Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,535)

Search Parameters:
Keywords = colorectal cancer development

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 304 KiB  
Article
Biological Aging and Chemotoxicity in Patients with Colorectal Cancer: A Secondary Data Analysis Using EHR Data
by Claire J. Han, Ashley E. Rosko, Jesse J. Plascak, Alai Tan, Anne M. Noonan and Christin E. Burd
Curr. Oncol. 2025, 32(8), 438; https://doi.org/10.3390/curroncol32080438 - 5 Aug 2025
Abstract
Background: Biological aging influences cancer outcomes, but its changes during chemotherapy and impact on chemotoxicity in colorectal cancer (CRC) remain underinvestigated. We examined (1) trajectories of biological aging (using Levine Phenotypic Age) during six months of chemotherapy, (2) sociodemographic and clinical risk [...] Read more.
Background: Biological aging influences cancer outcomes, but its changes during chemotherapy and impact on chemotoxicity in colorectal cancer (CRC) remain underinvestigated. We examined (1) trajectories of biological aging (using Levine Phenotypic Age) during six months of chemotherapy, (2) sociodemographic and clinical risk factors for biological aging, and (3) links between biological aging and chemotoxicity. Methods: Using data from electronic health records (2013–2019) from 1129 adult CRC patients, we computed biological aging (raw Levine Phenotypic Age and its age acceleration [Levine Phenotypic Age–chronological age]) from routine blood tests (e.g., complete blood counts, hepatorenal/inflammatory markers). Chemotoxicity was identified primarily via International Classification of Diseases (ICD-9 and -10) codes. Results: Chemotherapy accelerated biological aging over time. Biological aging at baseline and changes over time predicted chemotoxicity. However, changes in biological aging over time showed stronger associations than baseline biological aging. Advanced cancer stages, higher comorbidity burden, and socioeconomic disadvantage (especially area-level deprivation) were associated with accelerated biological aging at baseline and over time. Biological aging occurred across both young and older adults. Conclusions: Levine Phenotypic Age, computed from routine blood tests in EHRs, offers a feasible clinical tool for aging-related chemotoxicity risk stratification. Validation in diverse cohorts and the development of predictive models are needed. Full article
(This article belongs to the Special Issue Health Disparities and Outcomes in Cancer Survivors)
14 pages, 2544 KiB  
Article
Colorectal Cancer Risk in Korean Patients with Inflammatory Bowel Disease: A Nationwide Big Data Study of Subtype and Socioeconomic Disparities
by Kyeong Min Han, Ho Suk Kang, Joo-Hee Kim, Hyo Geun Choi, Dae Myoung Yoo, Nan Young Kim, Ha Young Park and Mi Jung Kwon
J. Clin. Med. 2025, 14(15), 5503; https://doi.org/10.3390/jcm14155503 - 5 Aug 2025
Abstract
Background/Objectives: The two major subtypes of inflammatory bowel disease (IBD)—Crohn’s disease (CD) and ulcerative colitis (UC)—are known to increase the likelihood of developing colorectal cancer (CRC). While this relationship has been well studied in Western populations, evidence from East Asia remains limited [...] Read more.
Background/Objectives: The two major subtypes of inflammatory bowel disease (IBD)—Crohn’s disease (CD) and ulcerative colitis (UC)—are known to increase the likelihood of developing colorectal cancer (CRC). While this relationship has been well studied in Western populations, evidence from East Asia remains limited and inconsistent. Using nationwide cohort data, this study explored the potential connection between IBD and CRC in a large Korean population. Methods: We conducted a retrospective cohort study using data from the Korean National Health Insurance Service–National Sample Cohort from 2005 to 2019. A total of 9920 CRC patients were matched 1:4 with 39,680 controls using propensity scores based on age, sex, income, and region. Overlap weighting and multivariable logistic regression were used to evaluate the association between IBD and CRC. Subgroup analyses were conducted to assess effect modification by demographic and clinical factors. Results: IBD markedly increased the likelihood of developing CRC (adjusted odds ratio (aOR) = 1.38; 95% confidence interval (CI): 1.20–1.58; p < 0.001), with the association primarily driven by UC (aOR = 1.52; 95% CI: 1.27–1.83). CD appeared unrelated to heightened CRC risk overall, though a significant association was observed among low-income CD patients (aOR = 1.58; 95% CI: 1.15–2.16). The UC–CRC association persisted across all subgroups, including patients without comorbidities. Conclusions: Our findings support an independent association between IBD—particularly UC—and increased CRC risk in Korea. These results underscore the need for personalized CRC surveillance strategies that account for disease subtype, comorbidity burden, and socioeconomic status, especially in vulnerable subpopulations. Full article
Show Figures

