Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (494)

Search Parameters:
Keywords = collagen imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 45942 KiB  
Article
Long-Term Culture of Cellular Spheroids in Novel Hydrogel Constructs for ECM Characterization in Bone Models
by Diamante Boscaro, Lill Skovholt Wahlum, Marie Eline Ullevålseter, Berit Løkensgard Strand and Pawel Sikorski
Materials 2025, 18(15), 3538; https://doi.org/10.3390/ma18153538 - 28 Jul 2025
Viewed by 204
Abstract
The application of cellular spheroids in bone tissue engineering research has gained significant interest in the last decade. Compared to monolayer cell cultures, the 3D architecture allows for more physiological cell–cell and cell–extracellular matrix (ECM) interactions that make cellular spheroids a suitable model [...] Read more.
The application of cellular spheroids in bone tissue engineering research has gained significant interest in the last decade. Compared to monolayer cell cultures, the 3D architecture allows for more physiological cell–cell and cell–extracellular matrix (ECM) interactions that make cellular spheroids a suitable model system to investigate the bone ECM in vitro. The use of 3D model systems requires fine-tuning of the experimental methods used to study cell morphology, ECM deposition and mineralization, and cell–ECM interactions. In this study, we use a construct made of MC3T3-E1 cellular spheroids encapsulated in an alginate hydrogel to study and characterize the deposited ECM. Spheroid shape and structure were evaluated using confocal microscopy. The deposited collagenous ECM was characterized using Second Harmonic Imaging Microscopy (SHIM), quantitative hydroxyproline (HYP) assay, and Transmission Electron Microscopy (TEM). The use of hydrogel constructs enabled easy handling and imaging of the samples, while also helping to preserve the spheroid’s stability by preventing cells from adhering to the culture dish surface. We used a non-modified alginate hydrogel that did not facilitate cell attachment and therefore functioned as an inert encapsulating scaffold. Constructs were cultured for up to 4 weeks. SHIM, HYP assay, and TEM confirmed the deposition of a collagenous matrix. We demonstrated that alginate-encapsulated bone spheroids are a convenient and promising model for studying the bone ECM in vitro. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Graphical abstract

16 pages, 1988 KiB  
Article
The Impact of Uranium-Induced Pulmonary Fibrosis on Gut Microbiota and Related Metabolites in Rats
by Ruifeng Dong, Xiaona Gu, Lixia Su, Qingdong Wu, Yufu Tang, Hongying Liang, Xiangming Xue, Teng Zhang and Jingming Zhan
Metabolites 2025, 15(8), 492; https://doi.org/10.3390/metabo15080492 - 22 Jul 2025
Viewed by 360
Abstract
Background/Objectives: This study aimed to evaluate the effects of lung injury induced by insoluble uranium oxide particles on gut microbiota and related metabolites in rats. Methods: The rats were randomly divided into six UO2 dose groups. A rat lung injury [...] Read more.
Background/Objectives: This study aimed to evaluate the effects of lung injury induced by insoluble uranium oxide particles on gut microbiota and related metabolites in rats. Methods: The rats were randomly divided into six UO2 dose groups. A rat lung injury model was established through UO2 aerosol. The levels of uranium in lung tissues were detected by ICP-MS. The expression levels of the inflammatory factors and fibrosis indexes were measured by enzyme-linked immunosorbent assay. Paraffin embedding-based hematoxylin & eosin staining for the lung tissue was performed to observe the histopathological imaging features. Metagenomic sequencing technology and HM700-targeted metabolomics were conducted in lung tissues. Results: Uranium levels in the lung tissues increased with dose increase. The expression levels of Tumor Necrosis Factor-α (TNF-α), Interleukin-1β (IL-1β), Collagen I, and Hydroxyproline (Hyp) in rat lung homogenate increased with dose increase. Inflammatory cell infiltration and the deposition of extracellular matrix were observed in rat lung tissue post-exposure. Compared to the control group, the ratio of Firmicutes and Bacteroides in the gut microbiota decreased, the relative abundance of Akkermansia_mucinphila decreased, and the relative abundance of Bacteroides increased. The important differential metabolites mainly include αlpha-linolenic acid, gamma-linolenic acid, 2-Hydroxybutyric acid, Beta-Alanine, Maleic acid, Hyocholic acid, L-Lysine, L-Methionine, L-Leucine, which were mainly concentrated in unsaturated fatty acid biosynthesis, propionic acid metabolism, aminoacyl-tRNA biosynthesis, phenylalanine metabolism, and other pathways in the UO2 group compared to the control group. Conclusions: These findings suggest that uranium-induced lung injury can cause the disturbance of gut microbiota and its metabolites in rats, and these changes are mainly caused by Akkermansia_mucinphila and Bacteroides, focusing on unsaturated fatty acid biosynthesis and the propionic acid metabolism pathway. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

