Biological Aging and Chemotoxicity in Patients with Colorectal Cancer: A Secondary Data Analysis Using EHR Data
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Measurements
2.2.1. Patient Characteristics
2.2.2. Biological Age Assessment
2.2.3. Social Determinants of Health (SDOH)
2.2.4. Chemotherapy Toxicity Event
2.3. Statistical Methods
3. Results
3.1. Participants Characteristics
3.2. Risk Factors of Raw Levine Phenotypic Age
3.3. Risk Factors of Age Acceleration
3.4. Associations of Biological Age with Chemotoxicity
3.5. Impact of Biological Age on Chemotoxicity
4. Discussion
4.1. Biological Aging During Chemotherapy
4.2. Risk Factors for Biological Aging During Chemotherapy
4.3. Biological Age Is a Risk Factor for Chemotoxicity
4.4. Clinical Implications
4.5. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADI | Area Deprivation Index |
aOR | Adjusted Odds Ratio |
BMI | Body Mass Index |
CBC | Complete Blood Count |
CAPEOX | Capecitabine, Oxaliplatin |
CI | Confidence Interval |
CRC | Colorectal Cancer |
CTCAE | Common Terminology Criteria for Adverse Events |
EHR | Electronic Health Record |
5-FU | 5-Fluorouracil |
FOLFIRI | Folinic Acid, Fluorouracil, Irinotecan |
FOLFOX | Folinic Acid, Fluorouracil, Oxaliplatin |
GI | Gastrointestinal |
HIPAA | Health Insurance Portability and Accountability Act |
ICD-9/10 | International Classification of Diseases, 9th/10th Revisions |
IRB | Institutional Review Board |
OR | Odds Ratio |
ROS | Reactive Oxygen Species |
SASP | Senescence-Associated Secretory Phenotype |
SD | Standard Deviation |
SDOH | Social Determinants of Health |
SE | Standard Error |
References
- Siegel, R.L.; Kratzer, T.B.; Giaquinto, A.N.; Sung, H.; Jemal, A. Cancer statistics, 2025. CA Cancer J. Clin. 2025, 75, 10–45. [Google Scholar] [CrossRef]
- Siegel, R.L.; Wagle, N.S.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 233–254. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.D.; Nogueira, L.; Devasia, T.; Mariotto, A.B.; Yabroff, K.R.; Jemal, A.; Kramer, J.; Siegel, R.L. Cancer treatment and survivorship statistics, 2022. CA Cancer J. Clin. 2022, 72, 409–436. [Google Scholar] [CrossRef] [PubMed]
- Han, C.J.; Ning, X.; Burd, C.E.; Spakowicz, D.J.; Tounkara, F.; Kalady, M.F.; Noonan, A.M.; McCabe, S.; Von Ah, D. Chemotoxicity and Associated Risk Factors in Colorectal Cancer: A Systematic Review and Meta-Analysis. Cancers 2024, 16, 2597. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, C.; Müller, F.; Faiz, N.; King, M.T.; White, K. Patient-reported outcomes and experiences from the perspective of colorectal cancer survivors: Meta-synthesis of qualitative studies. J. Patient-Rep. Outcomes 2020, 4, 27. [Google Scholar] [CrossRef]
- Han, C.J.; Reding, K.W.; Kalady, M.F.; Yung, R.; Greenlee, H.; Paskett, E.D.; Cancela, M.D.C. Factors associated with long-term gastrointestinal symptoms in colorectal cancer survivors in the women’s health initiatives (WHI study). PLoS ONE 2023, 18, e0286058. [Google Scholar] [CrossRef]
- Lee, C.S.; Ryan, E.J.; Doherty, G.A. Gastro-intestinal toxicity of chemotherapeutics in colorectal cancer: The role of inflammation. World J. Gastroenterol. 2014, 20, 3751–3767. [Google Scholar] [CrossRef]
- McWhirter, D.; Kitteringham, N.; Jones, R.P.; Malik, H.; Park, K.; Palmer, D. Chemotherapy induced hepatotoxicity in metastatic colorectal cancer: A review of mechanisms and outcomes. Crit. Rev. Oncol. 2013, 88, 404–415. [Google Scholar] [CrossRef]
- Abraham, S.; Parekh, J.; Lee, S.; Afrin, H.; Rozenblit, M.; Blenman, K.R.M.; Perry, R.J.; Ferrucci, L.M.; Liu, J.; Irwin, M.L.; et al. Accelerated Aging in Cancer and Cancer Treatment: Current Status of Biomarkers. Cancer Med. 2025, 14, e70929. [Google Scholar] [CrossRef]
- Wang, S.; Prizment, A.; Thyagarajan, B.; Blaes, A. Cancer treatment-induced accelerated aging in cancer survivors: Biology and assessment. Cancers 2021, 13, 427. [Google Scholar] [CrossRef]
- Sedrak, M.S.; Kirkland, J.L.; Tchkonia, T.; Kuchel, G.A. Accelerated aging in older cancer survivors. J. Am. Geriatr. Soc. 2021, 69, 3077–3080. [Google Scholar] [CrossRef]
- Berben, L.; Floris, G.; Wildiers, H.; Hatse, S. Cancer and Aging: Two Tightly Interconnected Biological Processes. Cancers 2021, 13, 1400. [Google Scholar] [CrossRef] [PubMed]
- Westrick, A.C.; Langa, K.M.; Eastman, M.; Ospina-Romero, M.; Mullins, M.A.; Kobayashi, L.C. Functional aging trajectories of older cancer survivors: A latent growth analysis of the US Health and Retirement Study. J. Cancer Surviv. 2022, 17, 1499–1509. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.E.; Bower, J.E.; Ganz, P.A. Cancer-related accelerated ageing and biobehavioural modifiers: A framework for research and clinical care. Nat. Rev. Clin. Oncol. 2021, 19, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Guida, J.L.; Agurs-Collins, T.; A Ahles, T.; Campisi, J.; Dale, W.; Demark-Wahnefried, W.; Dietrich, J.; Fuldner, R.; Gallicchio, L.; A Green, P.; et al. Strategies to Prevent or Remediate Cancer and Treatment-Related Aging. JNCI J. Natl. Cancer Inst. 2021, 113, 112–122. [Google Scholar] [CrossRef]
