Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,555)

Search Parameters:
Keywords = colon and colorectal cancer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2870 KiB  
Review
Etiopathogenesis and Treatment of Colorectal Cancer
by Mayara Bocchi, Eduardo Vignoto Fernandes, Nathália de Sousa Pereira and Marla Karine Amarante
Immuno 2025, 5(3), 31; https://doi.org/10.3390/immuno5030031 - 4 Aug 2025
Viewed by 114
Abstract
Human colorectal cancer (CRC) encompasses tumors affecting a segment of the large intestine (colon) and rectum. It is the third most commonly diagnosed malignancy and the second leading cause of cancer deaths worldwide. It is a multifactorial disease, whose carcinogenesis process involves genetic [...] Read more.
Human colorectal cancer (CRC) encompasses tumors affecting a segment of the large intestine (colon) and rectum. It is the third most commonly diagnosed malignancy and the second leading cause of cancer deaths worldwide. It is a multifactorial disease, whose carcinogenesis process involves genetic and epigenetic alterations in oncogenes and tumor suppressor genes, including genes related to DNA repair. The pathogenic mechanisms are described based on the pathways of chromosomal instability, microsatellite instability, and CpG island methylator phenotype. When detected early, CRC is potentially curable, and its treatment is based on the pathological characteristics of the tumor and factors related to the patient, as well as on drug efficacy and toxicity studies. Therefore, the aim of this study was to review the pathogenesis and molecular subtypes of CRC and to describe the main targets of disease-directed therapy used in patients refractory to current treatments. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

33 pages, 2838 KiB  
Article
Daily Profile of miRNAs in the Rat Colon and In Silico Analysis of Their Possible Relationship to Colorectal Cancer
by Iveta Herichová, Denisa Vanátová, Richard Reis, Katarína Stebelová, Lucia Olexová, Martina Morová, Adhideb Ghosh, Miroslav Baláž, Peter Štefánik and Lucia Kršková
Biomedicines 2025, 13(8), 1865; https://doi.org/10.3390/biomedicines13081865 - 31 Jul 2025
Viewed by 322
Abstract
Background: Colorectal cancer (CRC) is strongly influenced by miRNAs as well as the circadian system. Methods: High-throughput sequencing of miRNAs expressed in the rat colon during 24 h light (L)/dark (D) cycle was performed to identify rhythmically expressed miRNAs. The role of miR-150-5p [...] Read more.
Background: Colorectal cancer (CRC) is strongly influenced by miRNAs as well as the circadian system. Methods: High-throughput sequencing of miRNAs expressed in the rat colon during 24 h light (L)/dark (D) cycle was performed to identify rhythmically expressed miRNAs. The role of miR-150-5p in CRC progression was analyzed in DLD1 cell line and human CRC tissues. Results: Nearly 10% of mature miRNAs showed a daily rhythm in expression. A peak of miRNAs’ levels was in most cases observed during the first half of the D phase of the LD cycle. The highest amplitude was detected in expression of miR-150-5p and miR-142-3p. In the L phase of the LD cycle, the maximum in miR-30d-5p expression was detected. Gene ontology enrichment analysis revealed that genes interfering with miRNAs with peak expression during the D phase influence apoptosis, angiogenesis, the immune system, and EGF and TGF-beta signaling. Rhythm in miR-150-5p, miR-142-3p, and miR-30d-5p expression was confirmed by real-time PCR. Oncogenes bcl2 and myb and clock gene cry1 were identified as miR-150-5p targets. miR-150-5p administration promoted camptothecin-induced apoptosis. Expression of myb showed a rhythmic profile in DLD1 cells with inverted acrophase with respect to miR-150-5p. miR-150-5p was decreased in cancer compared to adjacent tissue in CRC patients. Decrease in miR-150-5p was age dependent. Older patients with lower expression of miR-150-5p and higher expression of cry1 showed worse survival in comparison with younger patients. Conclusions: miRNA signaling differs between the L and D phases of the LD cycle. miR-150-5p, targeting myb, bcl2, and cry1, can influence CRC progression in a phase-dependent manner. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Graphical abstract

