimising electricity costs by adapting on-site electricity generation in CHP units to the demand of the WWTP. The approach is designed for a CHP system that generates electricity in multiple internal combustion gas engines. It is implemented as a two-level control system, where the lower control level dynamically adjusts the power of the individual gas engines, and the upper control level optimises the desired total power, taking into account the current energy consumption of the WWTP, biogas reserves and electricity tariffs. The proposed concept was implemented at the Domžale-Kamnik WWTP. A six-month evaluation showed that electricity purchased from the grid could be reduced from 8.7% to 3.3% of the WWTP’s electricity consumption. This reduction affects the system economically, as electricity purchased from the grid at low and high tariffs is 35% and 76% more expensive than electricity generated on site (excluding the grid fee). This approach can be extended to balance dispatchable electricity generation at the WWTP to respond to short-term grid demand. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

21 pages, 5726 KiB  
Article
Two-Stage Real-Time Frequency Regulation Strategy of Combined Heat and Power Units with Energy Storage
by Yan Zhang, Yang Shen, Rui Zhu, Zhu Chen, Tao Guo and Quan Lv
Energies 2025, 18(8), 1953; https://doi.org/10.3390/en18081953 - 11 Apr 2025
Viewed by 378
Abstract
In view of the frequency regulation (FR) policy in Northeast China, a two-stage real-time rolling optimization model for power plants participating in FR ancillary services is established. The optimization object of the first stage is to maximize the overall profitability of the power [...] Read more.
In view of the frequency regulation (FR) policy in Northeast China, a two-stage real-time rolling optimization model for power plants participating in FR ancillary services is established. The optimization object of the first stage is to maximize the overall profitability of the power plant and to obtain FR performance sub-indicators (K1, K2, K3) and the electric power curve of combined heat and power (CHP) units with energy storage. The second stage of the model performs load distribution with the objective of minimizing operating cost, subject to the constraint of electric and heat power balance for CHP units and energy storage. Meanwhile, rolling optimization combined with dynamic correction is used to ensure the accuracy of the two-stage FR optimization model by updating the operating status of the CHP units and energy storage and reducing the prediction errors of the FR commands. The above models have been validated by actual case studies of a CHP plant in Northeast China. They can ensure the economic and sustainable operation of CHP units and energy storage, enabling the CHP plant to benefit in the FR ancillary services market. The models offer a useful reference for CHP enterprises in terms of FR. Full article
Show Figures

Figure 1

24 pages, 1996 KiB  
Article
Techno-Economic Analysis on Implementing Hydrogen in a Combined Heat and Power Plant in Luxembourg to Reduce Carbon Emissions
by Claudia Ribeiro, Branca Delmonte, John Sliepen and Stefan Maas
Sustainability 2025, 17(8), 3369; https://doi.org/10.3390/su17083369 - 10 Apr 2025
Cited by 1 | Viewed by 2346
Abstract
In 2021, the global electricity and heat sector recorded the highest increase in carbon dioxide (CO2) emissions in comparison with the previous year, highlighting the ongoing challenges in reducing emissions within the sector. Therefore, combined heat and power (CHP) plants running [...] Read more.
In 2021, the global electricity and heat sector recorded the highest increase in carbon dioxide (CO2) emissions in comparison with the previous year, highlighting the ongoing challenges in reducing emissions within the sector. Therefore, combined heat and power (CHP) plants running on renewable fuels can play an important role in the energy transition by decarbonising a process, increasing the efficiency and capacity factor. Since 2003, Luxembourgish CHP plants have been transitioning from natural gas to biomass, mainly wood pellets. However, even though wood pellets are a renewable alternative, the market volatility in 2022 highlighted the vulnerability of a system reliant solely on one type of fuel. This study assesses the feasibility of using hydrogen to decarbonise a cogeneration plant powered by a natural gas-fuelled internal combustion engine. Although the technology to use hydrogen as a fuel for such systems already exists, a technical and economic analysis of implementing a hydrogen-ready plant is still lacking. Our results show that, from a technical perspective, retrofitting an existing power plant to operate with hydrogen is feasible, either by adapting or replacing the engine to accommodate hydrogen blends from 0 up to 100%. The costs of making the CHP plant hydrogen-ready vary depending on the scenario, ranging from a 20% increase for retrofitting to a 60% increase for engine replacement in the best-case scenarios. However, these values remain highly variable due to uncertainties associated with the ongoing technology development. From an economic standpoint, as of 2024, running the plant on hydrogen remains more expensive due to significant initial investments and higher fuel costs. Nevertheless, projections indicate that rising climate concerns, CO2 taxes, geopolitical factors, and the development of the hydrogen framework in the region—through projects such as MosaHYc and HY4Link—could accelerate the competitiveness of hydrogen, making it a more viable alternative to fossil-based solutions in the near future. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

