Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (16,502)

Search Parameters:
Keywords = collection work

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4629 KiB  
Article
Bryophytes of the Serra dos Órgãos National Park: Endemism and Conservation in the Atlantic Forest
by Jéssica Soares de Lima, Allan Laid Alkimim Faria, Mateus Tomás Anselmo Gonçalves and Denilson Fernandes Peralta
Plants 2025, 14(15), 2419; https://doi.org/10.3390/plants14152419 (registering DOI) - 4 Aug 2025
Abstract
This study presents a comprehensive inventory of bryophytes in Serra dos Órgãos National Park (PARNASO), aiming to evaluate species richness, floristic composition and threatened taxa. Despite the state of Rio de Janeiro being one of the most extensively sampled regions for bryophytes in [...] Read more.
This study presents a comprehensive inventory of bryophytes in Serra dos Órgãos National Park (PARNASO), aiming to evaluate species richness, floristic composition and threatened taxa. Despite the state of Rio de Janeiro being one of the most extensively sampled regions for bryophytes in Brazil, detailed surveys of its conservation units remain scarce. Data were obtained through bibliographic review, herbarium specimen analysis, and new field collections. A total of 504 species were recorded, belonging to 202 genera and 76 families. The park harbors three locally endemic species, eight endemic to Rio de Janeiro, and sixty-nine species endemic to Brazil. Additionally, eleven species were identified as threatened, comprising seven Endangered (EN), two Critically Endangered (CR), and two Vulnerable (VU) according to the IUCN guidelines. PARNASO includes four distinct ecosystems along an altitudinal gradient: sub-montane forest (up to 500 m), montane forest (500–1500 m), upper-montane forest (1500–2000 m), and high-altitude fields (above 2000 m). Montane Forest showed the highest species richness, followed by high-altitude fields, upper-montane forest, and sub-montane forest. The findings highlight PARNASO’s importance in preserving bryophyte diversity in a highly diverse yet understudied region. This work contributes valuable baseline data to support conservation strategies and future ecological studies in Atlantic Forest remnants. Full article
(This article belongs to the Special Issue Diversity, Distribution and Conservation of Bryophytes)
Show Figures

Figure 1

19 pages, 610 KiB  
Article
Sustainable Work–Life Balance, Social Support, and Workload: Exploring the Potential Dual Role of Flexible Work in a Moderated Mediation Model
by Diego Bellini, Barbara Barbieri, Marina Mondo, Silvia De Simone and Silvia Marocco
Sustainability 2025, 17(15), 7067; https://doi.org/10.3390/su17157067 (registering DOI) - 4 Aug 2025
Abstract
Flexible work arrangements have the potential to enhance work–life balance and contribute to more sustainable work environments. However, they may also increase fatigue and lead to greater work–life conflict (WLC). This study offers a novel contribution by examining the relationship between flexible work [...] Read more.
Flexible work arrangements have the potential to enhance work–life balance and contribute to more sustainable work environments. However, they may also increase fatigue and lead to greater work–life conflict (WLC). This study offers a novel contribution by examining the relationship between flexible work arrangements—focusing in particular on the cognitive demands of flexible work (CDFW), which encompass the task structuring, scheduling of working times, planning of working place, and coordination with others—and WLC. Specifically, the study investigates the mediating role of workload in this relationship. Furthermore, it also explores whether perceived organizational support (POS) moderates the indirect relationships between CDFW and WLC, within the framework of the Job Demands-Resources (JD-R) model. Data were collected from a sample of 419 employees in the Italian public sector. The study also controls for potential confounding variables, such as age, gender, duration of employment in public administration, and weekly working hours, to account for their influence on work–life balance and workload. The results highlight a significant positive relationship between planning of the working place and WLC. Additionally, workload plays a mediating role between CDFW subdimensions and WLC. However, POS does not moderate the mediated relationship between CDFW and WLC. Full article
Show Figures