15 pages, 7649 KiB  
Article
S100A14 as a Potential Biomarker of the Colorectal Serrated Neoplasia Pathway
by Pierre Adam, Catherine Salée, Florence Quesada Calvo, Arnaud Lavergne, Angela-Maria Merli, Charlotte Massot, Noëlla Blétard, Joan Somja, Dominique Baiwir, Gabriel Mazzucchelli, Carla Coimbra Marques, Philippe Delvenne, Edouard Louis and Marie-Alice Meuwis
Int. J. Mol. Sci. 2025, 26(15), 7401; https://doi.org/10.3390/ijms26157401 - 31 Jul 2025
Viewed by 240
Abstract
Accounting for 15–30% of colorectal cancer cases, the serrated pathway remains poorly characterized compared to the adenoma–carcinoma sequence. It involves sessile serrated lesions as precursors and is characterized by BRAF mutations (BRAFV600E), CpG island hypermethylation, and microsatellite instability (MSI). Using label-free [...] Read more.
Accounting for 15–30% of colorectal cancer cases, the serrated pathway remains poorly characterized compared to the adenoma–carcinoma sequence. It involves sessile serrated lesions as precursors and is characterized by BRAF mutations (BRAFV600E), CpG island hypermethylation, and microsatellite instability (MSI). Using label-free proteomics, we compared normal tissue margins from patients with diverticular disease, sessile serrated lesions, low-grade adenomas, and high-grade adenomas. We identified S100A14 as significantly overexpressed in sessile serrated lesions compared to low-grade adenomas, high-grade adenomas, and normal tissues. This overexpression was confirmed by immunohistochemical scoring in an independent cohort. Gene expression analyses of public datasets showed higher S100A14 expression in BRAFV600E-mutated and MSI-H colorectal cancers compared to microsatellite stable BRAFwt tumors. This finding was confirmed by immunohistochemical scoring in an independent colorectal cancer cohort. Furthermore, single-cell RNA sequencing analysis from the Human Colon Cancer Atlas revealed that S100A14 expression in tumor cells positively correlated with the abundance of tumoral CD8+ cytotoxic T cells, particularly the CD8+ CXCL13+ subset, known for its association with a favorable response to immunotherapy. Collectively, our results demonstrate for the first time that S100A14 is a potential biomarker of serrated neoplasia and further suggests its potential role in predicting immunotherapy responses in colorectal cancer. Full article
(This article belongs to the Special Issue Molecular Diagnosis and Treatment of Colorectal Cancer)
Show Figures

Figure 1

22 pages, 716 KiB  
Article
Survival in Patients with Colorectal Cancer and Isolated Brain Metastases: Temporal Trends and Prognostic Factors from the National Cancer Database (2010–2020)
by Zouina Sarfraz, Diya Jayram, Ahmad Ozair, Lydia Hodgson, Shreyas Bellur, Arun Maharaj, Vyshak A. Venur, Sarbajit Mukherjee and Manmeet S. Ahluwalia
Cancers 2025, 17(15), 2531; https://doi.org/10.3390/cancers17152531 - 31 Jul 2025
Viewed by 176
Abstract
Background: The development of brain metastases (BM) is a relatively uncommon but significantly adverse event in the spread of colorectal cancer (CRC). Although management of CRC BM has improved with advances in imaging and systemic therapies, clinical outcomes remain poor. Methods: This retrospective [...] Read more.
Background: The development of brain metastases (BM) is a relatively uncommon but significantly adverse event in the spread of colorectal cancer (CRC). Although management of CRC BM has improved with advances in imaging and systemic therapies, clinical outcomes remain poor. Methods: This retrospective cohort study used the U.S. National Cancer Database to evaluate survival outcomes, treatment patterns, and prognostic factors in CRC patients diagnosed with BM between 2010 and 2020. Patients with isolated brain-only metastases formed the primary analytic cohort, while those with additional extracranial metastases were included for descriptive comparison. Multivariable Cox proportional hazards and logistic regression models were used to assess factors associated with of survival. Proportional hazards assumptions were tested using Schoenfeld residuals. Accelerated failure time models were also employed. Results: From a cohort of 1,040,877 individuals with CRC, 795 had metastatic disease present along with relevant data, of which 296 had isolated BM. Median overall survival (mOS) in BM-only metastatic disease group was 7.82 months (95% CI: 5.82–9.66). The longest survival was observed among patients treated with stereotactic radiosurgery combined with systemic therapy (SRS+Sys), with a median OS of 23.26 months (95% CI: 17.51–41.95) and a 3-year survival rate of 35.8%. In adjusted Cox models, SRS, systemic therapy, and definitive surgery of the primary site were each independently associated with reduced hazard of death. Rectal cancer patients had longer survival than those with colon primaries (mOS: 10.35 vs. 6.08 months). Age, comorbidity burden, and insurance status were not associated with survival in adjusted analyses. Conclusions: SRS+Sys was associated with longer survival compared to other treatment strategies. However, treatment selection is highly dependent on individual clinical factors such as performance status, comorbidities, and disease extent; therefore, these findings must be interpreted with caution Future prospective studies incorporating molecular and biomarker data are warranted to better guide care in this rare and high-risk group. Full article
(This article belongs to the Section Cancer Metastasis)
Show Figures