- Guo, J.; Huang, X.; Dou, L.; Yan, M.; Shen, T.; Tang, W.; Li, J. Aging and aging-related diseases: From molecular mechanisms to interventions and treatments. Signal Transduct. Target. Ther. 2022, 7, 391. [Google Scholar] [CrossRef]
- Prasanna, P.G.; Citrin, D.E.; Hildesheim, J.; Ahmed, M.M.; Venkatachalam, S.; Riscuta, G.; Xi, D.; Zheng, G.; van Deursen, J.; Goronzy, J.; et al. Therapy-Induced Senescence: Opportunities to Improve Anticancer Therapy. JNCI J. Natl. Cancer Inst. 2021, 113, 1285–1298. [Google Scholar] [CrossRef]
- Jurkovicova, D.; Neophytou, C.M.; Gašparović, A.Č.; Gonçalves, A.C. DNA Damage Response in Cancer Therapy and Resistance: Challenges and Opportunities. Int. J. Mol. Sci. 2022, 23, 14672. [Google Scholar] [CrossRef]
- Nikita, N.; Sun, Z.; Sharma, S.; Shaver, A.; Seewaldt, V.; Lu-Yao, G. Epigenetic Landscapes of Aging in Breast Cancer Survivors: Unraveling the Impact of Therapeutic Interventions—A Scoping Review. Cancers 2025, 17, 866. [Google Scholar] [CrossRef]
- Bhatia, R.; Holtan, S.; Jurdi, N.E.; Prizment, A.; Blaes, A. Do cancer and cancer treatments accelerate aging? Curr. Oncol. Rep. 2022, 24, 1401–1412. [Google Scholar] [CrossRef]
- Wennberg, A.M.; Matthews, A.; Talbäck, M.; Ebeling, M.; Ek, S.; Feychting, M.; Modig, K. Frailty Among Breast Cancer Survivors: Evidence From Swedish Population Data. Am. J. Epidemiol. 2023, 192, 1128–1136. [Google Scholar] [CrossRef]
- Zahnreich, S.; Schmidberger, H. Childhood Cancer: Occurrence, Treatment and Risk of Second Primary Malignancies. Cancers 2021, 13, 2607. [Google Scholar] [CrossRef]
- Lucas, F.; Pennell, M.; Huang, Y.; Benson, D.M.; Efebera, Y.A.; Chaudhry, M.; Hughes, T.; Woyach, J.A.; Byrd, J.C.; Zhang, S.; et al. T Cell Transcriptional Profiling and Immunophenotyping Uncover LAG3 as a Potential Significant Target of Immune Modulation in Multiple Myeloma. Biol. Blood Marrow Transplant. 2020, 26, 7–15. [Google Scholar] [CrossRef]
- Wood, W.A.; Krishnamurthy, J.; Mitin, N.; Torrice, C.; Parker, J.S.; Snavely, A.C.; Shea, T.C.; Serody, J.S.; Sharpless, N.E. Chemotherapy and Stem Cell Transplantation Increase p16 INK4a Expression, a Biomarker of T-cell Aging. EBioMedicine 2016, 11, 227–238. [Google Scholar] [CrossRef] [PubMed]
- E Burd, C.; Peng, J.; Laskowski, B.F.; Hollyfield, J.L.; Zhang, S.; Fadda, P.; Yu, L.; Andridge, R.R.; Kiecolt-Glaser, J.K.; Le Couteur, D. Association of Epigenetic Age and p16 INK4a With Markers of T-Cell Composition in a Healthy Cohort. J. Gerontol. Ser. A 2020, 75, 2299–2303. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Sun, C.-L.; LeVee, A.A.; Sedrak, M.S. Accelerated epigenetic aging and risk of chemotoxicity in older adults with early breast cancer. J. Clin. Oncol. 2024, 42, 1624. [Google Scholar] [CrossRef]
- Xiao, C.; Miller, A.H.; Peng, G.; Levine, M.E.; Conneely, K.N.; Zhao, H.; Eldridge, R.C.; Wommack, E.C.; Jeon, S.; Higgins, K.A.; et al. Association of Epigenetic Age Acceleration With Risk Factors, Survival, and Quality of Life in Patients With Head and Neck Cancer. Int. J. Radiat. Oncol. 2021, 111, 157–167. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Huang, Y.; Lin, C.; Xu, B.; Zeng, Y.; Chen, P.; Liu, X.; Huang, Y. Association of phenotypic age acceleration with all-cause and cause-specific mortality among U.S. cancer survivors: A retrospective cohort study. BMC Cancer 2025, 25, 338. [Google Scholar] [CrossRef]
- Chen, R.; Wang, Y.; Zhang, S.; Bulloch, G.; Zhang, J.; Liao, H.; Shang, X.; Clark, M.; Peng, Q.; Ge, Z.; et al. Biomarkers of ageing: Current state-of-art, challenges, and opportunities. MedComm—Future Med. 2023, 2, 1–31. [Google Scholar] [CrossRef]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10, 573–591. [Google Scholar] [CrossRef]
- Rosenzweig, M.Q.; Althouse, A.D.; Sabik, L.; Arnold, R.; Chu, E.; Smith, T.J.; Smith, K.; White, D.; Schenker, Y. The Association Between Area Deprivation Index and Patient-Reported Outcomes in Patients with Advanced Cancer. Health Equity 2021, 5, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Cheng, E.; Soulos, P.R.; Irwin, M.L.; Feliciano, E.M.C.; Presley, C.J.; Fuchs, C.S.; Meyerhardt, J.A.; Gross, C.P. Neighborhood and Individual Socioeconomic Disadvantage and Survival Among Patients With Nonmetastatic Common Cancers. JAMA Netw. Open 2021, 4, e2139593. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute; National Institutes of Health; US Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. Available online: https://dctd.cancer.gov/research/ctep-trials/for-sites/adverse-events/ctcae-v5-5x7.pdf (accessed on 21 May 2025).