Figure 1

16 pages, 3766 KiB  
Article
Evaluation of Energy and CO2 Reduction Through Envelope Retrofitting: A Case Study of a Public Building in South Korea Conducted Using Utility Billing Data
by Hansol Lee and Gyeong-Seok Choi
Energies 2025, 18(15), 4129; https://doi.org/10.3390/en18154129 (registering DOI) - 4 Aug 2025
Abstract
This study empirically evaluates the energy and carbon reduction effects of an envelope retrofit applied to an aging public building in South Korea. Unlike previous studies that primarily relied on simulation-based analyses, this work fills the empirical research gap by using actual utility [...] Read more.
This study empirically evaluates the energy and carbon reduction effects of an envelope retrofit applied to an aging public building in South Korea. Unlike previous studies that primarily relied on simulation-based analyses, this work fills the empirical research gap by using actual utility billing data collected over one pre-retrofit year (2019) and two post-retrofit years (2023–2024). The retrofit included improvements to exterior walls, roofs, and windows, aiming to enhance thermal insulation and airtightness. The analysis revealed that monthly electricity consumption was reduced by 14.7% in 2023 and 8.0% in 2024 compared to that in the baseline year, with corresponding decreases in electricity costs and carbon dioxide emissions. Seasonal variations were evident: energy savings were significant in the winter due to reduced heating demand, while cooling energy use slightly increased in the summer, likely due to diminished solar heat gains resulting from improved insulation. By addressing both heating and cooling impacts, this study offers practical insights into the trade-offs of envelope retrofitting. The findings contribute to the body of knowledge by demonstrating the real-world performance of retrofit technologies and providing data-driven evidence that can inform policies and strategies for improving energy efficiency in public buildings. Full article
Show Figures

Figure 1

15 pages, 307 KiB  
Article
Gendered Challenges in Academia: Exploring the Impact of Working Hours, Stress, and Job Satisfaction Among Mid-Level University Staff in Germany
by Heinke Röbken, Nicole Geier, Dorthe Behrens and Anne Mertens
Educ. Sci. 2025, 15(8), 990; https://doi.org/10.3390/educsci15080990 (registering DOI) - 4 Aug 2025
Abstract
This study examines the relationships between job satisfaction, overtime hours, perceived stressors, and burnout symptoms among academic mid-level staff at German universities, with a particular focus on gender differences. Drawing on survey data from 1442 academics collected in April/May 2023, this study applies [...] Read more.
This study examines the relationships between job satisfaction, overtime hours, perceived stressors, and burnout symptoms among academic mid-level staff at German universities, with a particular focus on gender differences. Drawing on survey data from 1442 academics collected in April/May 2023, this study applies t-tests and regression analyses to examine the effects of structural and personal factors on job satisfaction. The findings suggest that job satisfaction is primarily shaped by psychosocial and institutional conditions. Negative predictors are perceived job insecurity, burnout symptoms, and excessive overtime, whereas a strong dedication to work buffers against these. Variables such as gender, age, parenthood, and participation in structured PhD programs did not show substantial effects. Notably, respondents who postponed having children for professional reasons reported lower job satisfaction, pointing to potential conflicts between career and personal life expectations. Full article
24 pages, 4441 KiB  
Article
Simulation of Trip Chains in a Metropolitan Area to Evaluate the Energy Needs of Electric Vehicles and Charging Demand
by Pietro Antonio Centrone, Giuseppe Brancaccio and Francesco Deflorio
World Electr. Veh. J. 2025, 16(8), 435; https://doi.org/10.3390/wevj16080435 (registering DOI) - 4 Aug 2025
Abstract
The typical ranges available for electric vehicles (EVs) may be considered by users to be inadequate when compared to long, real-life trips, and charging operations may need to be planned along journeys. To evaluate the compatibility between vehicle features and charging options for [...] Read more.
The typical ranges available for electric vehicles (EVs) may be considered by users to be inadequate when compared to long, real-life trips, and charging operations may need to be planned along journeys. To evaluate the compatibility between vehicle features and charging options for realistic journeys performed by car, a simulation approach is proposed here, using travel data collected from real vehicles to obtain trip chains for multiple consecutive days. Car travel activities, including stops with the option of charging, were simulated by applying an agent-based approach. Charging operations can be integrated into trip chains for user activities, assuming that they remain unchanged in the event that vehicles switch to electric. The energy consumption of the analyzed trips, disaggregated by vehicle type, was estimated using the average travel speed, which is useful for capturing the main route features (ranging from urban to motorways). Data were recorded for approximately 25,000 vehicles in the Turin Metropolitan Area for six consecutive days. Market segmentation of the vehicles was introduced to take into consideration different energy consumption rates and charging times, given that the electric power, battery size, and consumption rate can be related to the vehicle category. Charging activities carried out using public infrastructure during idle time between consecutive trips, as well as those carried out at home or work, were identified in order to model different needs. Full article
Show Figures