28 pages, 1727 KiB  
Review
Computational and Imaging Approaches for Precision Characterization of Bone, Cartilage, and Synovial Biomolecules
by Rahul Kumar, Kyle Sporn, Vibhav Prabhakar, Ahab Alnemri, Akshay Khanna, Phani Paladugu, Chirag Gowda, Louis Clarkson, Nasif Zaman and Alireza Tavakkoli
J. Pers. Med. 2025, 15(7), 298; https://doi.org/10.3390/jpm15070298 - 9 Jul 2025
Viewed by 641
Abstract
Background/Objectives: Degenerative joint diseases (DJDs) involve intricate molecular disruptions within bone, cartilage, and synovial tissues, often preceding overt radiographic changes. These tissues exhibit complex biomolecular architectures and their degeneration leads to microstructural disorganization and inflammation that are challenging to detect with conventional imaging [...] Read more.
Background/Objectives: Degenerative joint diseases (DJDs) involve intricate molecular disruptions within bone, cartilage, and synovial tissues, often preceding overt radiographic changes. These tissues exhibit complex biomolecular architectures and their degeneration leads to microstructural disorganization and inflammation that are challenging to detect with conventional imaging techniques. This review aims to synthesize recent advances in imaging, computational modeling, and sequencing technologies that enable high-resolution, non-invasive characterization of joint tissue health. Methods: We examined advanced modalities including high-resolution MRI (e.g., T1ρ, sodium MRI), quantitative and dual-energy CT (qCT, DECT), and ultrasound elastography, integrating them with radiomics, deep learning, and multi-scale modeling approaches. We also evaluated RNA-seq, spatial transcriptomics, and mass spectrometry-based proteomics for omics-guided imaging biomarker discovery. Results: Emerging technologies now permit detailed visualization of proteoglycan content, collagen integrity, mineralization patterns, and inflammatory microenvironments. Computational frameworks ranging from convolutional neural networks to finite element and agent-based models enhance diagnostic granularity. Multi-omics integration links imaging phenotypes to gene and protein expression, enabling predictive modeling of tissue remodeling, risk stratification, and personalized therapy planning. Conclusions: The convergence of imaging, AI, and molecular profiling is transforming musculoskeletal diagnostics. These synergistic platforms enable early detection, multi-parametric tissue assessment, and targeted intervention. Widespread clinical integration requires robust data infrastructure, regulatory compliance, and physician education, but offers a pathway toward precision musculoskeletal care. Full article
(This article belongs to the Special Issue Cutting-Edge Diagnostics: The Impact of Imaging on Precision Medicine)
Show Figures