- Chen, S.-Y.; Feng, Z.; Yi, X. A general introduction to adjustment for multiple comparisons. J. Thorac. Dis. 2017, 9, 1725–1729. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Kohli, J.; Demaria, M. Senescent Cells in Cancer Therapy: Friends or Foes? Trends Cancer 2020, 6, 838–857. [Google Scholar] [CrossRef]
- Brouwers, B.; Hatse, S.; Lago, L.D.; Neven, P.; Vuylsteke, P.; Dalmasso, B.; Debrock, G.; Bulck, H.V.D.; Smeets, A.; Bechter, O.; et al. The impact of adjuvant chemotherapy in older breast cancer patients on clinical and biological aging parameters. Oncotarget 2016, 7, 29977–29988. [Google Scholar] [CrossRef]
- Sebastiani, P.; Thyagarajan, B.; Sun, F.; Schupf, N.; Newman, A.B.; Montano, M.; Perls, T.T. Biomarker signatures of aging. Aging Cell 2017, 16, 329–338. [Google Scholar] [CrossRef]
- Shachar, S.S.; Deal, A.M.; E Reeder-Hayes, K.; A Nyrop, K.; Mitin, N.; Anders, C.K.; A Carey, L.; Dees, E.C.; A Jolly, T.; Kimmick, G.G.; et al. Effects of Breast Cancer Adjuvant Chemotherapy Regimens on Expression of the Aging Biomarker, p16INK4a. JNCI Cancer Spectr. 2020, 4, pkaa082. [Google Scholar] [CrossRef]
- Liu, C.H.; Abrams, N.D.; Carrick, D.M.; Chander, P.; Dwyer, J.; Hamlet, M.R.J.; Macchiarini, F.; PrabhuDas, M.; Shen, G.L.; Tandon, P.; et al. Biomarkers of chronic inflammation in disease development and prevention: Challenges and opportunities. Nat. Immunol. 2017, 18, 1175–1180. [Google Scholar] [CrossRef]
- Jakubczyk, K.; Dec, K.; Kałduńska, J.; Kawczuga, D.; Kochman, J.; Janda, K. Reactive oxygen species—Sources, functions, oxidative damage. Pol. Merkur. Lekarski. 2020, 48, 124–127. [Google Scholar]
- Wang, B.; Han, J.; Elisseeff, J.H.; Demaria, M. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat. Rev. Mol. Cell Biol. 2024, 25, 958–978. [Google Scholar] [CrossRef]
- Sanoff, H.K.; Deal, A.M.; Krishnamurthy, J.; Torrice, C.; Dillon, P.; Sorrentino, J.; Ibrahim, J.G.; Jolly, T.A.; Williams, G.; Carey, L.A.; et al. Effect of Cytotoxic Chemotherapy on Markers of Molecular Age in Patients With Breast Cancer. JNCI J. Natl. Cancer Inst. 2014, 106, dju057. [Google Scholar] [CrossRef]
- Barchitta, M.; Maugeri, A.; Li Destri, G.; Basile, G.; Agodi, A. Epigenetic Biomarkers in Colorectal Cancer Patients Receiving Adjuvant or Neoadjuvant Therapy: A Systematic Review of Epidemiological Studies. Int. J. Mol. Sci. 2019, 20, 3842. [Google Scholar] [CrossRef]
- Read, B.; Sylla, P. Aggressive Colorectal Cancer in the Young. Clin. Colon Rectal Surg. 2020, 33, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Belsky, D.W.; Gu, Y.; Duque, G. Healthy Lifestyle Behaviors and Biological Aging in the U.S. National Health and Nutrition Examination Surveys 1999–2018. J. Gerontol. Ser. A 2023, 78, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Oblak, L.; van der Zaag, J.; Higgins-Chen, A.T.; Levine, M.E.; Boks, M.P. A systematic review of biological, social and environmental factors associated with epigenetic clock acceleration. Ageing Res. Rev. 2021, 69, 101348. [Google Scholar] [CrossRef] [PubMed]
- Quintela-Fandino, M.; Soberon, N.; Lluch, A.; Manso, L.; Calvo, I.; Cortes, J.; Moreno-Antón, F.; Gil-Gil, M.; Martinez-Jánez, N.; Gonzalez-Martin, A.; et al. Critically short telomeres and toxicity of chemotherapy in early breast cancer. Oncotarget 2017, 8, 21472–21482. [Google Scholar] [CrossRef]