Figure 1

18 pages, 876 KiB  
Review
Dormancy in Colorectal Carcinoma: Detection and Therapeutic Potential
by Sofía Fernández-Hernández, Miguel Ángel Hidalgo-León, Carlos Lacalle-González, Rocío Olivera-Salazar, Michael Ochieng’ Otieno, Jesús García-Foncillas and Javier Martinez-Useros
Biomolecules 2025, 15(8), 1119; https://doi.org/10.3390/biom15081119 - 4 Aug 2025
Abstract
Colorectal cancer (CRC) is not only the third most common cancer worldwide, with 1.1 million new cases per year; it is also the second leading cause of cancer death. However, mortality has decreased since 2012 due to early detection programs and better therapeutic [...] Read more.
Colorectal cancer (CRC) is not only the third most common cancer worldwide, with 1.1 million new cases per year; it is also the second leading cause of cancer death. However, mortality has decreased since 2012 due to early detection programs and better therapeutic approaches. While many patients are diagnosed at an early stage, there is up to 50% relapse after optimal initial treatment. Therefore, it is crucial to explore the mechanism underlying the development of recurrences and metastasis. It is known that tumors release dormant cells that escape chemotherapy and nest in a target organ without proliferating. Under certain circumstances that are not yet entirely clear, they can be activated and metastasize. Therefore, the objective of this work is to explore the detailed mechanisms of dormancy, including early detection of recurrence and therapeutic approaches for the treatment of CRC. The specific objectives are to determine biomarkers that may be useful in identifying dormant cells to detect minimal residual disease (MRD) after surgery and predicting disease progression, as well as evaluating biomarkers that are susceptible to therapeutic intervention. Full article
(This article belongs to the Special Issue Novel Molecules for Cancer Treatment (3rd Edition))
Show Figures

Figure 1

22 pages, 6758 KiB  
Article
Screening of an FDA-Approved Drug Library: Menadione Induces Multiple Forms of Programmed Cell Death in Colorectal Cancer Cells via MAPK8 Cascades
by Liyuan Cao, Weiwei Song, Jinli Sun, Yang Ge, Wei Mu and Lei Li
Pharmaceuticals 2025, 18(8), 1145; https://doi.org/10.3390/ph18081145 - 31 Jul 2025
Viewed by 232
Abstract
Background: Colorectal cancer (CRC) is a prevalent gastrointestinal malignancy, ranking third in incidence and second in cancer-related mortality. Despite therapeutic advances, challenges such as chemotherapy toxicity and drug resistance persist. Thus, there is an urgent need for novel CRC treatments. However, developing [...] Read more.
Background: Colorectal cancer (CRC) is a prevalent gastrointestinal malignancy, ranking third in incidence and second in cancer-related mortality. Despite therapeutic advances, challenges such as chemotherapy toxicity and drug resistance persist. Thus, there is an urgent need for novel CRC treatments. However, developing new drugs is time-consuming and resource-intensive. As a more efficient approach, drug repurposing offers a promising alternative for discovering new therapies. Methods: In this study, we screened 1068 small molecular compounds from an FDA-approved drug library in CRC cells. Menadione was selected for further study based on its activity profile. Mechanistic analysis included a cell death pathway PCR array, differential gene expression, enrichment, and network analysis. Gene expressions were validated by RT-qPCR. Results: We identified menadione as a potent anti-tumor drug. Menadione induced three programmed cell death (PCD) signaling pathways: necroptosis, apoptosis, and autophagy. Furthermore, we found that the anti-tumor effect induced by menadione in CRC cells was mediated through a key gene: MAPK8. Conclusions: By employing methods of cell biology, molecular biology, and bioinformatics, we conclude that menadione can induce multiple forms of PCD in CRC cells by activating MAPK8, providing a foundation for repurposing the “new use” of the “old drug” menadione in CRC treatment. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