Figure 1

17 pages, 1960 KiB  
Article
Radiographic Evidence of Immature Bone Architecture After Sinus Grafting: A Multidimensional Image Analysis Approach
by Ibrahim Burak Yuksel, Fatma Altiparmak, Gokhan Gurses, Ahmet Akti, Merve Alic and Selin Tuna
Diagnostics 2025, 15(14), 1742; https://doi.org/10.3390/diagnostics15141742 - 9 Jul 2025
Viewed by 354
Abstract
Background: Radiographic evaluation of bone regeneration following maxillary sinus floor elevation commonly emphasizes volumetric gains. However, the qualitative microarchitecture of the regenerated bone, particularly when assessed via two-dimensional imaging modalities, such as panoramic radiographs, remains insufficiently explored. This study aimed to evaluate early [...] Read more.
Background: Radiographic evaluation of bone regeneration following maxillary sinus floor elevation commonly emphasizes volumetric gains. However, the qualitative microarchitecture of the regenerated bone, particularly when assessed via two-dimensional imaging modalities, such as panoramic radiographs, remains insufficiently explored. This study aimed to evaluate early trabecular changes in grafted maxillary sinus regions using fractal dimension, first-order statistics, and gray-level co-occurrence matrix analysis. Methods: This retrospective study included 150 patients who underwent maxillary sinus floor augmentation with bovine-derived xenohybrid grafts. Postoperative panoramic radiographs were analyzed at 6 months to assess early healing. Four standardized regions of interest representing grafted sinus floors and adjacent tuberosity regions were analyzed. Image processing and quantitative analyses were performed to extract fractal dimension (FD), first-order statistics (FOS), and gray-level co-occurrence matrix (GLCM) features (contrast, homogeneity, energy, correlation). Results: A total of 150 grafted sites and 150 control tuberosity sites were analyzed. Fractal dimension (FD) and contrast values were significantly lower in grafted areas than in native tuberosity bone (p < 0.001 for both), suggesting reduced trabecular complexity and less distinct transitions. In contrast, higher homogeneity (p < 0.001) and mean gray-level intensity values (p < 0.001) were observed in the grafted regions, reflecting a more uniform but immature trabecular pattern during the early healing phase. Energy and correlation values also differed significantly between groups (p < 0.001). No postoperative complications were reported, and resorbable collagen membranes appeared to support graft stability. Conclusions: Although the grafted sites demonstrated radiographic volume stability, their trabecular architecture remained immature at 6 months, implying that volumetric measurements alone may be insufficient to assess biological bone maturation. These results support the utility of advanced textural and fractal analysis in routine imaging to optimize clinical decision-making regarding implant placement timing in grafted sinuses. Full article
Show Figures

Figure 1

15 pages, 3143 KiB  
Article
Quantitative Characterization of Corneal Collagen Architecture Using Intensity Gradient Modeling and Gaussian PDF Fitting
by Enrique J. Fernandez and Juan M. Bueno
Diagnostics 2025, 15(14), 1738; https://doi.org/10.3390/diagnostics15141738 - 8 Jul 2025
Viewed by 279
Abstract
Background/Objectives: The transparency and biomechanical properties of the human cornea are governed by the precise organization of collagen fibers. A novel quantitative technique to analyze corneal collagen organization, based on intensity gradient modeling and probability density function (PDF) fitting, is proposed. Methods: Derived [...] Read more.
Background/Objectives: The transparency and biomechanical properties of the human cornea are governed by the precise organization of collagen fibers. A novel quantitative technique to analyze corneal collagen organization, based on intensity gradient modeling and probability density function (PDF) fitting, is proposed. Methods: Derived from second-harmonic generation (SHG) images, the method calculates image gradients, derives PDFs of gradient orientations, and fits them to Gaussian models. Results: Tested across species and temporal healing stages, this approach is an advantageous alternative to traditional methods like Fourier transform and structure tensor analyses, particularly in noisy or low-contrast conditions. Conclusions: The technique offers a scalable, robust framework suitable for research, clinical diagnostics, and treatment monitoring. Full article
(This article belongs to the Special Issue Latest Advances in Ophthalmic Imaging)
Show Figures