- M’kAcher, R.; Bennaceur-Griscelli, A.; Girinsky, T.; Koscielny, S.; Delhommeau, F.; Dossou, J.; Violot, D.; Leclercq, E.; Courtier, M.H.; Béron-Gaillard, N.; et al. Telomere Shortening and Associated Chromosomal Instability in Peripheral Blood Lymphocytes of Patients With Hodgkin’s Lymphoma Prior to Any Treatment Are Predictive of Second Cancers. Int. J. Radiat. Oncol. 2007, 68, 465–471. [Google Scholar] [CrossRef]
- Falandry, C.; Horard, B.; Bruyas, A.; Legouffe, E.; Cretin, J.; Meunier, J.; Alexandre, J.; Delecroix, V.; Fabbro, M.; Certain, M.-N.; et al. Telomere length is a prognostic biomarker in elderly advanced ovarian cancer patients: A multicenter GINECO study. Aging 2015, 7, 1066–1074. [Google Scholar] [CrossRef]
- Mitin, N.; Nyrop, K.A.; Strum, S.L.; Knecht, A.; Carey, L.A.; Reeder-Hayes, K.E.; Dees, E.C.; Jolly, T.A.; Kimmick, G.G.; Karuturi, M.S.; et al. A biomarker of aging, p16, predicts peripheral neuropathy in women receiving adjuvant taxanes for breast cancer. npj Breast Cancer 2022, 8, 103. [Google Scholar] [CrossRef]
- DeMaria, M.; O’Leary, M.N.; Chang, J.; Shao, L.; Liu, S.; Alimirah, F.; Koenig, K.; Le, C.; Mitin, N.; Deal, A.M.; et al. Cellular Senescence Promotes Adverse Effects of Chemotherapy and Cancer Relapse. Cancer Discov. 2017, 7, 165–176. [Google Scholar] [CrossRef]
- Rosko, A.E.; Elsaid, M.I.; Woyach, J.; Islam, N.; Lepola, N.; Urrutia, J.; Christian, L.M.; Presley, C.; Mims, A.; Burd, C.E. Determining the relationship of p16INK4a and additional molecular markers of aging with clinical frailty in hematologic malignancy. J. Cancer Surviv. 2024, 18, 1168–1178. [Google Scholar] [CrossRef]
- Ros, M.; Carrascosa, J.M. Current nutritional and pharmacological anti-aging interventions. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2020, 1866, 165612. [Google Scholar] [CrossRef]
Demographic Factors | Total Samples (N = 1129) |
---|---|
Age (years), mean ± SD (range) | 57.3 ± 13.7 (18–89) |
Female (n, %) | 603 (53.4) |
Race/Ethnicity (n, %): Non-Hispanic White | 769 (68.1) |
Non-Hispanic Black | 327 (29.0) |
Non-Hispanic Other | 33 (2.9) |
Clinical Factors (n, %) | |
Cancer Site: Colon only | 630 (55.8) |
Rectal only | 389 (34.5) |
Colon and Rectal | 110 (9.7) |
Cancer stages II * | 702 (62.2) * |
III | 427 (37.8) |
5-FU (fluorouracil)-based chemotherapy regimens with an average of 2600 mg/m2 and 10 cycles | |
FOLFOX (infusion) | 459 (40.6) |
FOLFIRI (infusion) | 325 (28.8) |
CAPEOX (oral) | 199 (17.6) |
Single-Agent 5-FU (infusion) | 146 (13.0) |
Body mass index (BMI): Obese (≥30) | 226 (20.0) |
Overweight (25≤, <30) | 452 (40.0) |
Normal (21≤, <25) | 395 (35.0) |
Underweight (<21) | 56 (5.0) |
Modified Comorbidity Index (≥2) | 1035 (59.7) |
Previous cancer treatment history: | |
Radiation | 172 (17.2) |
Immunotherapy | 58 (5.1) |
GI surgery | 881 (79.7) |
Cancer Health Behaviors (Yes): | |
Current Smoking Status | 193 (17.1) |
Current Heavy Alcohol Use | 244 (21.6) |
Regular Physical Activity | 482 (42.9) |
Social Determinants of Health (SDOH) (n, %) | |
Primary Insurance Types: Private | 694 (61.5) |
Medicare/Medicaid | 435 (38.5) |
Marital status: Married/Partnered | 632 (56.0) |
Divorced/Widowed/Single | 497 (44.0) |
Area Deprivation Index (ADI), Tertile: 0–33 | 372 (33.0) |
34–66 | 470 (42.0) |
67–100 | 287 (25.0) |
Employment Status: Employed | 531 (47.1) |
Unemployed | 311 (27.6) |
Retired | 287 (25.4) |
Biological Aging | |
Raw Levine Phenotypic Age, mean ± SD (range) | |