35 pages, 887 KiB  
Review
Prognostic Factors in Colorectal Liver Metastases: An Exhaustive Review of the Literature and Future Prospectives
by Maria Conticchio, Emilie Uldry, Martin Hübner, Antonia Digklia, Montserrat Fraga, Christine Sempoux, Jean Louis Raisaro and David Fuks
Cancers 2025, 17(15), 2539; https://doi.org/10.3390/cancers17152539 - 31 Jul 2025
Viewed by 137
Abstract
Background: Colorectal liver metastasis (CRLM) represents a major clinical challenge in oncology, affecting 25–50% of colorectal cancer patients and significantly impacting survival. While multimodal therapies—including surgical resection, systemic chemotherapy, and local ablative techniques—have improved outcomes, prognosis remains heterogeneous due to variations in [...] Read more.
Background: Colorectal liver metastasis (CRLM) represents a major clinical challenge in oncology, affecting 25–50% of colorectal cancer patients and significantly impacting survival. While multimodal therapies—including surgical resection, systemic chemotherapy, and local ablative techniques—have improved outcomes, prognosis remains heterogeneous due to variations in tumor biology, patient factors, and institutional practices. Methods: This review synthesizes current evidence on prognostic factors influencing CRLM management, encompassing clinical (e.g., tumor burden, anatomic distribution, timing of metastases), biological (e.g., CEA levels, inflammatory markers), and molecular (e.g., RAS/BRAF mutations, MSI status, HER2 alterations) determinants. Results: Key findings highlight the critical role of molecular profiling in guiding therapeutic decisions, with RAS/BRAF mutations predicting resistance to anti-EGFR therapies and MSI-H status indicating potential responsiveness to immunotherapy. Emerging tools like circulating tumor DNA (ctDNA) and radiomics offer promise for dynamic risk stratification and early recurrence detection, while the gut microbiome is increasingly recognized as a modulator of treatment response. Conclusions: Despite advancements, challenges persist in standardizing resectability criteria and integrating multidisciplinary approaches. Current guidelines (NCCN, ESMO, ASCO) emphasize personalized strategies but lack granularity in terms of incorporating novel biomarkers. This exhaustive review underscores the imperative for the development of a unified, biomarker-integrated framework to refine CRLM management and improve long-term outcomes. Full article
Show Figures

Figure 1

22 pages, 716 KiB  
Article
Survival in Patients with Colorectal Cancer and Isolated Brain Metastases: Temporal Trends and Prognostic Factors from the National Cancer Database (2010–2020)
by Zouina Sarfraz, Diya Jayram, Ahmad Ozair, Lydia Hodgson, Shreyas Bellur, Arun Maharaj, Vyshak A. Venur, Sarbajit Mukherjee and Manmeet S. Ahluwalia
Cancers 2025, 17(15), 2531; https://doi.org/10.3390/cancers17152531 - 31 Jul 2025
Viewed by 162
Abstract
Background: The development of brain metastases (BM) is a relatively uncommon but significantly adverse event in the spread of colorectal cancer (CRC). Although management of CRC BM has improved with advances in imaging and systemic therapies, clinical outcomes remain poor. Methods: This retrospective [...] Read more.
Background: The development of brain metastases (BM) is a relatively uncommon but significantly adverse event in the spread of colorectal cancer (CRC). Although management of CRC BM has improved with advances in imaging and systemic therapies, clinical outcomes remain poor. Methods: This retrospective cohort study used the U.S. National Cancer Database to evaluate survival outcomes, treatment patterns, and prognostic factors in CRC patients diagnosed with BM between 2010 and 2020. Patients with isolated brain-only metastases formed the primary analytic cohort, while those with additional extracranial metastases were included for descriptive comparison. Multivariable Cox proportional hazards and logistic regression models were used to assess factors associated with of survival. Proportional hazards assumptions were tested using Schoenfeld residuals. Accelerated failure time models were also employed. Results: From a cohort of 1,040,877 individuals with CRC, 795 had metastatic disease present along with relevant data, of which 296 had isolated BM. Median overall survival (mOS) in BM-only metastatic disease group was 7.82 months (95% CI: 5.82–9.66). The longest survival was observed among patients treated with stereotactic radiosurgery combined with systemic therapy (SRS+Sys), with a median OS of 23.26 months (95% CI: 17.51–41.95) and a 3-year survival rate of 35.8%. In adjusted Cox models, SRS, systemic therapy, and definitive surgery of the primary site were each independently associated with reduced hazard of death. Rectal cancer patients had longer survival than those with colon primaries (mOS: 10.35 vs. 6.08 months). Age, comorbidity burden, and insurance status were not associated with survival in adjusted analyses. Conclusions: SRS+Sys was associated with longer survival compared to other treatment strategies. However, treatment selection is highly dependent on individual clinical factors such as performance status, comorbidities, and disease extent; therefore, these findings must be interpreted with caution Future prospective studies incorporating molecular and biomarker data are warranted to better guide care in this rare and high-risk group. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