Figure 1

20 pages, 1138 KiB  
Review
Integrating Circulating Tumor DNA into Clinical Management of Colorectal Cancer: Practical Implications and Therapeutic Challenges
by Nikhil Vojjala, Viktoriya Gibatova, Raj N. Shah, Sakshi Singal, Rishab Prabhu, Geetha Krishnamoorthy, Karen Riggins and Nagaishwarya Moka
Cancers 2025, 17(15), 2520; https://doi.org/10.3390/cancers17152520 - 30 Jul 2025
Viewed by 263
Abstract
The American Cancer Society estimates that over 152,000 new cases of colorectal cancer (CRC) were diagnosed in 2024, with more than 105,000 cases affecting the colon and 46,000 involving the rectum. CRC remains the second leading cause of cancer-related deaths in the United [...] Read more.
The American Cancer Society estimates that over 152,000 new cases of colorectal cancer (CRC) were diagnosed in 2024, with more than 105,000 cases affecting the colon and 46,000 involving the rectum. CRC remains the second leading cause of cancer-related deaths in the United States, with an estimated 53,010 deaths in 2024. In the era of precision medicine, which incorporates molecular and environmental information into clinical decision-making, identifying patients harboring a deficiency in Deoxyribonucleic acid (DNA) repair allowed for targeted immunotherapies and significantly reduced CRC-related mortality. A significant advancement in this domain is the application of liquid biopsy, which has emerged as a promising tool for prognostication, guiding therapy, and monitoring treatment response in CRC. This review aims to comprehensively explore the role of liquid biopsy in colorectal malignancies, describing its practical applications, prognostic significance, and potential to revolutionize CRC management in the future. At the end, we also aim to show a schematic representation of showing integration of Circulating Tumor (Ct) DNA in routine clinical management of CRC. The highlight of this article is the structured and evidence-based schematic framework and its integration into future practice. The schematic pathway is designed to optimize ctDNA utilization across various stages of colorectal cancer management. Full article
Show Figures

Figure 1

18 pages, 4279 KiB  
Article
Chemophotothermal Combined Therapy with 5-Fluorouracil and Branched Gold Nanoshell Hyperthermia Induced a Reduction in Tumor Size in a Xenograft Colon Cancer Model
by Sarah Eliuth Ochoa-Hugo, Karla Valdivia-Aviña, Yanet Karina Gutiérrez-Mercado, Alejandro Arturo Canales-Aguirre, Verónica Chaparro-Huerta, Adriana Aguilar-Lemarroy, Luis Felipe Jave-Suárez, Mario Eduardo Cano-González, Antonio Topete, Andrea Molina-Pineda and Rodolfo Hernández-Gutiérrez
Pharmaceutics 2025, 17(8), 988; https://doi.org/10.3390/pharmaceutics17080988 (registering DOI) - 30 Jul 2025
Viewed by 319
Abstract
Background/Objectives: The heterogeneity of cancer disease and the frequent ineffectiveness and resistance observed with currently available treatments highlight the importance of developing new antitumor therapies. The properties of gold nanoparticles, such as their photon-energy heating, are attractive for oncology therapy; this can [...] Read more.
Background/Objectives: The heterogeneity of cancer disease and the frequent ineffectiveness and resistance observed with currently available treatments highlight the importance of developing new antitumor therapies. The properties of gold nanoparticles, such as their photon-energy heating, are attractive for oncology therapy; this can be effective and localized. The combination of chemotherapy and hyperthermia is promising. Our aim was to evaluate the combination therapy of photon hyperthermia with 5-fluorouracil (5-FU) both in vitro and in vivo. Methods: This study evaluated the antitumor efficacy of a combined chemo-photothermal therapy using 5-fluorouracil (5-FU) and branched gold nanoshells (BGNSs) in a colorectal cancer model. BGNSs were synthesized via a seed-mediated method and characterized by electron microscopy and UV–vis spectroscopy, revealing an average diameter of 126.3 nm and a plasmon resonance peak at 800 nm, suitable for near-infrared (NIR) photothermal applications. In vitro assays using SW620-GFP colon cancer cells demonstrated a ≥90% reduction in cell viability after 24 h of combined treatment with 5-FU and BGNS under NIR irradiation. In vivo, xenograft-bearing nude mice received weekly intratumoral administrations of the combined therapy for four weeks. The group treated with 5-FU + BGNS + NIR exhibited a final tumor volume of 0.4 mm3 on day 28, compared to 1010 mm3 in the control group, corresponding to a tumor growth inhibition (TGI) of 100.74% (p < 0.001), which indicates not only complete inhibition of tumor growth but also regression below the initial tumor volume. Thermographic imaging confirmed that localized hyperthermia reached 45 ± 0.5 °C at the tumor site. Results: These findings suggest that the combination of 5-FU and BGNS-mediated hyperthermia may offer a promising strategy for enhancing therapeutic outcomes in patients with colorectal cancer while potentially minimizing systemic toxicity. Conclusions: This study highlights the potential of integrating nanotechnology with conventional chemotherapy for more effective and targeted cancer treatment. Full article
(This article belongs to the Special Issue Advanced Nanotechnology for Combination Therapy and Diagnosis)
Show Figures