at T0 (before chemotherapy) | 59.1 ± 13.8 (19–95) |
at T1 (6 months after chemotherapy) | 61.8 ± 14.1 (19–96) |
mean changes in biological age over time from T0 to T1 | 2.7 ± 1.2 (0.0–2.1) |
Biological Age Acceleration | |
(Differences from Levine Phenotypic Age to Chronological Age), mean ± SD | |
at T0 (before chemotherapy) | 1.2 ± 0.5 |
at T1 (6 months after chemotherapy) | 2.8 ± 0.7 |
mean changes in biological age acceleration over time from T0 to T1 | 1.6 ± 0.5 |
Chemotoxicity Incidences for 6 months of chemotherapy (n, %) | |
Clinician-Reported Global Chemotoxicity | 636 (56.3) |
Clinician-Reported Gastrointestinal Chemotoxicity | 460 (40.8) |
Clinician-Reported Hematological Chemotoxicity | 258 (22.8) |
Raw Levine Phenotypic Age Mean ± SE) | |||||||
---|---|---|---|---|---|---|---|
At Baseline | F, p a | 6 Months After Chemotherapy c | F, p a | Changes Overtime | Paired t, p b Time Effects | F, p a Group Effects | |
Age group: | 38.6, <0.001 | 38.8, <0.001 | 7.98, 0.005 | ||||
Young Adults (18 ≤ age < 50, n = 332) | 48.7 (0.4) | 51.7 (0.4) | 3.0 (0.06) | 28.75, <0.001 | |||
Older Adults (age ≥ 50, n = 797) | 69.9 (0.9) | 72.3 (0.3) | 2.4 (0.05) | 47.94, <0.001 | |||
Sex: Male | 58.2 (0.4) | 3.35, 0.067 | 60.5 (0.4) | 3.35, 0.067 | 2.3 (0.02) | 35.43, <0.001 | 0.08, 0.769 |
Female | 60.0 (0.3) | 63.0 (0.5) | 3.0 (0.03) | 43.71, <0.001 | |||
Race/Ethnicity: | 2.97, 0.051 | 3.23, 0.040 | 1.12, 0.328 | ||||
Non-Hispanic White | 60.1 (0.4) | 63.3 (0.4) | 3.2 (0.03) | 52.01, <0.001 | |||
Non-Hispanic Black | 59.6 (0.3) | 62.1 (0.5) | 2.5 (0.02) | 18.73, <0.001 | |||
Non-Hispanic Other | 57.5 (0.4) | 56.9 (0.4) | 2.4 (0.01) | 8.25, <0.001 | |||
Cancer Site: Colon only | 58.0 (0.5) | 2.31, 0.101 | 60.8 (0.5) | 3.32, 0.112 | 2.8 (0.02) | 10.39, 0.135 | 1.18, 0.313 |
Rectal only | 60.0 (0.4) | 62.7 (0.3) | 2.7 (0.03) | 13.44, 0.112 | |||
Colon and Rectal | 59.3 (0.3) | 61.6 (0.6) | 2.3 (0.02) | 16.51, 0.101 | |||
Cancer stages: II | 58.5 (0.4) | 1.58, 0.162 | 61.5 (0.5) | 1.79, 0.112 | 3.0 (0.02) | 21.85, <0.001 | 4.35, 0.013 |
III | 59.7 (0.5) | 62.1 (0.6) | 2.4 (0.03) | 49.33, <0.001 | |||
5-FU (fluorouracil)-based chemotherapy | 1.11, 0.523 | 0.91, 0.941 | 1.18, 0.313 | ||||
FOLFOX (infusion) | 57.6 (0.4) | 60.6 (0.5) | 3.0 (0.4) | 5.6, 0.542 | |||
FOLFIRI (infusion) | 58.4 (0.9) | 61.0 (0.8) | 2.6 (0.8) | 6.3, 0.481 | |||
CAPEOX (oral) | 60.8 (1.3) | 63.2 (1.5) | 2.4 (1.3) | 2.1, 0.994 | |||
Single-Agent 5-FU (infusion) | 58.6 (1.7) | 61.2 (1.8) | 2.6 (1.5) | 6.1, 0.501 | |||
Body Mass Index (BMI) | 1.65, 0.209 | 1.11, 0.123 | 2.01, 0.129 | ||||
Obese (≥30) | 58.8 (0.9) | 61.8 (0.9) | 3.0 (0.9) | 5.4, 0.499 | |||
Overweight (≥25, <30) | 59.4 (0.8) | 62.0 (0.8) | 2.6 (0.8) | 6.1, 0.312 | |||
Normal (≥21, <25) | 59.1 (0.6) | 61.7 (0.6) | 2.6 (0.5) | 5.5, 0.561 | |||
Underweight (<21) | 59.1 (1.3) | 61.7 (1.3) | 2.6 (1.2) | 6.5, 0.209 | |||
Modified Comorbidity Index: ≥2 | 58.9 (0.4) | 1.61, 0.203 | 61.7 (0.4) | 3.08, 0.080 | 2.9 (0.04) | 40.23, <0.001 | 20.3, <0.001 |
<2 | 58.1 (0.5) | 60.6 (0.5) | 2.5 (0.04) | 39.15, <0.001 | |||
History of Radiation: Yes | 58.5 (0.4) | 1.77, 0.233 | 61.2 (0.5) | 1.66, 0.129 | 2.7 (0.5) | 9.15, 0.121 | 1.87, 0.133 |
No | 59.7 (0.6) | 62.5 (0.5) | 2.8 (0.4) | 5.55, 0.312 | |||
History of Immunotherapy: Yes | 58.1 (0.4) | 1.56, 0.122 | 60.8 (0.4) | 1.82, 0.132 | 2.7 (0.02) | 14.23, 0.121 | 2.01, 0.122 |
No | 60.1 (0.5) | 62.8 (0.6) | 2.7 (0.03) | 11.15, 0.212 | |||