14 pages, 2727 KiB  
Article
A Multimodal MRI-Based Model for Colorectal Liver Metastasis Prediction: Integrating Radiomics, Deep Learning, and Clinical Features with SHAP Interpretation
by Xin Yan, Furui Duan, Lu Chen, Runhong Wang, Kexin Li, Qiao Sun and Kuang Fu
Curr. Oncol. 2025, 32(8), 431; https://doi.org/10.3390/curroncol32080431 - 30 Jul 2025
Viewed by 142
Abstract
Purpose: Predicting colorectal cancer liver metastasis (CRLM) is essential for prognostic assessment. This study aims to develop and validate an interpretable multimodal machine learning framework based on multiparametric MRI for predicting CRLM, and to enhance the clinical interpretability of the model through [...] Read more.
Purpose: Predicting colorectal cancer liver metastasis (CRLM) is essential for prognostic assessment. This study aims to develop and validate an interpretable multimodal machine learning framework based on multiparametric MRI for predicting CRLM, and to enhance the clinical interpretability of the model through SHapley Additive exPlanations (SHAP) analysis and deep learning visualization. Methods: This multicenter retrospective study included 463 patients with pathologically confirmed colorectal cancer from two institutions, divided into training (n = 256), internal testing (n = 111), and external validation (n = 96) sets. Radiomics features were extracted from manually segmented regions on axial T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI). Deep learning features were obtained from a pretrained ResNet101 network using the same MRI inputs. A least absolute shrinkage and selection operator (LASSO) logistic regression classifier was developed for clinical, radiomics, deep learning, and combined models. Model performance was evaluated by AUC, sensitivity, specificity, and F1-score. SHAP was used to assess feature contributions, and Grad-CAM was applied to visualize deep feature attention. Results: The combined model integrating features across the three modalities achieved the highest performance across all datasets, with AUCs of 0.889 (training), 0.838 (internal test), and 0.822 (external validation), outperforming single-modality models. Decision curve analysis (DCA) revealed enhanced clinical net benefit from the integrated model, while calibration curves confirmed its good predictive consistency. SHAP analysis revealed that radiomic features related to T2WI texture (e.g., LargeDependenceLowGrayLevelEmphasis) and clinical biomarkers (e.g., CA19-9) were among the most predictive for CRLM. Grad-CAM visualizations confirmed that the deep learning model focused on tumor regions consistent with radiological interpretation. Conclusions: This study presents a robust and interpretable multiparametric MRI-based model for noninvasively predicting liver metastasis in colorectal cancer patients. By integrating handcrafted radiomics and deep learning features, and enhancing transparency through SHAP and Grad-CAM, the model provides both high predictive performance and clinically meaningful explanations. These findings highlight its potential value as a decision-support tool for individualized risk assessment and treatment planning in the management of colorectal cancer. Full article
(This article belongs to the Section Gastrointestinal Oncology)
Show Figures

Graphical abstract

13 pages, 3685 KiB  
Article
A Controlled Variation Approach for Example-Based Explainable AI in Colorectal Polyp Classification
by Miguel Filipe Fontes, Alexandre Henrique Neto, João Dallyson Almeida and António Trigueiros Cunha
Appl. Sci. 2025, 15(15), 8467; https://doi.org/10.3390/app15158467 (registering DOI) - 30 Jul 2025
Viewed by 174
Abstract
Medical imaging is vital for diagnosing and treating colorectal cancer (CRC), a leading cause of mortality. Classifying colorectal polyps and CRC precursors remains challenging due to operator variability and expertise dependence. Deep learning (DL) models show promise in polyp classification but face adoption [...] Read more.
Medical imaging is vital for diagnosing and treating colorectal cancer (CRC), a leading cause of mortality. Classifying colorectal polyps and CRC precursors remains challenging due to operator variability and expertise dependence. Deep learning (DL) models show promise in polyp classification but face adoption barriers due to their ‘black box’ nature, limiting interpretability. This study presents an example-based explainable artificial intehlligence (XAI) approach using Pix2Pix to generate synthetic polyp images with controlled size variations and LIME to explain classifier predictions visually. EfficientNet and Vision Transformer (ViT) were trained on datasets of real and synthetic images, achieving strong baseline accuracies of 94% and 96%, respectively. Image quality was assessed using PSNR (18.04), SSIM (0.64), and FID (123.32), while classifier robustness was evaluated across polyp sizes. Results show that Pix2Pix effectively controls image attributes like polyp size despite limitations in visual fidelity. LIME integration revealed classifier vulnerabilities, underscoring the value of complementary XAI techniques. This enhances DL model interpretability and deepens understanding of their behaviour. The findings contribute to developing explainable AI tools for polyp classification and CRC diagnosis. Future work will improve synthetic image quality and refine XAI methodologies for broader clinical use. Full article
Show Figures