26 pages, 3666 KiB  
Article
Hydraulic Balancing of District Heating Systems and Improving Thermal Comfort in Buildings
by Stanislav Chicherin
Energies 2025, 18(5), 1259; https://doi.org/10.3390/en18051259 - 4 Mar 2025
Cited by 2 | Viewed by 907
Abstract
The relevance is introducing fourth generation district heating (4GDH), which decreases operation and maintenance costs by utilizing the efficiency of low temperature district heating (LTDH). The aim is to develop a methodology allowing for a more flexible heat demand model and accurate function [...] Read more.
The relevance is introducing fourth generation district heating (4GDH), which decreases operation and maintenance costs by utilizing the efficiency of low temperature district heating (LTDH). The aim is to develop a methodology allowing for a more flexible heat demand model and accurate function describing the relationship between outdoor temperature and heat demand. It is represented by a black-box model based on historical data collected from heating, ventilation, and air conditioning (HVAC) systems. Energy delivery/consumption is analyzed with the help of a set of statistical and regression formulas. The analysis of operational data is then transformed to methodology to regulate heat supply with combined heat-and-power (CHP) generation. The key features are that the model takes into account thermal capacity and type of substation; the district heating (DH) plant is not assumed to have a fixed return temperature and generation profile. The novelty is an emphasis on DH operation and introduction of statistics into a dynamic simulation model. With no abnormal buildings, higher accuracy of modeling is achieved. Most of the consumers are pretty similar in thermal response, even though specific energy demand and heated volume may differ. Heat demand of an old building is better simulated with discrete regression, while those with pump-equipped substations are modeled with linear regression. Full article
(This article belongs to the Special Issue New Insights into Hybrid Renewable Energy Systems in Buildings)
Show Figures

Figure 1

22 pages, 2692 KiB  
Article
Life Cycle Greenhouse Gas Emissions Analysis of the Chlor-Alkali Process and By-Product Hydrogen in the United States
by Pradeep Vyawahare, Pingping Sun, Ben Young, Adarsh Bafana, Taemin Kim, Troy R. Hawkins and Amgad Elgowainy
Hydrogen 2025, 6(1), 12; https://doi.org/10.3390/hydrogen6010012 - 28 Feb 2025
Viewed by 1652
Abstract
Hydrogen is considered a key energy carrier for which interest has grown over recent years. Chlor-alkali plants in the United States (U.S.) can potentially recover and supply the by-product hydrogen at scale. However, there is a scarcity of standard analysis for energy use [...] Read more.
Hydrogen is considered a key energy carrier for which interest has grown over recent years. Chlor-alkali plants in the United States (U.S.) can potentially recover and supply the by-product hydrogen at scale. However, there is a scarcity of standard analysis for energy use and emissions associated with products from chlor-alkali plants owing to lack of data and variations in chlor-alkali plant technology and operation. A rigorous life cycle analysis (LCA) is needed to quantify the emissions of by-product hydrogen and other products from chlor-alkali plants. In this study, we performed well-to-gate (WTG) emissions analysis of chlor-alkali products based on U.S. plant operating data gathered from the U.S. Environmental Protection Agency’s (EPA’s) Chemical Data Reporting database, the U.S. Energy Information Administration survey EIA-923 form, and the EPA’s Greenhouse Gas Reporting Program. We performed process-level mass allocation to allocate energy use and emissions to the chlor-alkali products. This study shows that the by-product hydrogen has WTG CO2 emissions of 1.3–1.9 kgCO2/kg H2 for plants without combined heat and power (non-CHP) and 1.5–2.4 kgCO2/kg H2 for plants with combined heat and power (CHP). Furthermore, we identified that electricity upstream emissions are the key driver affecting the emissions of by-product hydrogen from non-CHP plants, while CHP emissions can be reduced by electricity export to grids with higher carbon intensity (CI). Finally, the study shows that chlor-alkali plants in the U.S. can potentially meet up to 320 kilotons of hydrogen demand (approximately 3% of total demand) annually. Full article
Show Figures