History of GI surgery: Yes | 58.0 (0.5) | 1.89, 0.132 | 60.7 (0.5) | 1.55, 0.122 | 2.7 (0.03) | 39.45, <0.001 | 2.22, 0.159 |
No | 60.2 (0.6) | 62.9 (0.5) | 2.7 (0.04) | 29.15, <0.001 | |||
Current Smoking Status: Yes | 58.9 (0.4) | 1.96, 0.195 | 61.3 (0.5) | 2.71, 0.231 | 2.4 (0.04) | 51.45, <0.001 | 2.56, 0.222 |
No | 59.3 (0.5) | 62.3 (0.4) | 3.0 (0.01) | 43.21, <0.001 | |||
Current Heavy Alcohol Use: Yes | 58.5 (0.5) | 1.75, 0.133 | 61.1 (0.4) | 1.88, 0.195 | 2.6 (0.05) | 49.31, <0.001 | 2.11, 0.298 |
No | 59.7 (0.6) | 62.6 (0.5) | 2.9 (0.04) | 41.21, <0.001 | |||
Routine Physical Activity: Yes | 57.8 (0.5) | 1.79, 0.195 | 60.2 (0.4) | 2.09, 0.185 | 2.4 (0.05) | 51.41, <0.001 | 2.41, 0.187 |
No | 60.4 (0.5) | 63.4 (0.4) | 3.0 (0.04) | 39.41, 0.004 | |||
Primary Insurance Types: Private | 58.9 (0.4) | 1.72, 0.194 | 61.3 (0.5) | 2.11, 0.132 | 2.4 (0.4) | 12.41, 0.496 | 2.41, 0.195 |
Medicare/Medicaid | 59.3 (0.5) | 62.5 (0.4) | 3.2 (0.5) | 19.31, 0.312 | |||
Marital status: Married/Partnered | 58.5 (0.5) | 1.74, 0.175 | 60.0 (0.5) | 2.21, 0.110 | 2.5 (0.05) | 44.07, <0.001 | 8.9 <0.001 |
Divorced/Widowed/Single | 59.7 (0.5) | 62.8 (0.5) | 2.8 (0.05) | 36.91, <0.001 | |||
ADI, Tertile: 0–33 | 58.2 (0.7) | 1.98, 0.138 | 60.7 (0.7) | 3.19, 0.041 | 2.5 (0.08) | 22.8, <0.001 | 12.99, <0.001 |
34–66 | 58.7 (0.6) | 61.4 (0.5) | 2.7 (0.06) | 32.46, <0.001 | |||
67–100 | 60.4 (0.5) | 63.4 (0.3) | 3.0 (0.06) | 40.21, <0.001 | |||
Employment Status: Employed | 57.6 (0.5) | 7.21, <0.001 | 60.4 (0.5) | 7.60, <0.001 | 2.6 (0.05) | 35.12, <0.001 | 4.88, <0.001 |
Unemployed/Retired | 60.6 (0.7) | 63.4 (0.7) | 2.8 (0.07) | 28.36, <0.001 |
Biological Age Acceleration (Mean ± SE) | |||||||
---|---|---|---|---|---|---|---|
At Baseline | F, p a | 6 Months After Chemotherapy c | F, p a | Changes Over Time | Paired t, p b Time Effects | F, p a Group Effects | |
Age group: | 30.371, <0.001 | 19.558, <0.001 | 7.985, 0.005 | ||||
Young Adults (18 ≤ age < 50, n = 332) | 2.3 (0.3) | 4.1 (0.3) | 1.8 (0.1) | 38.71, <0.001 | |||
Older Adults (age ≥ 50, n = 797) | 0.9 (0.2) | 2.3 (0.2) | 1.4 (0.1) | 45.51, <0.001 | |||
Sex: Male | 1.4 (0.2) | 0.064, 0.800 | 3.0 (0.2) | 0.098, 0.754 | 1.6 (0.1) | 40.31, 0.001 | 0.086, 0.769 |
Female | 1.8 (0.2) | 3.4 (0.2) | 1.6 (0.1) | 39.51, 0.003 | |||
Race/Ethnicity: | 0.436, 0.647 | 0.785, 0.456 | 1.115, 0.328 | ||||
Non-Hispanic White | 1.7 (0.2) | 3.5 (0.2) | 1.8 (0.1) | 49.65, 0.001 | |||
Non-Hispanic Black | 1.3 (0.4) | 2.7 (0.4) | 1.4 (0.1) | 51.55, 0.004 | |||
Non-Hispanic Other | 1.8 (0.7) | 3.4 (0.8) | 1.6 (0.2) | 48.43, 0.003 | |||
Cancer Site: Colon only | 1.5 (0.2) | 0.351, 0.641 | 2.8 (0.2) | 0.841, 0.533 | 1.3 (0.3) | 24.51, 0.121 | 0.549, 0.299 |
Rectal only | 1.8 (0.2) | 3.5 (0.3) | 1.7 (0.3) | 51.55, 0.006 | |||
Colon and Rectal | 1.5 (0.1) | 3.3 (0.5) | 1.8 (0.3) | 21.39, 0.149 | |||
Cancer stages: II | 1.9 (0.2) | 4.958, <0.001 | 3.8 (0.4) | 6.582, <0.001 | 1.9 (0.1) | 49.55, 0.005 | 4.281, <0.001 |
III | 1.3 (0.3) | 2.6 (0.3) | 1.3 (0.8) | 29.41, 0.134 | |||
5-FU (fluorouracil)-based chemotherapy | 1.312, 0.985 | 0.412, 0.512 | 0.102, 0.132 | ||||
FOLFOX (infusion) | 1.3 (0.5) | 2.6 (0.5) | 1.3 (0.5) | 13.12, 0.156 | |||
FOLFIRI (infusion) | 1.5 (0.7) | 3.1 (0.8) | 1.6 (0.7) | 14.61, 0.952 | |||
CAPEOX (oral) | 1.9 (0.9) | 3.9 (0.9) | 2.0 (0.9) | 13.05, 0.121 | |||
Single-Agent 5-FU (infusion) | 1.7 (1.1) | 3.3 (1.1) | 1.9 (1.1) | 19.11, 0.232 | |||