Figure 1

18 pages, 4279 KiB  
Article
Chemophotothermal Combined Therapy with 5-Fluorouracil and Branched Gold Nanoshell Hyperthermia Induced a Reduction in Tumor Size in a Xenograft Colon Cancer Model
by Sarah Eliuth Ochoa-Hugo, Karla Valdivia-Aviña, Yanet Karina Gutiérrez-Mercado, Alejandro Arturo Canales-Aguirre, Verónica Chaparro-Huerta, Adriana Aguilar-Lemarroy, Luis Felipe Jave-Suárez, Mario Eduardo Cano-González, Antonio Topete, Andrea Molina-Pineda and Rodolfo Hernández-Gutiérrez
Pharmaceutics 2025, 17(8), 988; https://doi.org/10.3390/pharmaceutics17080988 (registering DOI) - 30 Jul 2025
Viewed by 295
Abstract
Background/Objectives: The heterogeneity of cancer disease and the frequent ineffectiveness and resistance observed with currently available treatments highlight the importance of developing new antitumor therapies. The properties of gold nanoparticles, such as their photon-energy heating, are attractive for oncology therapy; this can [...] Read more.
Background/Objectives: The heterogeneity of cancer disease and the frequent ineffectiveness and resistance observed with currently available treatments highlight the importance of developing new antitumor therapies. The properties of gold nanoparticles, such as their photon-energy heating, are attractive for oncology therapy; this can be effective and localized. The combination of chemotherapy and hyperthermia is promising. Our aim was to evaluate the combination therapy of photon hyperthermia with 5-fluorouracil (5-FU) both in vitro and in vivo. Methods: This study evaluated the antitumor efficacy of a combined chemo-photothermal therapy using 5-fluorouracil (5-FU) and branched gold nanoshells (BGNSs) in a colorectal cancer model. BGNSs were synthesized via a seed-mediated method and characterized by electron microscopy and UV–vis spectroscopy, revealing an average diameter of 126.3 nm and a plasmon resonance peak at 800 nm, suitable for near-infrared (NIR) photothermal applications. In vitro assays using SW620-GFP colon cancer cells demonstrated a ≥90% reduction in cell viability after 24 h of combined treatment with 5-FU and BGNS under NIR irradiation. In vivo, xenograft-bearing nude mice received weekly intratumoral administrations of the combined therapy for four weeks. The group treated with 5-FU + BGNS + NIR exhibited a final tumor volume of 0.4 mm3 on day 28, compared to 1010 mm3 in the control group, corresponding to a tumor growth inhibition (TGI) of 100.74% (p < 0.001), which indicates not only complete inhibition of tumor growth but also regression below the initial tumor volume. Thermographic imaging confirmed that localized hyperthermia reached 45 ± 0.5 °C at the tumor site. Results: These findings suggest that the combination of 5-FU and BGNS-mediated hyperthermia may offer a promising strategy for enhancing therapeutic outcomes in patients with colorectal cancer while potentially minimizing systemic toxicity. Conclusions: This study highlights the potential of integrating nanotechnology with conventional chemotherapy for more effective and targeted cancer treatment. Full article
(This article belongs to the Special Issue Advanced Nanotechnology for Combination Therapy and Diagnosis)
Show Figures

Graphical abstract

22 pages, 1703 KiB  
Article
Towards Personalized Precision Oncology: A Feasibility Study of NGS-Based Variant Analysis of FFPE CRC Samples in a Chilean Public Health System Laboratory
by Eduardo Durán-Jara, Iván Ponce, Marcelo Rojas-Herrera, Jessica Toro, Paulo Covarrubias, Evelin González, Natalia T. Santis-Alay, Mario E. Soto-Marchant, Katherine Marcelain, Bárbara Parra and Jorge Fernández
Curr. Issues Mol. Biol. 2025, 47(8), 599; https://doi.org/10.3390/cimb47080599 - 30 Jul 2025
Viewed by 244
Abstract
Massively parallel or next-generation sequencing (NGS) has enabled the genetic characterization of cancer patients, allowing the identification of somatic and germline variants associated with their diagnosis, tumor classification, and therapy response. Despite its benefits, NGS testing is not yet available in the Chilean [...] Read more.
Massively parallel or next-generation sequencing (NGS) has enabled the genetic characterization of cancer patients, allowing the identification of somatic and germline variants associated with their diagnosis, tumor classification, and therapy response. Despite its benefits, NGS testing is not yet available in the Chilean public health system, rendering it both costly and time-consuming for patients and clinicians. Using a retrospective cohort of 67 formalin-fixed, paraffin-embedded (FFPE) colorectal cancer (CRC) samples, we aimed to implement the identification, annotation, and prioritization of relevant actionable tumor somatic variants in our laboratory, as part of the public health system. We compared two different library preparation methodologies (amplicon-based and capture-based) and different bioinformatics pipelines for sequencing analysis to assess advantages and disadvantages of each one. We obtained 80.5% concordance between actionable variants detected in our analysis and those obtained in the Cancer Genomics Laboratory from the Universidad de Chile (62 out of 77 variants), a validated laboratory for this methodology. Notably, 98.4% (61 out of 62) of variants detected previously by the validated laboratory were also identified in our analysis. Then, comparing the hybridization capture-based library preparation methodology with the amplicon-based strategy, we found ~94% concordance between identified actionable variants across the 15 shared genes, analyzed by the TumorSecTM bioinformatics pipeline, developed by the Cancer Genomics Laboratory. Our results demonstrate that it is entirely viable to implement an NGS-based analysis of actionable variant identification and prioritization in cancer samples in our laboratory, being part of the Chilean public health system and paving the way to improve the access to such analyses. Considering the economic realities of most Latin American countries, using a small NGS panel, such as TumorSecTM, focused on relevant variants of the Chilean and Latin American population is a cost-effective approach to extensive global NGS panels. Furthermore, the incorporation of automated bioinformatics analysis in this streamlined assay holds the potential of facilitating the implementation of precision medicine in this geographic region, which aims to greatly support personalized treatment of cancer patients in Chile. Full article
(This article belongs to the Special Issue Linking Genomic Changes with Cancer in the NGS Era, 2nd Edition)
Show Figures