Graphical abstract

13 pages, 894 KiB  
Article
Enhancing and Not Replacing Clinical Expertise: Improving Named-Entity Recognition in Colonoscopy Reports Through Mixed Real–Synthetic Training Sources
by Andrei-Constantin Ioanovici, Andrei-Marian Feier, Marius-Ștefan Mărușteri, Alina-Dia Trâmbițaș-Miron and Daniela-Ecaterina Dobru
J. Pers. Med. 2025, 15(8), 334; https://doi.org/10.3390/jpm15080334 - 30 Jul 2025
Viewed by 231
Abstract
Background/Objectives: In routine practice, colonoscopy findings are saved as unstructured free text, limiting secondary use. Accurate named-entity recognition (NER) is essential to unlock these descriptions for quality monitoring, personalized medicine and research. We compared named-entity recognition (NER) models trained on real, synthetic, [...] Read more.
Background/Objectives: In routine practice, colonoscopy findings are saved as unstructured free text, limiting secondary use. Accurate named-entity recognition (NER) is essential to unlock these descriptions for quality monitoring, personalized medicine and research. We compared named-entity recognition (NER) models trained on real, synthetic, and mixed data to determine whether privacy preserving synthetic reports can boost clinical information extraction. Methods: Three Spark NLP biLSTM CRF models were trained on (i) 100 manually annotated Romanian colonoscopy reports (ModelR), (ii) 100 prompt-generated synthetic reports (ModelS), and (iii) a 1:1 mix (ModelM). Performance was tested on 40 unseen reports (20 real, 20 synthetic) for seven entities. Micro-averaged precision, recall, and F1-score values were computed; McNemar tests with Bonferroni correction assessed pairwise differences. Results: ModelM outperformed single-source models (precision 0.95, recall 0.93, F1 0.94) and was significantly superior to ModelR (F1 0.70) and ModelS (F1 0.64; p < 0.001 for both). ModelR maintained high accuracy on real text (F1 = 0.90), but its accuracy fell when tested on synthetic data (0.47); the reverse was observed for ModelS (F1 = 0.99 synthetic, 0.33 real). McNemar χ2 statistics (64.6 for ModelM vs. ModelR; 147.0 for ModelM vs. ModelS) greatly exceeded the Bonferroni-adjusted significance threshold (α = 0.0167), confirming that the observed performance gains were unlikely to be due to chance. Conclusions: Synthetic colonoscopy descriptions are a valuable complement, but not a substitute for real annotations, while AI is helping human experts, not replacing them. Training on a balanced mix of real and synthetic data can help to obtain robust, generalizable NER models able to structure free-text colonoscopy reports, supporting large-scale, privacy-preserving colorectal cancer surveillance and personalized follow-up. Full article
(This article belongs to the Special Issue Clinical Updates on Personalized Upper Gastrointestinal Endoscopy)
Show Figures

Figure 1

19 pages, 1023 KiB  
Review
Current Evidence in Robotic Colorectal Surgery
by Franziska Willis, Anca-Laura Amati, Martin Reichert, Andreas Hecker, Tim O. Vilz, Jörg C. Kalff, Stefan Willis and Maria A. Kröplin
Cancers 2025, 17(15), 2503; https://doi.org/10.3390/cancers17152503 - 29 Jul 2025
Viewed by 158
Abstract
Colorectal surgery has undergone significant advances over the past few decades, driven by the evolution of minimally invasive techniques, particularly laparoscopy and robotics. While laparoscopy is widely recognized for its short-term benefits and oncological safety, the increasing adoption of robot-assisted surgery (RAS) has [...] Read more.
Colorectal surgery has undergone significant advances over the past few decades, driven by the evolution of minimally invasive techniques, particularly laparoscopy and robotics. While laparoscopy is widely recognized for its short-term benefits and oncological safety, the increasing adoption of robot-assisted surgery (RAS) has generated considerable debate regarding its clinical benefits, economic implications, and overall impact on patient outcomes. This narrative review synthesizes the existing evidence, highlighting the clinical and economic aspects of RAS in colorectal surgery, while exploring areas for future research. The findings suggest that RAS offers potential technical advantages, including increased precision, three-dimensional visualization, and improved ergonomics, particularly in anatomically complex scenarios such as low rectal resections. Still, its superiority over laparoscopy remains inconclusive and current evidence is mixed. For colon cancer, meta-analyses and analyses of large cohorts suggest lower conversion rates and faster recovery with RAS, although data are mostly retrospective and lack long-term oncological endpoints. In rectal cancer, emerging evidence from randomized controlled trials demonstrates improved short-term outcomes. Additionally, the recently published three-year results of the REAL trial are the first to demonstrate enhanced oncological outcomes following RAS. However, findings remain inconsistent due to methodological heterogeneity, the absence of patient stratification, and limited data on long-term survival and cost-effectiveness. The available evidence indicates that RAS may offer advantages in selected patient populations, particularly for anatomically complex procedures. Yet, its overall utility remains uncertain. Future studies should emphasize high-quality randomized trials, stratified subgroup analyses, and standardized economic evaluations to better define the role of RAS in colorectal surgery. Full article
(This article belongs to the Special Issue Robotic Surgery in Colorectal Cancer)
Show Figures