Figure 1

28 pages, 21813 KiB  
Article
Adaptive RGB-D Semantic Segmentation with Skip-Connection Fusion for Indoor Staircase and Elevator Localization
by Zihan Zhu, Henghong Lin, Anastasia Ioannou and Tao Wang
J. Imaging 2025, 11(8), 258; https://doi.org/10.3390/jimaging11080258 - 4 Aug 2025
Abstract
Accurate semantic segmentation of indoor architectural elements, such as staircases and elevators, is critical for safe and efficient robotic navigation, particularly in complex multi-floor environments. Traditional fusion methods struggle with occlusions, reflections, and low-contrast regions. In this paper, we propose a novel feature [...] Read more.
Accurate semantic segmentation of indoor architectural elements, such as staircases and elevators, is critical for safe and efficient robotic navigation, particularly in complex multi-floor environments. Traditional fusion methods struggle with occlusions, reflections, and low-contrast regions. In this paper, we propose a novel feature fusion module, Skip-Connection Fusion (SCF), that dynamically integrates RGB (Red, Green, Blue) and depth features through an adaptive weighting mechanism and skip-connection integration. This approach enables the model to selectively emphasize informative regions while suppressing noise, effectively addressing challenging conditions such as partially blocked staircases, glossy elevator doors, and dimly lit stair edges, which improves obstacle detection and supports reliable human–robot interaction in complex environments. Extensive experiments on a newly collected dataset demonstrate that SCF consistently outperforms state-of-the-art methods, including PSPNet and DeepLabv3, in both overall mIoU (mean Intersection over Union) and challenging-case performance. Specifically, our SCF module improves segmentation accuracy by 5.23% in the top 10% of challenging samples, highlighting its robustness in real-world conditions. Furthermore, we conduct a sensitivity analysis on the learnable weights, demonstrating their impact on segmentation quality across varying scene complexities. Our work provides a strong foundation for real-world applications in autonomous navigation, assistive robotics, and smart surveillance. Full article
Show Figures

Figure 1

17 pages, 4136 KiB  
Article
The Effects of Interactions Between Key Environmental Factors on Non-Specific Indicators in Carassius auratus
by Bin Wang, Hang Yang, Hanping Mao and Qiang Shi
Fishes 2025, 10(8), 372; https://doi.org/10.3390/fishes10080372 (registering DOI) - 2 Aug 2025
Viewed by 124
Abstract
Carassius auratus exhibits significant physiological and behavioral alterations under the combined stress of temperature and dissolved oxygen (DO) fluctuations, which are common challenges in aquaculture. In this investigation, we employed controlled thermal and DO gradients to characterize the multidimensional response profile of this [...] Read more.
Carassius auratus exhibits significant physiological and behavioral alterations under the combined stress of temperature and dissolved oxygen (DO) fluctuations, which are common challenges in aquaculture. In this investigation, we employed controlled thermal and DO gradients to characterize the multidimensional response profile of this species. The key findings revealed that thermal elevation profoundly influenced blood glucose and cortisol concentrations. Notably, exposure to hyperoxic conditions markedly attenuated stress responses relative to hypoxia at equivalent temperatures: cortisol levels were significantly suppressed (reductions of 60.11%, 118.06%, and 34.72%), while blood glucose levels exhibited concurrent increases (16.42%, 26.43%, and 26.34%). Distinctive behavioral patterns, including floating head behavior, surface swimming behavior, and rollover behavior, were identified as indicative behaviors of thermal–oxygen stress. Molecular analysis demonstrated the upregulated expression of stress-associated genes (HSP70, HSP90, HIF-1α, and Prdx3), which correlated temporally with elevated cortisol and glucose concentrations and the manifestation of stress behaviors. Furthermore, a muscle texture assessment indicated that increased DO availability mitigated the textural deterioration induced by heat stress. Collectively, this work establishes an authentic biomarker framework, providing crucial threshold parameters essential for the development of intelligent, real-time environmental monitoring and dynamic regulation systems to enhance climate-resilient aquaculture management. Full article
(This article belongs to the Special Issue Adaptation and Response of Fish to Environmental Changes)
Show Figures