Figure 1

16 pages, 1736 KiB  
Article
A Comparative Study on the Average CO2 Emission Factors of Electricity of China
by Feng Chen, Jingyu Lei, Zilong Liu and Xingchuang Xiong
Energies 2025, 18(3), 654; https://doi.org/10.3390/en18030654 - 30 Jan 2025
Cited by 3 | Viewed by 1270
Abstract
The intensification of global climate change and the resulting environmental challenges have made carbon emission control a focal point of global attention. As one of the major sources of carbon emissions, the power sector plays a critical role in accurately quantifying CO2 [...] Read more.
The intensification of global climate change and the resulting environmental challenges have made carbon emission control a focal point of global attention. As one of the major sources of carbon emissions, the power sector plays a critical role in accurately quantifying CO2 emissions, which is essential for formulating effective emission reduction policies and action plans. The average CO2 emission factor of electricity (AEF), as a key parameter, is widely used in calculating indirect carbon emissions from purchased electricity in various industries. The International Energy Agency (IEA) reported an AEF of 0.6093 kgCO2/kWh for China in 2021, while the Ministry of Ecology and Environment of China (MEE) officially reported a value of 0.5568 kg CO2/kWh, resulting in a discrepancy of 9.43%. This study conducts an in-depth analysis of the calculation methodologies used by the MEE and IEA, comparing them from two critical dimensions: calculation formulas and data sources, to explore potential causes of the observed discrepancies. Differences in formula components include factors such as electricity trade, the allocation of emissions from combined heat and power (CHP) plants, and emissions from own energy use in power plants. Notably, the IEA’s inclusion of CHP allocation reduces its calculated emissions by 10.99%. Regarding data sources, this study focuses on total carbon emissions and total electricity generation, revealing that the IEA’s total carbon emissions exceed those of the MEE by 9.71%. This exploratory analysis of the discrepancies in China’s AEFs provides valuable insights and a foundational basis for further research. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

23 pages, 3351 KiB  
Article
Assessing the Economic and Environmental Dimensions of Large-Scale Energy-Efficient Renovation Decisions in District-Heated Multifamily Buildings from Both the Building and Urban Energy System Perspectives
by Alaa Khadra, Jan Akander, Xingxing Zhang and Jonn Are Myhren
Energies 2025, 18(3), 513; https://doi.org/10.3390/en18030513 - 23 Jan 2025
Viewed by 985
Abstract
The European Union (EU) has introduced a range of policies to promote energy efficiency, including setting specific targets for energy-efficient renovations across the EU building stock. This study provides a comprehensive environmental and economic assessment of energy-efficient renovation scenarios in a large-scale multifamily [...] Read more.
The European Union (EU) has introduced a range of policies to promote energy efficiency, including setting specific targets for energy-efficient renovations across the EU building stock. This study provides a comprehensive environmental and economic assessment of energy-efficient renovation scenarios in a large-scale multifamily building project that is district-heated, considering both the building and the broader urban energy system. A systematic framework was developed for this assessment and applied to a real case in Sweden, where emission factors from energy production are significantly lower than the EU average: 114 g CO2e/kWh for district heating and 37 g CO2e/kWh for electricity. The project involved the renovation of four similar district-heated multifamily buildings with comparable energy efficiency measures. The primary distinction between the measures lies in the type of HVAC system installed: (1) exhaust ventilation with air pressure control, (2) mechanical ventilation with heat recovery, (3) exhaust ventilation with an exhaust air heat pump, and (4) exhaust ventilation with an exhaust air heat pump combined with photovoltaic (PV) panels. The study’s findings show that the building with an exhaust air heat pump which operates intermittently with PV panels achieves the best environmental performance from both perspectives. A key challenge identified for future research is balancing the reduced electricity production from Combined Heat and Power (CHP) plants within the energy system. Full article
(This article belongs to the Special Issue Advances in Energy Management and Control for Smart Buildings)
Show Figures