Figure 1

15 pages, 1274 KiB  
Review
Engineered Bifidobacterium Strains Colonization at Tumor Sites: A Novel Approach to the Delivery of Cancer Treatments
by Rhea Amonkar, Ashley Ann Uy, Pablo Ramirez, Harina Patel, Jae Jin Jeong, Nicole Oyinade Shoyele, Vidhi Vaghela and Ashakumary Lakshmikuttyamma
Cancers 2025, 17(15), 2487; https://doi.org/10.3390/cancers17152487 - 28 Jul 2025
Viewed by 363
Abstract
Bacteria-mediated cancer therapy represents a novel and promising strategy for targeted drug delivery to solid tumors. Multiple studies have demonstrated that various Bifidobacterium species can selectively colonize the hypoxic microenvironments characteristic of solid tumors. Leveraging this property, Bifidobacterium has been explored as a [...] Read more.
Bacteria-mediated cancer therapy represents a novel and promising strategy for targeted drug delivery to solid tumors. Multiple studies have demonstrated that various Bifidobacterium species can selectively colonize the hypoxic microenvironments characteristic of solid tumors. Leveraging this property, Bifidobacterium has been explored as a delivery vector for a range of anti-cancer approaches such as immunotherapy, nanoformulated chemotherapeutics, and gene therapy. Notably, anti-angiogenic genes such as endostatin and tumstatin have been successfully delivered to colorectal tumors using Bifidobacterium infantis and Bifidobacterium longum, respectively. Additionally, Bifidobacterium bifidum has been employed to transport doxorubicin and paclitaxel nanoparticles to breast and lung tumor sites. Furthermore, both Bifidobacterium longum and Bifidobacterium bifidum have been utilized to deliver nanoparticles that act as synergistic agents for high-intensity focused ultrasound (HIFU) therapy, significantly enhancing tumor ablation, particularly in triple-negative breast cancer (TNBC) models. While these pre-clinical findings are highly encouraging, further clinical research is essential. Specifically, studies are needed to investigate the colonization dynamics of different Bifidobacterium species across various tumor types and to evaluate their potential in delivering diverse cancer therapies in human patients. Full article
(This article belongs to the Special Issue Advances in Drug Delivery for Cancer Therapy)
Show Figures