Figure 1

25 pages, 2567 KiB  
Article
Development of Improved Empirical Take-Off Equations
by Timothy T. Takahashi
Aerospace 2025, 12(8), 695; https://doi.org/10.3390/aerospace12080695 (registering DOI) - 2 Aug 2025
Viewed by 111
Abstract
This paper develops empirical relationships to estimate FAA/EASA and MIL-3013B rules-compliant take-off field performance for single and multi-engine aircraft. Recent experience with modern aircraft flight manuals revealed that popular empirical legacy methods are no longer accurate; improvements in tires and brakes lead to [...] Read more.
This paper develops empirical relationships to estimate FAA/EASA and MIL-3013B rules-compliant take-off field performance for single and multi-engine aircraft. Recent experience with modern aircraft flight manuals revealed that popular empirical legacy methods are no longer accurate; improvements in tires and brakes lead to significantly shorter certified distances. This work relies upon a survey of current operational aircraft and extensive numerical simulations of generic configurations to support the development of a collection of new equations to estimate take-off performance for single and multi-engine aircraft under dry and wet conditions. These relationships are individually tailored for civilian and U.S. Military rules; they account for the superior capability of modern braking systems and the implications of minimum-control speed on the certified distance. Full article
(This article belongs to the Special Issue Aircraft Conceptual Design: Tools, Processes and Examples)
Show Figures

Figure 1

21 pages, 10823 KiB  
Article
Exploring How Micro-Computed Tomography Imaging Technology Impacts the Preservation of Paleontological Heritage
by Michela Amendola, Andrea Barucci, Andrea Baucon, Chiara Zini, Claudia Borrelli, Simone Casati, Andrea di Cencio, Sandra Fiore, Salvatore Siano, Juri Agresti, Carlos Neto de Carvalho, Federico Bernardini, Girolamo Lo Russo, Alberto Collareta and Giulia Bosio
Heritage 2025, 8(8), 310; https://doi.org/10.3390/heritage8080310 - 2 Aug 2025
Viewed by 95
Abstract
Museums play an essential role in preserving both cultural and natural heritage, safeguarding samples that offer invaluable insights into our history and scientific understanding. The integration of micro-computed tomography (micro-CT) has significantly advanced the study, restoration, and conservation of these priceless objects. This [...] Read more.
Museums play an essential role in preserving both cultural and natural heritage, safeguarding samples that offer invaluable insights into our history and scientific understanding. The integration of micro-computed tomography (micro-CT) has significantly advanced the study, restoration, and conservation of these priceless objects. This work explores the application of micro-CT across three critical areas of museum practice: sample virtualization, restoration assessment, and the analysis of fossil specimens. Specifically, micro-CT scanning was applied to fossils stored in the G.A.M.P.S. collection (Scandicci, Italy), enabling the creation of highly detailed non-invasive 3D models for digital archiving and virtual exhibitions. At the Opificio delle Pietre Dure in Florence, micro-CT was employed to evaluate fossil bone restoration treatments, focusing on the internal impact of menthol as a consolidant and its effects on the structural integrity of the material. Furthermore, micro-CT was utilized to investigate a sealed bee preserved in its cocoon within a paleosol in Costa Vicentina (Portugal), providing unprecedented insights into its internal anatomy and state of preservation, all while maintaining the integrity of the specimen. The results of this study underscore the versatility of micro-CT as a powerful non-destructive tool for advancing the fields of conservation, restoration, and scientific analysis of cultural and natural heritage. By integrating high-resolution imaging with both virtual and hands-on conservation strategies, micro-CT empowers museums to enhance research capabilities, improve preservation methodologies, and foster greater public engagement with their collections. Full article
Show Figures