Figure 1

23 pages, 2002 KiB  
Article
Precision Oncology Through Dialogue: AI-HOPE-RTK-RAS Integrates Clinical and Genomic Insights into RTK-RAS Alterations in Colorectal Cancer
by Ei-Wen Yang, Brigette Waldrup and Enrique Velazquez-Villarreal
Biomedicines 2025, 13(8), 1835; https://doi.org/10.3390/biomedicines13081835 - 28 Jul 2025
Viewed by 450
Abstract
Background/Objectives: The RTK-RAS signaling cascade is a central axis in colorectal cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic resistance. Somatic alterations in key pathway genes—including KRAS, NRAS, BRAF, and EGFR—are pivotal to clinical decision-making in precision oncology. However, the integration of [...] Read more.
Background/Objectives: The RTK-RAS signaling cascade is a central axis in colorectal cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic resistance. Somatic alterations in key pathway genes—including KRAS, NRAS, BRAF, and EGFR—are pivotal to clinical decision-making in precision oncology. However, the integration of these genomic events with clinical and demographic data remains hindered by fragmented resources and a lack of accessible analytical frameworks. To address this challenge, we developed AI-HOPE-RTK-RAS, a domain-specialized conversational artificial intelligence (AI) system designed to enable natural language-based, integrative analysis of RTK-RAS pathway alterations in CRC. Methods: AI-HOPE-RTK-RAS employs a modular architecture combining large language models (LLMs), a natural language-to-code translation engine, and a backend analytics pipeline operating on harmonized multi-dimensional datasets from cBioPortal. Unlike general-purpose AI platforms, this system is purpose-built for real-time exploration of RTK-RAS biology within CRC cohorts. The platform supports mutation frequency profiling, odds ratio testing, survival modeling, and stratified analyses across clinical, genomic, and demographic parameters. Validation included reproduction of known mutation trends and exploratory evaluation of co-alterations, therapy response, and ancestry-specific mutation patterns. Results: AI-HOPE-RTK-RAS enabled rapid, dialogue-driven interrogation of CRC datasets, confirming established patterns and revealing novel associations with translational relevance. Among early-onset CRC (EOCRC) patients, the prevalence of RTK-RAS alterations was significantly lower compared to late-onset disease (67.97% vs. 79.9%; OR = 0.534, p = 0.014), suggesting the involvement of alternative oncogenic drivers. In KRAS-mutant patients receiving Bevacizumab, early-stage disease (Stages I–III) was associated with superior overall survival relative to Stage IV (p = 0.0004). In contrast, BRAF-mutant tumors with microsatellite-stable (MSS) status displayed poorer prognosis despite higher chemotherapy exposure (OR = 7.226, p < 0.001; p = 0.0000). Among EOCRC patients treated with FOLFOX, RTK-RAS alterations were linked to worse outcomes (p = 0.0262). The system also identified ancestry-enriched noncanonical mutations—including CBL, MAPK3, and NF1—with NF1 mutations significantly associated with improved prognosis (p = 1 × 10−5). Conclusions: AI-HOPE-RTK-RAS exemplifies a new class of conversational AI platforms tailored to precision oncology, enabling integrative, real-time analysis of clinically and biologically complex questions. Its ability to uncover both canonical and ancestry-specific patterns in RTK-RAS dysregulation—especially in EOCRC and populations with disproportionate health burdens—underscores its utility in advancing equitable, personalized cancer care. This work demonstrates the translational potential of domain-optimized AI tools to accelerate biomarker discovery, support therapeutic stratification, and democratize access to multi-omic analysis. Full article
Show Figures