Figure 1

11 pages, 778 KiB  
Article
Gut and Other Differences Between Female and Male Veterans—Vive La Différence? Bringing It All Together
by Martin Tobi, Donald Bradley, Fadi Antaki, MaryAnn Rambus, Noreen F. Rossi, James Hatfield, Suzanne Fligiel and Benita McVicker
Gastrointest. Disord. 2025, 7(3), 48; https://doi.org/10.3390/gidisord7030048 - 22 Jul 2025
Viewed by 260
Abstract
Background: The number of women veterans has been rising steadily since the Gulf War and many assume the functions of their male counterparts. Women face unique obstacles in their service, and it is imperative that differences in physiology not be overlooked so [...] Read more.
Background: The number of women veterans has been rising steadily since the Gulf War and many assume the functions of their male counterparts. Women face unique obstacles in their service, and it is imperative that differences in physiology not be overlooked so as to provide better and appropriate care to our women in uniform. Despite this influx and incorporation of female talent, dedicated reports contrasting female and male veterans are rare, outside of specific psychological studies. We therefore attempt to contrast gut constituents, absorption, innate immune system, and nutritional differences to provide a comprehensive account of similarities and differences between female and male veterans, from our single-center perspective, as this has not been carried out previously. Herein, we obtained a detailed roster of commonly used biomedical tests and some novel entities to detect differences between female and male veterans. The objective of this study was to detect differences in the innate immune system and other ancillary test results to seek differences that may impact the health of female and male veterans differently. Methods: To contrast biochemical and sociomedical parameters in female and male veterans, we studied the data collected on 450 female veterans and contrasted them to a group of approximately 1642 males, sequentially from 1995 to 2022, all selected because of above-average risk for CRC. As part of this colorectal cancer (CRC) screening cross-sectional and longitudinal study, we also collected stool, urine, saliva, and serum specimens. We used ELISA testing to detect stool p87 shedding by the Adnab-9 monoclonal and urinary organ-specific antigen using the BAC18.1 monoclonal. We used the FERAD ratio (blood ferritin/fecal p87), a measure of the innate immune system to gauge the activity of the innate immune system (InImS) by dividing the denominator p87 (10% N-linked glycoprotein detected by ELISA) into the ferritin level (the enumerator, a common lab test to assess anemia). FERAD ratios have not been performed elsewhere despite past Adnab-9 commercial availability so we have had to auto-cite our published data where appropriate. Results: Many differences between female and males were detected. The most impressive differences were those of the InImS where males clearly had the higher numbers (54,957 ± 120,095) in contrast to a much lower level in females (28,621 ± 66,869), which was highly significantly different (p < 0.004). Mortality was higher in males than females (49.4% vs. 24.1%; OR 3.08 [2.40–3.94]; p < 0.0001). Stool p87, which is secreted by Paneth cells and may have a protective function, was lower in males (0.044 ± 0.083) but higher in females (0.063 ± 0.116; p < 0.031). Immunohistochemistry of the Paneth cell-fixed p87 antigen was also higher in females (in the descending colon and rectum). In contrast, male ferritin levels were significantly higher (206.3 ± 255.9 vs. 141.1 ± 211.00 ng/mL; p < 0.0006). Females were less likely to be diabetic (29.4 vs. 37.3%; OR 0.7 [0.55–0.90]; p < 0.006). Females were also more likely to use NSAIDs (14.7 vs. 10.7%, OR 1.08 [1.08–2.00]; p < 0.015). Females also had borderline less GI bleeding by fecal immune tests (FITs), with 13.2% as opposed to 18.2% in males (OR 0.68 [0.46–1.01]; p = 0.057), but were less inclined to have available flexible sigmoidoscopy (OR 0.68 [0.53–0.89]; p < 0.004). Females also had more GI symptomatology, a higher rate of smoking, and were significantly younger than their male counterparts. Conclusions: This study shows significant differences with multiple parameters in female and male veterans. Full article
Show Figures

Figure 1

16 pages, 2682 KiB  
Article
Modulatory Effect of Curcumin on Expression of Methyltransferase/Demethylase in Colon Cancer Cells: Impact on wt p53, mutp53 and c-Myc
by Roberta Santarelli, Claudia Di Dio, Michele Di Crosta, Paola Currà, Roberta Gonnella and Mara Cirone
Molecules 2025, 30(15), 3054; https://doi.org/10.3390/molecules30153054 - 22 Jul 2025
Viewed by 311
Abstract
Curcumin-mediated anti-cancer properties have been correlated with the inhibition of oncogenic molecules such as mutp53 and c-Myc. Their targeting is therapeutically significant, as p53, following point mutations, can acquire oncogenic functions, and c-Myc overexpression, due to translocations, point mutations, protein/protein interactions, or epigenetic [...] Read more.
Curcumin-mediated anti-cancer properties have been correlated with the inhibition of oncogenic molecules such as mutp53 and c-Myc. Their targeting is therapeutically significant, as p53, following point mutations, can acquire oncogenic functions, and c-Myc overexpression, due to translocations, point mutations, protein/protein interactions, or epigenetic modifications, plays a central role in cancer cell proliferation and metabolic reprogramming, particularly in colorectal cancer. In a previous study, we showed that curcumin strongly downregulated mutp53 while activating wtp53 and reduced the expression of methyltransferases such as EZH2, G9a, and MLL-1 in colon cancer cells. Based on this background, here we investigated whether the dysregulation of such methyltransferases could correlate with the effect observed on p53. We also explored whether these epigenetic changes could affect c-Myc expression in these cells. By Western blot analysis and RT-qPCR, we found that the downregulation of EZH2; G9a; and, to a lesser extent, KDM1, which was also reduced by curcumin, correlated with the decrease in mutp53 and that the reduction of EZH2 and KDM1 correlated with the activation of wtp53. Regarding c-Myc, we unveiled the occurrence of a positive feedback loop between it and MLL-1, which was inhibited by curcumin, independently of the p53 status. In conclusion, this study provides new insights into the therapeutic potential of curcumin, which involves its properties to act as an epigenetic modulator and target key molecules in colon cancer cells. Full article
(This article belongs to the Special Issue Natural Compounds in Modern Therapies, 2nd Edition)
Show Figures