Figure 1

20 pages, 10013 KiB  
Article
Addressing Challenges in Rds,on Measurement for Cloud-Connected Condition Monitoring in WBG Power Converter Applications
by Farzad Hosseinabadi, Sachin Kumar Bhoi, Hakan Polat, Sajib Chakraborty and Omar Hegazy
Electronics 2025, 14(15), 3093; https://doi.org/10.3390/electronics14153093 - 2 Aug 2025
Viewed by 50
Abstract
This paper presents the design, implementation, and experimental validation of a Condition Monitoring (CM) circuit for SiC-based Power Electronics Converters (PECs). The paper leverages in situ drain–source resistance (Rds,on) measurements, interfaced with cloud connectivity for data processing and lifetime assessment, [...] Read more.
This paper presents the design, implementation, and experimental validation of a Condition Monitoring (CM) circuit for SiC-based Power Electronics Converters (PECs). The paper leverages in situ drain–source resistance (Rds,on) measurements, interfaced with cloud connectivity for data processing and lifetime assessment, addressing key limitations in current state-of-the-art (SOTA) methods. Traditional approaches rely on expensive data acquisition systems under controlled laboratory conditions, making them unsuitable for real-world applications due to component variability, time delay, and noise sensitivity. Furthermore, these methods lack cloud interfacing for real-time data analysis and fail to provide comprehensive reliability metrics such as Remaining Useful Life (RUL). Additionally, the proposed CM method benefits from noise mitigation during switching transitions by utilizing delay circuits to ensure stable and accurate data capture. Moreover, collected data are transmitted to the cloud for long-term health assessment and damage evaluation. In this paper, experimental validation follows a structured design involving signal acquisition, filtering, cloud transmission, and temperature and thermal degradation tracking. Experimental testing has been conducted at different temperatures and operating conditions, considering coolant temperature variations (40 °C to 80 °C), and an output power of 7 kW. Results have demonstrated a clear correlation between temperature rise and Rds,on variations, validating the ability of the proposed method to predict device degradation. Finally, by leveraging cloud computing, this work provides a practical solution for real-world Wide Band Gap (WBG)-based PEC reliability and lifetime assessment. Full article
(This article belongs to the Section Industrial Electronics)
16 pages, 4670 KiB  
Article
A Hybrid Algorithm for PMLSM Force Ripple Suppression Based on Mechanism Model and Data Model
by Yunlong Yi, Sheng Ma, Bo Zhang and Wei Feng
Energies 2025, 18(15), 4101; https://doi.org/10.3390/en18154101 (registering DOI) - 1 Aug 2025
Viewed by 117
Abstract
The force ripple of a permanent magnet synchronous linear motor (PMSLM) caused by multi-source disturbances in practical applications seriously restricts its high-precision motion control performance. The traditional single-mechanism model has difficulty fully characterizing the nonlinear disturbance factors, while the data-driven method has real-time [...] Read more.
The force ripple of a permanent magnet synchronous linear motor (PMSLM) caused by multi-source disturbances in practical applications seriously restricts its high-precision motion control performance. The traditional single-mechanism model has difficulty fully characterizing the nonlinear disturbance factors, while the data-driven method has real-time limitations. Therefore, this paper proposes a hybrid modeling framework that integrates the physical mechanism and measured data and realizes the dynamic compensation of the force ripple by constructing a collaborative suppression algorithm. At the mechanistic level, based on electromagnetic field theory and the virtual displacement principle, an analytical model of the core disturbance terms such as the cogging effect and the end effect is established. At the data level, the acceleration sensor is used to collect the dynamic response signal in real time, and the data-driven ripple residual model is constructed by combining frequency domain analysis and parameter fitting. In order to verify the effectiveness of the algorithm, a hardware and software experimental platform including a multi-core processor, high-precision current loop controller, real-time data acquisition module, and motion control unit is built to realize the online calculation and closed-loop injection of the hybrid compensation current. Experiments show that the hybrid framework effectively compensates the unmodeled disturbance through the data model while maintaining the physical interpretability of the mechanistic model, which provides a new idea for motor performance optimization under complex working conditions. Full article
Show Figures