Figure 1

21 pages, 8891 KiB  
Article
Urolithin A Attenuates Periodontitis in Mice via Dual Anti-Inflammatory and Osteoclastogenesis Inhibition: A Natural Metabolite-Based Therapeutic Strategy
by Yishu Xia, Danni Wu, Linyi Zhou, Xinyu Wu and Jianzhi Chen
Molecules 2025, 30(13), 2881; https://doi.org/10.3390/molecules30132881 - 7 Jul 2025
Viewed by 394
Abstract
Periodontitis is an inflammatory disease that affects the periodontal supporting tissues. Its cardinal clinical manifestations encompass gingival inflammation, periodontal pocket formation, and alveolar bone resorption. Urolithin A (UA), a gut microbiota-derived metabolite of ellagitannins, is known for its anti-inflammatory and osseous-protective properties. Nonetheless, [...] Read more.
Periodontitis is an inflammatory disease that affects the periodontal supporting tissues. Its cardinal clinical manifestations encompass gingival inflammation, periodontal pocket formation, and alveolar bone resorption. Urolithin A (UA), a gut microbiota-derived metabolite of ellagitannins, is known for its anti-inflammatory and osseous-protective properties. Nonetheless, the impact of UA on periodontitis remains unknown. To investigate the preventive effect of UA, we employed a lipopolysaccharide (LPS)-induced inflammation model in RAW 264.7 mouse macrophages, a receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation model, and a ligature-induced periodontitis model in mice. The expression of inflammatory factors (tumor necrosis factor-α, TNF-α; interleukin-6, IL-6) was analyzed to assess anti-inflammatory efficacy. Bone loss in mice with periodontitis was assessed through histological and imaging techniques, including haematoxylin and eosin staining to evaluate alveolar bone morphology, Masson’s trichrome staining to visualize collagen fiber distribution, and micro-computed tomography scanning to quantify bone structural parameters. Additionally, we investigated the underlying mechanisms by examining osteoclast activity through tartrate-resistant acid phosphatase staining and the expression levels of proteins RANKL and osteoprotegerin (OPG). We found that UA reduced IL-6 and TNF-α levels in vitro and in vivo, inhibited osteoclast differentiation, and decreased the RANKL/OPG ratio in periodontitis mice. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

10 pages, 8944 KiB  
Article
High-Speed Full-Color Polarized Light Imaging of Collagen Using a Polarization Camera
by Bin Yang, Neil Nayyar and Billy Sanchez
Bioengineering 2025, 12(7), 720; https://doi.org/10.3390/bioengineering12070720 - 30 Jun 2025
Viewed by 358
Abstract
Polarized light imaging (PLI) has been effective in visualizing and quantifying collagen content. Collagen-specific data are often overlaid over the tissue image for visualization. However, such contextual tissue images are typically in grayscale and lack important color information, limiting the usefulness of PLI [...] Read more.
Polarized light imaging (PLI) has been effective in visualizing and quantifying collagen content. Collagen-specific data are often overlaid over the tissue image for visualization. However, such contextual tissue images are typically in grayscale and lack important color information, limiting the usefulness of PLI in imaging the stained histology slides and for surgical guidance. The objective of this study was to develop a robust and easy-to-implement PLI technique to capture both true color and birefringent collagen data, and we call it ColorPOL. ColorPOL uses only one polarization-sensitive camera to capture information at 75 frames per second. The true color images were synthesized from individual RGB images, and collagen-specific information (fiber orientation and retardance) was derived from the green channel image. We implemented ColorPOL in transmission mode on an upright microscope and in reflection mode for wide-field thick tissue imaging. The color images in both implementations provided valuable color tissue context that facilitated the identification and localization of collagen content. Additionally, we demonstrated that in reflection mode, the high imaging speed enabled us to record and visualize continuous deformations of the collagenous tissues (tendons, sciatic nerves, and blood vessels) overlaid on the processed collagen-specific information. Robust performance and flexible configuration will make ColorPOL a valuable tool in basic research and translational applications. Full article
Show Figures