Figure 1

22 pages, 2439 KiB  
Article
Life Cycle CO2 Emissions and Techno-Economic Analysis of Wood Pellet Production and CHP with Different Plant Scales and Sawdust Drying Processes
by Kenji Koido, Daichi Konno and Michio Sato
Sustainability 2025, 17(1), 140; https://doi.org/10.3390/su17010140 - 27 Dec 2024
Viewed by 1773
Abstract
This study presents a life cycle assessment (LCA) and economic analysis of wood pellet production and utilisation in gasification combined heat and power (CHP) systems, focusing on optimising the drying process and evaluating the impacts of varying plant scales. In line with Japan’s [...] Read more.
This study presents a life cycle assessment (LCA) and economic analysis of wood pellet production and utilisation in gasification combined heat and power (CHP) systems, focusing on optimising the drying process and evaluating the impacts of varying plant scales. In line with Japan’s target of achieving net-zero emissions by 2050, the research examines primary energy demand (PED), CO2 emissions, and financial viability across the wood pellet production (gate-to-gate) and CHP energy generation (gate-to-grave) stages. The results reveal that the drying process accounts for 35–39% of the total energy consumption in wood pellet production, with the heat source significantly influencing PED and CO2 emissions. Systems employing wood-fired boilers and wood pellet CHP for drying achieve reductions in PED by 12–26% and CO2 emissions by 14–31% compared to the conventional grid-supplied drying process. Economic analysis reveals that scaling up production enhances financial performance, with net income increasing by up to 20% and payback periods reducing to approximately 10 years in facilities producing 2.5 tons of wood pellets per hour. These findings highlight the critical role of optimised drying processes, plant scalability, and efficient supply chains in advancing sustainable wood pellet-based bioenergy systems that support Japan’s renewable energy targets. Full article
Show Figures

Figure 1

21 pages, 8899 KiB  
Article
The Impact of Thermal Energy Storage on the Emission of Particulate Pollutants into the Atmosphere
by Ryszard Zwierzchowski, Marlena Ziomacka and Olgierd Niemyjski
Sustainability 2024, 16(24), 10926; https://doi.org/10.3390/su162410926 - 13 Dec 2024
Cited by 1 | Viewed by 1142
Abstract
To improve the energy, operational, and ecological efficiency of a district heating system (DHS) powered by a combined heat and power (CHP) plant or a heating plant, thermal energy storage (TES) should be used. The presented paper examines the impact of the use [...] Read more.
To improve the energy, operational, and ecological efficiency of a district heating system (DHS) powered by a combined heat and power (CHP) plant or a heating plant, thermal energy storage (TES) should be used. The presented paper examines the impact of the use and operation of TES built in a CHP plant supplying a large DHS, based on the amount of particulates emitted into the atmosphere. Detailed research was carried out for the Siekierki–Warsaw and Białystok CHP plants in Poland. The analysis helped to determine the factors affecting the reduction in pollutant emissions and the volume of the energy effect of using TES in the CHP plant. In order to objectify the results of the comparative analysis of the impact of TES in the CHP plant on the emission of particulates, the so-called comparative index (CI) was introduced. The CI takes into account the volume of electricity and heat production and climatic conditions in the analyzed time periods. The CI for the analyzed years should have a similar value so that the results of the comparative analysis are fully representative. This condition is met for the CHP plant and DHS of Białystok, so the detailed results of the analysis are presented for this facility. As a result of the application of TES in the Białystok CHP plant, significant environmental effects related to the reduction in particulate emissions have been achieved; for example, the total amount of annual particulate matter (PM) emission (PM10 and PM2.5) has been reduced by 27% and the maximum emission by 29%. On the other hand, the average decrease in particulate emissions in the heating season varied in the range of 10–50%, while in the summer season, the values of particulate emissions were at a comparable level. A significant decrease in annual and one-hour average concentrations for PM10 and PM2.5 and particulate fallout for these two analyzed years was also found. The use of TES to reduce the occurrence and nuisance of the smog phenomenon, the main components of which are PM, is proposed, and selected models of forecasting concentrations of pollutants in the air, including particulate emissions, are presented in order to implement this type of activity. Full article
Show Figures