Figure 1

11 pages, 262 KiB  
Article
Secondary Traumatic Stress in Interpreters for Refugees: Why Training and Supervision Matter
by Gerhard Hapfelmeier, Lena Walfisch, Luisa Schroers, Stephan Bender and Marco Walg
Psychiatry Int. 2025, 6(3), 91; https://doi.org/10.3390/psychiatryint6030091 (registering DOI) - 1 Aug 2025
Viewed by 124
Abstract
Interpreters who translate for refugees are regularly confronted with traumatic content. Listening regularly to and translating potentially traumatizing stories make interpreters vulnerable to secondary traumatization. The current study aimed to investigate secondary traumatic stress (STS) in interpreters working with refugees and to identify [...] Read more.
Interpreters who translate for refugees are regularly confronted with traumatic content. Listening regularly to and translating potentially traumatizing stories make interpreters vulnerable to secondary traumatization. The current study aimed to investigate secondary traumatic stress (STS) in interpreters working with refugees and to identify potential risk and protective factors. In this cross-sectional study, 64 interpreters from Austria, Germany, and Switzerland participated. STS, compassion satisfaction, burnout, and resilience were assessed using the Secondary Traumatic Stress Scale, Professional Quality of Life Scale, and Connor–Davidson Resilience Scale. Sociodemographic data were collected (e.g., experiences with translation in psychotherapy, personal backgrounds of forced displacement, and personal experiences with psychotherapy as a client). Subgroup comparisons were conducted to identify risk factors for STS. A total of 43 participants (67%) showed at least mild STS. STS was significantly associated with burnout. Personal experiences of forced displacement, gender, and working context had no impact on STS. Interpreters with personal experiences of psychotherapy showed a higher level of STS as well as higher resilience than those without personal experiences of psychotherapy. Independent of personal experiences of forced displacement, gender, and working context, interpreters who work with refugees are at high risk of STS. Regular training and supervision for interpreters who work with refugees should thus be offered as standard practice. Full article
19 pages, 5891 KiB  
Article
Potential of Multi-Source Multispectral vs. Hyperspectral Remote Sensing for Winter Wheat Nitrogen Monitoring
by Xiaokai Chen, Yuxin Miao, Krzysztof Kusnierek, Fenling Li, Chao Wang, Botai Shi, Fei Wu, Qingrui Chang and Kang Yu
Remote Sens. 2025, 17(15), 2666; https://doi.org/10.3390/rs17152666 - 1 Aug 2025
Viewed by 88
Abstract
Timely and accurate monitoring of crop nitrogen (N) status is essential for precision agriculture. UAV-based hyperspectral remote sensing offers high-resolution data for estimating plant nitrogen concentration (PNC), but its cost and complexity limit large-scale application. This study compares the performance of UAV hyperspectral [...] Read more.
Timely and accurate monitoring of crop nitrogen (N) status is essential for precision agriculture. UAV-based hyperspectral remote sensing offers high-resolution data for estimating plant nitrogen concentration (PNC), but its cost and complexity limit large-scale application. This study compares the performance of UAV hyperspectral data (S185 sensor) with simulated multispectral data from DJI Phantom 4 Multispectral (P4M), PlanetScope (PS), and Sentinel-2A (S2) in estimating winter wheat PNC. Spectral data were collected across six growth stages over two seasons and resampled to match the spectral characteristics of the three multispectral sensors. Three variable selection strategies (one-dimensional (1D) spectral reflectance, optimized two-dimensional (2D), and three-dimensional (3D) spectral indices) were combined with Random Forest Regression (RFR), Support Vector Machine Regression (SVMR), and Partial Least Squares Regression (PLSR) to build PNC prediction models. Results showed that, while hyperspectral data yielded slightly higher accuracy, optimized multispectral indices, particularly from PS and S2, achieved comparable performance. Among models, SVM and RFR showed consistent effectiveness across strategies. These findings highlight the potential of low-cost multispectral platforms for practical crop N monitoring. Future work should validate these models using real satellite imagery and explore multi-source data fusion with advanced learning algorithms. Full article
(This article belongs to the Special Issue Perspectives of Remote Sensing for Precision Agriculture)
Show Figures