Figure 1

20 pages, 1227 KiB  
Article
Interleukin Dynamics and Their Correlation with Tumor Aggressiveness in Colorectal Carcinoma
by Elena-Teodora Tâlvan, Liviuta Budișan, Călin Ilie Mohor, Valentin Grecu, Ioana Berindan-Neagoe, Victor Cristea, George Oprinca and Adrian Cristian
Int. J. Mol. Sci. 2025, 26(14), 7027; https://doi.org/10.3390/ijms26147027 - 21 Jul 2025
Viewed by 527
Abstract
Colorectal cancer (CRC) is a major global health concern, with tumor progression closely influenced by inflammatory mechanisms and cytokine signaling. This study investigates the serum expression levels of interleukins IL-8, IL-17A, and IL-33 in patients with colon cancer, analyzing their association with tumor [...] Read more.
Colorectal cancer (CRC) is a major global health concern, with tumor progression closely influenced by inflammatory mechanisms and cytokine signaling. This study investigates the serum expression levels of interleukins IL-8, IL-17A, and IL-33 in patients with colon cancer, analyzing their association with tumor grade and depth of invasion. The cohort included 42 patients stratified by tumor differentiation (G1–G3) and various invasion types. ELISA assays revealed that IL-8 levels were highest in well-differentiated tumors and in cases of submucosal and serosal invasion, suggesting a key role in early stage inflammation and angiogenesis. IL-17A and IL-33 levels declined progressively with tumor dedifferentiation and increased invasion depth, indicating immune suppression in advanced stages. Multiple regression analyses highlighted a nonlinear, significant relationship between IL-8 and IL-17A, whereas IL-33 showed no direct correlation with other interleukins. A combined model incorporating IL-8, IL-17A, IL-33, and tumor grade accounted for over 70% of IL-17A variability, underscoring their interactive role in CRC biology. These findings support the potential utility of interleukins as biomarkers and therapeutic targets for stratified CRC management. Full article
(This article belongs to the Special Issue Molecular Diagnosis and Treatment of Colorectal Cancer)
Show Figures

Figure 1

34 pages, 6295 KiB  
Article
ROS/Enzyme Dual-Responsive Drug Delivery System for Targeted Colorectal Cancer Therapy: Synergistic Chemotherapy, Anti-Inflammatory, and Gut Microbiota Modulation
by Xin Zhang, Ruonan Lian, Bingbing Fan, Lei Meng, Pengxia Zhang, Yu Zhang and Weitong Sun
Pharmaceutics 2025, 17(7), 940; https://doi.org/10.3390/pharmaceutics17070940 - 21 Jul 2025
Viewed by 420
Abstract
Objectives: Colorectal cancer (CRC) is a leading cause of cancer-related mortality, driven by chronic inflammation, gut microbiota dysbiosis, and complex tumor microenvironment interactions. Current therapies are limited by systemic toxicity and poor tumor accumulation. This study aimed to develop a ROS/enzyme dual-responsive oral [...] Read more.
Objectives: Colorectal cancer (CRC) is a leading cause of cancer-related mortality, driven by chronic inflammation, gut microbiota dysbiosis, and complex tumor microenvironment interactions. Current therapies are limited by systemic toxicity and poor tumor accumulation. This study aimed to develop a ROS/enzyme dual-responsive oral drug delivery system, KGM-CUR/PSM microspheres, to achieve precise drug release in CRC and enhance tumor-specific drug accumulation, which leverages high ROS levels in CRC and the β-mannanase overexpression in colorectal tissues. Methods: In this study, we synthesized a ROS-responsive prodrug polymer (PSM) by conjugating polyethylene glycol monomethyl ether (mPEG) and mesalazine (MSL) via a thioether bond. CUR was then encapsulated into PSM using thin-film hydration to form tumor microenvironment-responsive micelles (CUR/PSM). Subsequently, konjac glucomannan (KGM) was employed to fabricate KGM-CUR/PSM microspheres, enabling targeted delivery for colorectal cancer therapy. The ROS/enzyme dual-response properties were confirmed through in vitro drug release studies. Cytotoxicity, cellular uptake, and cell migration were assessed in SW480 cells. In vivo efficacy was evaluated in AOM/DSS-induced CRC mice, monitoring tumor growth, inflammatory markers (TNF-α, IL-1β, IL-6, MPO), and gut microbiota composition. Results: In vitro drug release studies demonstrated that KGM-CUR/PSM microspheres exhibited ROS/enzyme-responsive release profiles. CUR/PSM micelles demonstrated significant anti-CRC efficacy in cytotoxicity assays, cellular uptake studies, and cell migration assays. In AOM/DSS-induced CRC mice, KGM-CUR/PSM microspheres significantly improved survival and inhibited CRC tumor growth, and effectively reduced the expression of inflammatory cytokines (TNF-α, IL-1β, IL-6) and myeloperoxidase (MPO). Histopathological and microbiological analyses revealed near-normal colon architecture and microbial diversity in the KGM-CUR/PSM group, confirming the system’s ability to disrupt the “inflammation-microbiota-tumor” axis. Conclusions: The KGM-CUR/PSM microspheres demonstrated a synergistic enhancement of anti-tumor efficacy by inducing apoptosis, alleviating inflammation, and modulating the intestinal microbiota, which offers a promising stimuli-responsive drug delivery system for future clinical treatment of CRC. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