Figure 1

18 pages, 529 KiB  
Article
Perspectives on Mail-Based Fecal Testing for Colorectal Cancer Screening in Bulgaria: A Survey of Gastroenterologists
by Kostadin Yordanov Dimitrov, Vladislav Velchev, Nely Danailova, Elena Staneva, Teodor Koparanov, Trifon Diankov, Teodora Gencheva, Bozhidar Valkov, Eleonora Hristova-Atanasova, Georgi Iskrov and Rumen Stefanov
Gastroenterol. Insights 2025, 16(3), 25; https://doi.org/10.3390/gastroent16030025 - 26 Jul 2025
Viewed by 287
Abstract
Background: Bulgaria carries a high burden of colorectal cancer (CRC) but, at the start of this study, lacked a nationwide organized screening program. Understanding specialist views (particularly on mail-based fecal testing) is essential for effective policy development. Objective: The objective is to assess [...] Read more.
Background: Bulgaria carries a high burden of colorectal cancer (CRC) but, at the start of this study, lacked a nationwide organized screening program. Understanding specialist views (particularly on mail-based fecal testing) is essential for effective policy development. Objective: The objective is to assess the attitudes towards, practices of, and perceived barriers to CRC screening among Bulgarian gastroenterologists, with a focus on the feasibility of mail-based fecal occult blood testing (FOBT). Methods: A cross-sectional survey of 38 gastroenterologists examined clinical use of FOBT, screening method preferences, and perceived systemic and patient-level barriers to CRC screening. Results: Among respondents, 57.89% reported using FOBT in clinical practice, and 71.05% indicated they would undergo the test themselves and recommend it to relatives. Colonoscopy was the preferred diagnostic tool for 84.21% of participants; however, the existing literature raises concerns about its feasibility for large-scale population screening. Key systemic barriers, rated on a 5-point Likert scale, included financial constraints (mean = 3.08), inadequate infrastructure (2.89), and healthcare workforce shortages (2.71). Patient-level barriers were led by low health literacy (4.13), lack of motivation (3.95), and procedural fears (3.26). A majority (84.38%) believed that mail-based FOBT would increase screening uptake, and 57.89% supported annual distribution of test kits. Nearly all respondents (97.37%) favored initiating screening at age 50. Conclusions: This study highlights strong support among Bulgarian gastroenterologists for a national CRC screening program, with particular endorsement of mail-based FOBT. Despite acknowledged systemic and population-level barriers, the findings suggest that such an approach could increase screening coverage, promote early detection, and support the strategic rollout of Bulgaria’s emerging cancer control initiatives. Full article
(This article belongs to the Section Gastrointestinal Disease)
Show Figures