Body Mass Index (BMI) | 0.192, 0.542 | 0.293, 0.133 | 1.102, 0.432 | ||||
Obese (≥30) | 1.7 (0.6) | 3.1 (0.6) | 1.4(0.6) | 5.6, 0.988 | |||
Overweight (≥25, <30) | 1.6 (0.7) | 3.4 (0.6) | 1.8 (0.6) | 7.1, 0.999 | |||
Normal (≥21, <25) | 1.5 (0.4) | 3.0 (0.5) | 1.5 (0.4) | 11.2, 0.516 | |||
Underweight (<21) | 1.6 (1.1) | 3.3 (1.1) | 1.7(1.1) | 13.5, 0.309 | |||
Modified Comorbidity Index: ≥2 | 1.3 (0.2) | 0.025, 0.875 | 3.1 (0.2) | 1.679, 0.195 | 1.8 (0.1) | 39.41, 0.005 | 20.33, <0.001 |
<2 | 1.9 (0.2) | 3.3 (0.2) | 1.4 (0.1) | 45.44, 0.001 | |||
History of Radiation: Yes | 1.1 (0.3) | 0.412, 0.521 | 2.9 (0.4) | 0.334, 0.563 | 1.8 (0.2) | 40.55, 0.005 | 0.007, 0.934 |
No | 2.1 (0.1) | 3.5 (0.2) | 1.4 (0.1) | 51.55, 0.007 | |||
History of Immunotherapy: Yes | 1.8 (0.3) | 5.078, 0.024 | 3.6 (0.3) | 0.385, 0.726 | 1.8 (0.1) | 43.59, 0.001 | 1.035, 0.309 |
No | 1.4 (0.2) | 2.8 (0.2) | 1.4 (0.1) | 45.61, 0.010 | |||
History of GI surgery: Yes | 1.5 (0.2) | 0.684, 0.408 | 3.3 (0.2) | 0.699, 0.403 | 1.8 (0.1) | 40.99, 0.005 | 0.056, 0.812 |
No | 1.7 (0.4) | 3.1 (0.4) | 1.4 (0.1) | 25.61, 0.112 | |||
Current Smoking Status: Yes | 1.4 (0.1) | 0.415, 0.122 | 2.8 (0.1) | 0.423, 0.412 | 1.4(0.1) | 59.55, 0.009 | 0.322, 0.599 |
No | 1.8 (0.2) | 3.6 (0.1) | 1.8(0.1) | 61.15, 0.003 | |||
Current Heavy Alcohol Use: Yes | 1.3 (0.1) | 0.333, 0.233 | 2.5 (0.1) | 0.012, 0.999 | 1.2 (0.1) | 55.69, 0.010 | 0.043, 0.891 |
No | 1.5 (0.3) | 2.9 (0.2) | 1.4 (0.1) | 63.52, 0.009 | |||
Routine Physical Activity: Yes | 1.2 (0.1) | 0.513, 0.431 | 2.8 (0.2) | 0.333, 0.444 | 1.6 (0.1) | 54.59, <0.001 | 0.019, 0.981 |
No | 2.0 (0.2) | 3.6 (0.1) | 1.6 (0.1) | 55.61, 0.010 | |||
Primary Insurance Types: Private | 1.5 (0.2) | 0.222, 0.132 | 3.3 (0.2) | 0.122, 0.159 | 1.8 (0.1) | 13.73, 0.232 | 0.233, 0.481 |
Medicare/Medicaid | 1.7 (0.1) | 3.1 (0.2) | 1.4 (0.1) | 19.65, 0.167 | |||
Marital status: Married/Partnered | 1.0 (0.2) | 5.174, 0.006 | 2.6 (0.2) | 8.351, <0.001 | 1.6 (0.1) | 65.05, 0.001 | 8.984, <0.001 |
Divorced/Widowed/Single | 2.2 (0.2) | 3.8 (0.2) | 1.6 (0.1) | 49.10, 0.010 | |||
ADI, Tertile: 0–33 | 1.1 (0.3) | 4.819, 0.008 | 2.5 (0.1) | 8.324, <0.001 | 1.4 (0.1) | 49.89, 0.009 | 12.993, <0.001 |
34–66 | 1.6 (0.2) | 3.2 (0.2) | 1.6 (0.1) | 59.11, 0.012 | |||
67–100 | 2.1 (0.2) | 4.1 (0.2) | 2.0 (0.1) | 48.51, 0.019 | |||
Employment Status: Employed | 1.1 (0.2) | 1.842, 0.118 | 2.8 (0.2) | 2.319, 0.055 | 1.5 (0.1) | 53.59, 0.013 | 4.889, <0.001 |
Unemployed/Retired | 1.7 (0.2) | 3.5 (0.3) | 1.7 (0.1) | 47.51, 0.005 |
Chemotoxicity | Raw Levine Phenotypic Age, mean ± SE | ||||||
At Baseline | F, p a | 6 Months After Chemotherapy | F, p a | Changes Overtime | Paired t, p b Time Effects | F, p a Group Effects | |
Global. Yes | 60.5 (0.4) | 81.71, <0.001 | 63.8 (0.5) | 129.01, <0.001 | 3.3 (0.04) | 8.1, 0.005 | 542.71, <0.001 |
No | 57.7 (0.5) | 59.8 (0.5) | 2.1 (0.04) | 69.5, 0.001 | |||
GI. Yes | 60.6 (0.8) | 7.53, 0.006 | 62.8 (0.1) | 8.53, 0.004 | 2.2 (0.2) | 33.5, 0.009 | 107.52, 0.077 |
No | 57.6 (0.4) | 60.8 (0.1) | 3.2 (0.4) | 49.5, 0.010 | |||
Hematological. Yes | 60.1 (0.6) | 6.19, 0.013 | 63.5 (0.7) | 8.52, 0.004 | 3.4 (0.7) | 39.6, 0.015 | 17.92, <0.001 |
No | 58.1 (0.4) | 60.1 (0.4) | 2.0 (0.4) | 40.5, 0.032 | |||
Chemotoxicity | Age Acceleration (Differences from Levine Phenotypic Age to Chronological Age) | ||||||