Figure 1

25 pages, 5975 KiB  
Article
Optimization Scheduling of Combined Heat–Power–Hydrogen Supply Virtual Power Plant Based on Stepped Carbon Trading Mechanism
by Ziteng Liu, Jianli Zhao, Weijian Tao and Qian Ai
Electronics 2024, 13(23), 4798; https://doi.org/10.3390/electronics13234798 - 5 Dec 2024
Cited by 3 | Viewed by 1142
Abstract
In the context of dual-carbon goals, it is essential to coordinate low-carbon policies and technologies. As a promising approach for clean energy integration, the combined heat–power–hydrogen virtual power plant (CHP-H VPP) effectively consolidates electricity, heat, and hydrogen to meet increasing energy demands and [...] Read more.
In the context of dual-carbon goals, it is essential to coordinate low-carbon policies and technologies. As a promising approach for clean energy integration, the combined heat–power–hydrogen virtual power plant (CHP-H VPP) effectively consolidates electricity, heat, and hydrogen to meet increasing energy demands and reduce carbon emissions. To this end, this paper proposes an optimal scheduling method for CHP-H VPPs based on a stepped carbon trading mechanism. First, at the low-carbon technology level, a CHP-H VPP architecture is constructed, incorporating thermal power units, hydrogen-doped gas turbines, hydrogen-doped gas boilers, and two-stage power-to-gas (P2G) systems. Second, at the policy level, a stepped carbon trading model is established to constrain system carbon emissions and an optimization model is formulated to minimize operating costs and emissions. Finally, a particle swarm optimization (PSO) algorithm with linearly decreasing constraints is employed to refine solution accuracy and accelerate convergence by progressively narrowing the search space and guiding the algorithm toward optimal solutions. Simulation results demonstrate that the proposed model enhances both the economic performance and carbon-reduction capabilities of the system; the simulation results also show that the proposed model effectively improves economic returns by reducing operating costs and enhancing carbon-reduction capacity, with a 7% reduction in run time. Full article
Show Figures

Figure 1

29 pages, 9515 KiB  
Article
Analysis of Gas-Steam CHP Plants Without and with Heat Accumulator and HTGR Reactor
by Ryszard Bartnik, Anna Hnydiuk-Stefan and Zbigniew Buryn
Energies 2024, 17(22), 5702; https://doi.org/10.3390/en17225702 - 14 Nov 2024
Viewed by 1073
Abstract
This study analyzes the thermodynamic and economic viability of modified high-temperature gas-cooled reactor (HTGR) gas-steam combined heat and power (CHP) systems compared to conventional CHP plants. The research addresses the critical need for efficient and sustainable energy production methods. Using comprehensive thermodynamic modeling [...] Read more.
This study analyzes the thermodynamic and economic viability of modified high-temperature gas-cooled reactor (HTGR) gas-steam combined heat and power (CHP) systems compared to conventional CHP plants. The research addresses the critical need for efficient and sustainable energy production methods. Using comprehensive thermodynamic modeling and economic analysis, the study evaluates system performance under various operating conditions. Key findings reveal that modified CHP plants with HTGR and turboexpanders (TEs) demonstrate significantly higher efficiency and lower heat generation costs compared to conventional gas turbine (GT) CHP plants, despite higher initial capital investments. The modified systems achieve electricity generation efficiencies up to 48%, surpassing traditional nuclear power plants. The absence of CO2 emissions and lower fuel costs in HTGR systems contribute to their economic advantage. This research provides novel insights into the potential of HTGR technology in CHP applications, offering a promising solution for future energy systems. The study’s originality lies in its comprehensive comparison of conventional and modified CHP systems, considering both thermodynamic and economic aspects, which has not been extensively explored in existing literature. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering: 3rd Edition)
Show Figures