Figure 1

23 pages, 8757 KiB  
Article
Single-Cell Dissection of the Serrated Pathway: Cellular Heterogeneity and Genetic Causality in Colorectal Cancer
by Ming Cen, Yunhan Wen, Zhijun Feng, Yahai Shu and Chuanxia Hu
Int. J. Mol. Sci. 2025, 26(15), 7187; https://doi.org/10.3390/ijms26157187 - 25 Jul 2025
Viewed by 175
Abstract
The serrated pathway represents a significant route to colorectal cancer (CRC), accounting for approximately 15–30% of cases, yet the specific epithelial cell subpopulations driving this pathway remain poorly understood. This study explores the causal relationship between serrated epithelial cells and CRC risk using [...] Read more.
The serrated pathway represents a significant route to colorectal cancer (CRC), accounting for approximately 15–30% of cases, yet the specific epithelial cell subpopulations driving this pathway remain poorly understood. This study explores the causal relationship between serrated epithelial cells and CRC risk using single-cell transcriptomics and Mendelian randomization (MR). Publicly available single-cell RNA sequencing data were utilized to analyze epithelial cell subpopulations in CRC, focusing on specific serrated cells (SSCs). By integrating genome-wide association study data, MR was employed to assess the causal relationship between gene expression patterns and CRC risk. The study found that an increase in SSCs is closely associated with CRC progression. MR analysis revealed a significant correlation between expression changes in specific genes, such as IER3 in SSCs, and CRC risk (p < 0.05). Functional analyses indicated that IER3 may promote malignancy by regulating cell proliferation, adhesion, and immune evasion. Several genetic loci related to SSC gene expression were identified and validated for CRC risk association. This study demonstrates the significant role of serrated epithelial cell subpopulations in CRC development, particularly through key genes such as IER3, providing new perspectives for understanding CRC pathogenesis and future therapeutic strategies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 1064 KiB  
Article
Targeting RARγ Decreases Immunosuppressive Macrophage Polarization and Reduces Tumor Growth
by Jihyeon Park, Jisun Oh, Sang-Hyun Min, Ji Hoon Yu, Jong-Sup Bae and Hui-Jeon Jeon
Molecules 2025, 30(15), 3099; https://doi.org/10.3390/molecules30153099 - 24 Jul 2025
Viewed by 261
Abstract
Tumor-associated macrophages (TAMs) play a critical role in the tumor microenvironment (TME), interacting with cancer cells and other components to promote tumor growth. Given the influence of TAMs on tumor progression and resistance to therapy, regulating the activity of these macrophages is crucial [...] Read more.
Tumor-associated macrophages (TAMs) play a critical role in the tumor microenvironment (TME), interacting with cancer cells and other components to promote tumor growth. Given the influence of TAMs on tumor progression and resistance to therapy, regulating the activity of these macrophages is crucial for improving cancer treatment outcomes. TAMs often exhibit immunosuppressive phenotypes (commonly referred to as M2-like macrophages), which suppress immune responses and contribute to drug resistance. Therefore, inhibiting immunosuppressive polarization offers a promising strategy to impede tumor growth. This study revealed retinoic acid receptor gamma (RARγ), a nuclear receptor, as a key regulator of immunosuppressive polarization in THP-1 macrophages. Indeed, the inhibition of RARγ, either by a small molecule or gene silencing, significantly reduced the expression of immunosuppressive macrophage markers. In a three-dimensional tumor spheroid model, immunosuppressive macrophages enhanced the proliferation of HCT116 colorectal cancer cells, which was significantly hindered by RARγ inhibition. These findings suggest that targeting RARγ reprograms immunosuppressive macrophages and mitigates the tumor-promoting effects of TAMs, highlighting RARγ as a promising therapeutic target for developing novel anti-cancer strategies. Full article
Show Figures

Figure 1

25 pages, 2959 KiB  
Article
Synthesis, Characterization, HSA/DNA Binding, and Cytotoxic Activity of [RuCl26-p-cymene)(bph-κN)] Complex
by Stefan Perendija, Dušan Dimić, Thomas Eichhorn, Aleksandra Rakić, Luciano Saso, Đura Nakarada, Dragoslava Đikić, Teodora Dragojević, Jasmina Dimitrić Marković and Goran N. Kaluđerović
Molecules 2025, 30(15), 3088; https://doi.org/10.3390/molecules30153088 - 23 Jul 2025
Viewed by 229
Abstract
A novel ruthenium(II) complex, [RuCl26-p-cymene)(bph-κN)] (1), was synthesized and structurally characterized using FTIR and NMR spectroscopy. Density functional theory (DFT) calculations supported the proposed geometry and allowed for comparative analysis of experimental and [...] Read more.
A novel ruthenium(II) complex, [RuCl26-p-cymene)(bph-κN)] (1), was synthesized and structurally characterized using FTIR and NMR spectroscopy. Density functional theory (DFT) calculations supported the proposed geometry and allowed for comparative analysis of experimental and theoretical spectroscopic data. The interaction of complex 1 with human serum albumin (HSA) and calf thymus DNA was investigated through fluorescence quenching experiments, revealing spontaneous binding driven primarily by hydrophobic interactions. The thermodynamic parameters indicated mixed quenching mechanisms in both protein and DNA systems. Ethidium bromide displacement assays and molecular docking simulations confirmed DNA intercalation as the dominant binding mode, with a Gibbs free binding energy of −34.1 kJ mol−1. Antioxidant activity, assessed by EPR spectroscopy, demonstrated effective scavenging of hydroxyl and ascorbyl radicals. In vitro cytotoxicity assays against A375, MDA-MB-231, MIA PaCa-2, and SW480 cancer cell lines revealed selective activity, with pancreatic and colorectal cells showing the highest sensitivity. QTAIM analysis provided insight into metal–ligand bonding characteristics and intramolecular stabilization. These findings highlight the potential of 1 as a promising candidate for further development as an anticancer agent, particularly against multidrug-resistant tumors. Full article
(This article belongs to the Special Issue Transition Metal Complexes with Bioactive Ligands)
Show Figures

Figure 1

Back to TopTop