At Baseline | F, p a | 6 Months After Chemotherapy c | F, p a | Changes Overtime | Paired t, p b Time Effects | F, p a Group Effects | |
Global. Yes | 2.1 (0.2) | 190.07, <0.001 | 4.3 (0.2) | 373.40, <0.001 | 2.2 (0.1) | 55.1, 0.009 | 542.74, <0.001 |
No | 0.3 (0.2) | 1.3 (0.2) | 1.1 (0.1) | 59.3, 0.013 | |||
GI. Yes | 1.5 (0.2) | 3.13, 0.077 | 3.4 (0.4) | 5.78, 0.016 | 1.9 (0.1) | 53.1, 0.007 | 8.53, 0.004 |
No | 0.9 (0.4) | 2.2 (0.2) | 1.3 (0.4) | 49.5, 0.029 | |||
Hematological. Yes | 2.3 (0.3) | 27.81, <0.001 | 4.2 (0.3) | 36.50, <0.001 | 1.9 (0.1) | 66.3, 0.010 | 17.87, <0.001 |
No | 0.1 (0.2) | 1.4 (0.2) | 1.3 (0.1) | 65.5, 0.005 |
Timepoints Baseline (T0); Change over Time (T1–T0): From Baseline to 6 Months Post-Chemotherapy | Unadjusted Models a | Adjusted Models a,b | ||
---|---|---|---|---|
OR (95% CI) | Wald, p | aOR (95% CI) | Wald, p | |
Global Chemotoxicity | ||||
Levine Phenotypic Age at T0 | 1.03 (1.02, 1.04) | 73.29, <0.001 | 1.27 (1.22, 1.32) | 72.30, <0.001 |
Changes in Levine Phenotypic Age | 2.70 (2.42, 2.97) | 110.58, <0.001 | 2.74 (2.45, 3.04) | 336.96, <0.001 |
Age Acceleration (Differences from Biological Age to Chronological Age) at T0 | 1.30 (1.21, 1.31) | 131.52, <0.001 | 1.27 (1.22, 1.32) | 137.28, <0.001 |
Changes in Age Acceleration | 2.70 (2.41, 2.97) | 346.79, <0.001 | 2.74 (2.45, 3.05) | 336.19, <0.001 |
GI Chemotoxicity | ||||
Levine Phenotypic Age at T0 | 1.03 (1.01, 1.04) | 7.47, 0.006 | 1.03 (1.01, 1.05) | 5.33, 0.021 |
Changes in Levine Phenotypic Age | 1.12 (1.04, 1.22) | 8.42, 0.004 | 1.10 (1.01, 1.20) | 5.66, 0.042 |
Age Acceleration (Differences from Biological Age to Chronological Age) at T0 | 1.02 (0.99, 1.04) | 3.14, 0.076 | 1.03 (0.94, 1.05) | 3.46, 0.059 |
Changes in Age Acceleration | 1.12 (1.04, 1.22) | 8.42, 0.004 | 1.10 (1.02, 1.20) | 5.66, 0.042 |
Hematological Chemotoxicity | ||||
Levine Phenotypic Age at T0 | 1.01 (1.01, 1.03) | 6.73, 0.010 | 1.06 (1.03, 1.08) | 33.03, <0.001 |
Changes in Levine Phenotypic Age | 1.17 (1.09, 1.26) | 18.18, <0.001 | 1.15 (1.06, 1.24) | 29.01, 0.005 |
Age Acceleration (Differences from Biological Age to Chronological Age) at T0 | 1.06 (1.04, 1.08) | 25.91, <0.001 | 1.06 (1.03, 1.08) | 23.02, <0.001 |
Changes in Age Acceleration | 1.17 (1.09, 1.26) | 18.22, <0.001 | 1.15 (1.05, 1.22) | 13.12, <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, C.J.; Rosko, A.E.; Plascak, J.J.; Tan, A.; Noonan, A.M.; Burd, C.E. Biological Aging and Chemotoxicity in Patients with Colorectal Cancer: A Secondary Data Analysis Using EHR Data. Curr. Oncol. 2025, 32, 438. https://doi.org/10.3390/curroncol32080438
Han CJ, Rosko AE, Plascak JJ, Tan A, Noonan AM, Burd CE. Biological Aging and Chemotoxicity in Patients with Colorectal Cancer: A Secondary Data Analysis Using EHR Data. Current Oncology. 2025; 32(8):438. https://doi.org/10.3390/curroncol32080438
Chicago/Turabian StyleHan, Claire J., Ashley E. Rosko, Jesse J. Plascak, Alai Tan, Anne M. Noonan, and Christin E. Burd. 2025. "Biological Aging and Chemotoxicity in Patients with Colorectal Cancer: A Secondary Data Analysis Using EHR Data" Current Oncology 32, no. 8: 438. https://doi.org/10.3390/curroncol32080438
APA StyleHan, C. J., Rosko, A. E., Plascak, J. J., Tan, A., Noonan, A. M., & Burd, C. E. (2025). Biological Aging and Chemotoxicity in Patients with Colorectal Cancer: A Secondary Data Analysis Using EHR Data. Current Oncology, 32(8), 438. https://doi.org/10.3390/curroncol32080438