Figure 1

20 pages, 3146 KiB  
Article
LCA Operational Carbon Reduction Based on Energy Strategies Analysis in a Mass Timber Building
by Moein Hemmati, Tahar Messadi, Hongmei Gu and Mahboobeh Hemmati
Sustainability 2024, 16(15), 6579; https://doi.org/10.3390/su16156579 - 1 Aug 2024
Cited by 7 | Viewed by 2149
Abstract
Buildings play a significant role in the rise of energy consumption and carbon emissions. Building operations are responsible for 28% of the world’s carbon emissions. It is crucial, therefore, to evaluate the environmental impact of various buildings’ operational phase in order to implement [...] Read more.
Buildings play a significant role in the rise of energy consumption and carbon emissions. Building operations are responsible for 28% of the world’s carbon emissions. It is crucial, therefore, to evaluate the environmental impact of various buildings’ operational phase in order to implement sustainable strategies for the mitigation of their energy usage and associated carbon footprint. While numerous studies have been conducted to determine the carbon footprint of conventional building operation phases, there are still a lack of actual data on the operational carbon (OC) emissions of mass timber buildings. There is also a lack of research pertaining to the operational carbon of buildings within larger campuses and their inherent energy usage. This study, therefore, aims to quantify empirical data on the carbon footprint of a mass timber building, using, as a case study, the recent Adohi Hall building, situated at the University of Arkansas, Fayetteville. The study also aims to examine and identify the best energy use scenarios for the campus building under consideration. The research team obtained data on Adohi Hall’s energy consumption, fuel input usage, and other utilities (such as water, electricity, chilled water, and natural gas) accounting for the operation of the building from 2021 to 2023, a span of three years. The University of Arkansas Facilities Management (FAMA) provided the data. The study relies on the life cycle assessment (LCA) as its primary approach, with SimaPro 9, Ecoinvent v3.7 database, DataSmart, version 2023.1 and the U.S. Life Cycle Inventory (USLCI) database utilized to model the energy and water consumption of Adohi Hall during the operational phase (B6 & B7). The results indicate 4496 kg CO2 eq emissions associated with the operation per square meter of Adohi Hall over its 50-year lifespan. The study also examines various scenarios of fuel sources leading to carbon emissions and provides insights into reduction strategies during the operational phase of buildings. Among them, the electricity based on a cleaner fuel source diversification, according to realistic expectations and technological advancements projections, results in a 17% reduction in Adohi Hall’s OC. Due to the usage of the combined heat and power (CHP) plant on the campus of the University of Arkansas as a complementary source of electricity and heating for Adohi Hall, the resulting carbon emission is approximately 21% (20.73%) less when compared to similar buildings in the same city but outside the campus. The study, therefore, reveals that CHP plant development is a highly effective strategy for building OC reduction. Full article
(This article belongs to the Special Issue Sustainable Building Environment)
Show Figures