Figure 1

11 pages, 1941 KiB  
Article
Nomenclature and Typification of the Goat Grass Aegilops tauschii Coss. (Poaceae: Triticeae): A Key Species for the Secondary Gene Pool of Common Wheat Triticum aestivum
by P. Pablo Ferrer-Gallego, Raúl Ferrer-Gallego, Diego Rivera, Concepción Obón, Emilio Laguna and Nikolay P. Goncharov
Plants 2025, 14(15), 2375; https://doi.org/10.3390/plants14152375 - 1 Aug 2025
Viewed by 155
Abstract
Background: The typification of the name Aegilops tauschii Coss. (Poaceae: Triticeae) is revisited. Several authors cited a gathering from Iberia as the locality and Buxbaum as the collector of as the type, but no actual specimens from this collection have been located, nor [...] Read more.
Background: The typification of the name Aegilops tauschii Coss. (Poaceae: Triticeae) is revisited. Several authors cited a gathering from Iberia as the locality and Buxbaum as the collector of as the type, but no actual specimens from this collection have been located, nor is there evidence that such a gathering existed. In 1994, van Slageren designated as lectotype an illustration from Buxbaum’s Plantarum minus cognitarum centuria I (1728), which, although original material, is not the only element cited in the protologue. The protologue mentions several gatherings, some of which are represented by identifiable herbarium specimens qualifying as syntypes. Methods: This work is based on the analysis of the protologue of Aegilops tauschii and the study of specimens conserved in several herbaria. According to the International Code of Nomenclature for algae, fungi, and plants (ICN, Shenzhen Code 2018), an illustration does not hold the same nomenclatural weight as preserved specimens cited in the protologue. Therefore, van Slageren’s lectotypification does not comply with Art. 9.12 of the ICN and must be superseded. Results: The original material includes multiple elements, and a new lectotype is designated from a specimen at PRC from Azerbaijan. Full article
(This article belongs to the Special Issue Taxonomy and Nomenclature of Euro + Mediterranean Vascular Plants)
Show Figures

Figure 1

18 pages, 7321 KiB  
Article
Fault Diagnosis of Wind Turbine Gearbox Based on Mel Spectrogram and Improved ResNeXt50 Model
by Xiaojuan Zhang, Feixiang Jia and Yayu Chen
Appl. Sci. 2025, 15(15), 8563; https://doi.org/10.3390/app15158563 (registering DOI) - 1 Aug 2025
Viewed by 87
Abstract
In response to the problem of complex and variable loads on wind turbine gearbox bearing in working conditions, as well as the limited amount of sound data making fault identification difficult, this study focuses on sound signals and proposes an intelligent diagnostic method [...] Read more.
In response to the problem of complex and variable loads on wind turbine gearbox bearing in working conditions, as well as the limited amount of sound data making fault identification difficult, this study focuses on sound signals and proposes an intelligent diagnostic method using deep learning. By adding the CBAM module in ResNeXt to enhance the model’s attention to important features and combining it with the Arcloss loss function to make the model learn more discriminative features, the generalization ability of the model is strengthened. We used a fine-tuning transfer learning strategy, transferring pre-trained model parameters to the CBAM-ResNeXt50-ArcLoss model and training with an extracted Mel spectrogram of sound signals to extract and classify audio features of the wind turbine gearbox. Experimental validation of the proposed method on collected sound signals showed its effectiveness and superiority. Compared to CNN, ResNet50, ResNeXt50, and CBAM-ResNet50 methods, the CBAM-ResNeXt50-ArcLoss model achieved improvements of 13.3, 3.6, 2.4, and 1.3, respectively. Through comparison with classical algorithms, we demonstrated that the research method proposed in this study exhibits better diagnostic capability in classifying wind turbine gearbox sound signals. Full article
Show Figures

Figure 1

Back to TopTop