21 pages, 2552 KiB  
Review
The Impact of Fusobacterium nucleatum and the Genotypic Biomarker KRAS on Colorectal Cancer Pathogenesis
by Ahmed Dewan, Ivan Tattoli and Maria Teresa Mascellino
Int. J. Mol. Sci. 2025, 26(14), 6958; https://doi.org/10.3390/ijms26146958 - 20 Jul 2025
Viewed by 616
Abstract
Fusobacterium nucleatum and activating mutations in the Kirsten rat sarcoma virus oncogene homolog (KRAS) are increasingly recognized as cooperative drivers of colorectal cancer (CRC). F. nucleatum promotes tumorigenesis via adhesion to epithelial cells, modulation of the immune microenvironment, and delivery of virulence factors, [...] Read more.
Fusobacterium nucleatum and activating mutations in the Kirsten rat sarcoma virus oncogene homolog (KRAS) are increasingly recognized as cooperative drivers of colorectal cancer (CRC). F. nucleatum promotes tumorigenesis via adhesion to epithelial cells, modulation of the immune microenvironment, and delivery of virulence factors, while KRAS mutations—present in 60% of CRC cases—amplify proliferative signaling and inflammatory pathways. Here, we review the molecular interplay by which F. nucleatum enhances KRAS-driven oncogenic cascades and, conversely, how KRAS mutations reshape the tumor niche to favor bacterial colonization. We further discuss the use of KRAS as a prognostic biomarker and explore promising non-antibiotic interventions—such as phage therapy, antimicrobial peptides, and targeted small-molecule inhibitors—aimed at selectively disrupting F. nucleatum colonization and virulence. This integrated perspective on microbial–genetic crosstalk offers novel insights for precision prevention and therapy in CRC. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

14 pages, 1102 KiB  
Article
MMP-9 Activation via ROS/NF-κB Signaling in Colorectal Cancer Progression: Molecular Insights and Prognostic–Therapeutic Perspectives
by Andrej Veljkovic, Goran Stanojevic, Branko Brankovic, Stefanos Roumeliotis, Konstantinos Leivaditis, Branka Djordjevic, Xiaobo Li, Aleksandra Klisic, Jovan Hadzi-Djokic and Gordana Kocic
Curr. Issues Mol. Biol. 2025, 47(7), 557; https://doi.org/10.3390/cimb47070557 - 17 Jul 2025
Viewed by 367
Abstract
Colorectal cancer (CRC) is characterized by complex interactions between inflammation, oxidative stress, and extracellular matrix remodeling. Recent studies have highlighted the significance of the reactive oxygen species (ROS)–nuclear factor kappa B (NF-κB)–matrix metalloproteinase-9 (MMP-9) axis in promoting tumor invasion and metastasis in CRC, [...] Read more.
Colorectal cancer (CRC) is characterized by complex interactions between inflammation, oxidative stress, and extracellular matrix remodeling. Recent studies have highlighted the significance of the reactive oxygen species (ROS)–nuclear factor kappa B (NF-κB)–matrix metalloproteinase-9 (MMP-9) axis in promoting tumor invasion and metastasis in CRC, linking oxidative stress with inflammatory signaling and extracellular matrix degradation. In this study, we analyzed the concentration of advanced oxidation protein products (AOPPs), expression of NF-κB, and the activity of MMP-9 in tumor tissue, adjacent tissue, and healthy control colon tissue. Tissue specimens were collected from 50 patients with primary CRC following surgical resection. The analyses were performed using appropriate and validated biochemical methods, including ELISA, spectrophotometry, and indirect immunofluorescence. Significantly higher levels of all three markers were observed in tumor tissue compared to controls. Additionally, adjacent tissue exhibited elevated NF-κB expression and MMP-9 activity when compared to healthy colon tissue. AOPP levels correlated strongly with MMP-9 activity, highlighting the role of oxidative stress in the activation of MMP-9. MMP-9 demonstrated the highest predictive value for CRC, emphasizing its potential as a diagnostic and theranostic marker. Our findings support the hypothesis that the ROS–NF-κB–MMP-9 axis plays an important role in CRC progression, particularly during stages T2 and T3. Targeting this pathway may offer new therapeutic strategies for limiting tumor invasion and recurrence. Moreover, ensuring adequate surgical resection margins is crucial to optimizing treatment outcomes. Full article
(This article belongs to the Special Issue Future Challenges of Targeted Therapy of Cancers: 2nd Edition)
Show Figures

Figure 1

Back to TopTop