Figure 1

54 pages, 5731 KiB  
Article
Impact of Multi-Energy System and Different Control Strategies on a Generic Low-Voltage Distribution Grid
by Tanja M. Kneiske
Electronics 2024, 13(13), 2545; https://doi.org/10.3390/electronics13132545 - 28 Jun 2024
Cited by 1 | Viewed by 1180
Abstract
The rising electricity costs, cost of space heating, and domestic hot water end up driving consumers toward reducing expenses by generating their electricity through devices like photovoltaic systems and efficient combined heat and power plants. When coupled with thermal systems via an energy [...] Read more.
The rising electricity costs, cost of space heating, and domestic hot water end up driving consumers toward reducing expenses by generating their electricity through devices like photovoltaic systems and efficient combined heat and power plants. When coupled with thermal systems via an energy management system (EMS) in a Multi-Energy System (MES), this self-produced electricity can effectively lower electricity and heating bills. However, MESs with EMSs can serve various purposes beyond cost reduction via self-consumption, such as reacting to variable electricity prices, meeting special grid connection conditions, or minimizing CO2 emissions. These diverse strategies create unique prosumer profiles, deviating significantly from standard load profiles. The potential threat to the power grid arises as grid operators lack visibility into which consumers employ which control strategies. This paper investigates the impact of controlled MESs on the power grid compared to average households and answers whether new control strategies affect the planning strategies of low voltage grids. It proposes a comprehensive four-step toolchain for the detailed simulation of thermal–electrical load profiles, MES control strategies, and grid dynamics. It includes a new method for the grid impact analysis of extreme and average bulk values. As a result, this study identifies three primary factors influencing distribution power grids by MESs. Firstly, the presence and scale of photovoltaic (PV) systems significantly affect extreme values in the grid. Secondly, MESs incorporating combined heat and power (CHP) and heat pump (HP) units impact the overall grid performance, mainly reflected in bulk values. Thirdly, the placement of an MES with heating systems, especially when concentrated in one feeder, plays a crucial role in grid dynamics. Despite the three distinct factors identified as impactful on the power grid, this study reveals that the various control strategies, despite leading to vastly different grid profiles, do not exhibit divergent impacts on buses, lines, or transformers. Remarkably, the impact of MESs remains consistently similar across the range of control strategies studied. Therefore, different control strategies do not pose an additional challenge to the grid integration of MESs. Full article
Show Figures

Figure 1

15 pages, 1014 KiB  
Article
The Return of Coal-Fired Combined Heat and Power Plants: Feasibility and Environmental Assessment in the Case of Conversion to Another Fuel or Modernizing an Exhaust System
by Stanislav Chicherin, Andrey Zhuikov and Petr Kuznetsov
Sustainability 2024, 16(5), 1974; https://doi.org/10.3390/su16051974 - 27 Feb 2024
Cited by 3 | Viewed by 2393
Abstract
Large city-scale coal-fired combined heat and power (CHP) plants are one of the main contributors to greenhouse gas emissions. The motivation is to find a way to decrease the contributions in the most feasible way possible. The importance of this study is that [...] Read more.
Large city-scale coal-fired combined heat and power (CHP) plants are one of the main contributors to greenhouse gas emissions. The motivation is to find a way to decrease the contributions in the most feasible way possible. The importance of this study is that it presents a methodology for comparing scenarios from both environmental and economic points of view. The scenarios aim to enhance the environmental performance of combustion flue gas-treatment units. The scenarios include installing an advanced electrostatic precipitator (ESP), a hybrid system comprising ESP and a bag filter, a combined cyclone and baghouse filter, a hybrid baghouse filter with novel electrostatic tissue, a wet flue gas desulfurization (WFGD) scrubber, a WFGD with (NH4)2SO4 technology, and fuel conversion (incl. biomass). Each of the scenarios is evaluated according to (a) primary energy consumption, (b) capital (CapEx) and operational (OpEx) costs, and (c) the obtained environmental effect (decreasing emissions of particulate matter (PM), CO2, SO2, and NOx). Adopting biomass waste decreases CO2 emissions by 50%. PM from the coal-fired boiler with particle filtration is lower compared to biomass but is two times higher than that from natural gas. Using advanced filters for a CHP plant decreases total emissions and PM by 2100–2800%. The largest effect on air quality is achieved by filtration and WFGD, with emissions decreasing by 43%. Primary energy consumption is maximal in fuel conversion and ESP scenarios. The conversion to limestone-based WFGD or the installation of a hybrid filter separately are the most viable options, totaling EUR 14.2 billion of CapEx. However, combining several technologies is essential to increase the quality of flue gas treatment. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

Back to TopTop