Figure 1

9 pages, 3832 KiB  
Case Report
Non-Invasive Diagnostic Imaging in Kaposi Sarcoma Evaluation
by Carmen Cantisani, Antonio Di Guardo, Marco Ardigò, Mariano Suppa, Salvador Gonzalez, Caterina Longo, Alberto Taliano, Emanuele Rovaldi, Elisa Cinotti and Giovanni Pellacani
Diagnostics 2025, 15(13), 1665; https://doi.org/10.3390/diagnostics15131665 - 30 Jun 2025
Viewed by 437
Abstract
Background and Clinical Significance: Kaposi sarcoma (KS) is a rare angio-proliferative mesenchymal tumor that predominantly affects the skin and mucous membranes but may involve lymph nodes and visceral organs. Clinically, it manifests as red-purple-brown papules, nodules, or plaques, either painless or painful, often [...] Read more.
Background and Clinical Significance: Kaposi sarcoma (KS) is a rare angio-proliferative mesenchymal tumor that predominantly affects the skin and mucous membranes but may involve lymph nodes and visceral organs. Clinically, it manifests as red-purple-brown papules, nodules, or plaques, either painless or painful, often with disfiguring potential. The diagnosis is traditionally based on clinical and histopathological evaluation, although non-invasive imaging techniques are increasingly used to support diagnosis and treatment monitoring. We report a case of HHV-8-negative Kaposi sarcoma evaluated with multiple non-invasive imaging modalities to highlight their diagnostic utility. Case Presentation: An 83-year-old man presented with multiple painful, violaceous papulo-nodular lesions, some ulcerated, on the lateral aspect of his left foot. Dermoscopy revealed the characteristic rainbow pattern. Dynamic Optical Coherence Tomography (D-OCT) allowed real-time visualization of microvascular abnormalities, identifying large serpentine and branching vessels with clearly delineated capsules. Line-field Optical Coherence Tomography (LC-OCT) showed irregular dermal collagen, vascular lacunae, and the presence of spindle cells and slit-like vessels. Histological analysis confirmed the diagnosis of Kaposi sarcoma, revealing a proliferation of spindle-shaped endothelial cells forming angulated vascular spaces, with red blood cell extravasation and a mixed inflammatory infiltrate. Conclusions: Non-invasive imaging tools, including dermoscopy, D-OCT, and LC-OCT, have emerged as valuable adjuncts in the diagnosis and monitoring of KS. These techniques enable in vivo assessment of vascular architecture and tissue morphology, enhancing clinical decision-making while reducing the need for immediate biopsy. Dermoscopy reveals polychromatic vascular features, such as the rainbow pattern, while D-OCT and LC-OCT provide high-resolution insights into vascular proliferation, tissue heterogeneity, and cellular morphology. Dermoscopy, dynamic OCT, and LC-OCT represent promising non-invasive diagnostic tools for the assessment of Kaposi sarcoma. These technologies provide detailed morphological and vascular information, enabling earlier diagnosis and more personalized management. While histopathology remains the gold standard, non-invasive imaging offers a valuable complementary approach for diagnosis and follow-up, particularly in complex or atypical presentations. Ongoing research and technological refinement are essential to improve accessibility and clinical applicability. Full article
(This article belongs to the Special Issue Optical Coherence Tomography in Non-Invasive Diagnostic Imaging)
Show Figures

Figure 1

25 pages, 418 KiB  
Review
Emerging Diagnostic Approaches for Musculoskeletal Disorders: Advances in Imaging, Biomarkers, and Clinical Assessment
by Rahul Kumar, Kiran Marla, Kyle Sporn, Phani Paladugu, Akshay Khanna, Chirag Gowda, Alex Ngo, Ethan Waisberg, Ram Jagadeesan and Alireza Tavakkoli
Diagnostics 2025, 15(13), 1648; https://doi.org/10.3390/diagnostics15131648 - 27 Jun 2025
Viewed by 889
Abstract
Musculoskeletal (MSK) disorders remain a major global cause of disability, with diagnostic complexity arising from their heterogeneous presentation and multifactorial pathophysiology. Recent advances across imaging modalities, molecular biomarkers, artificial intelligence applications, and point-of-care technologies are fundamentally reshaping musculoskeletal diagnostics. This review offers a [...] Read more.
Musculoskeletal (MSK) disorders remain a major global cause of disability, with diagnostic complexity arising from their heterogeneous presentation and multifactorial pathophysiology. Recent advances across imaging modalities, molecular biomarkers, artificial intelligence applications, and point-of-care technologies are fundamentally reshaping musculoskeletal diagnostics. This review offers a novel synthesis by unifying recent innovations across multiple diagnostic imaging modalities, such as CT, MRI, and ultrasound, with emerging biochemical, genetic, and digital technologies. While existing reviews typically focus on advances within a single modality or for specific MSK conditions, this paper integrates a broad spectrum of developments to highlight how use of multimodal diagnostic strategies in combination can improve disease detection, stratification, and clinical decision-making in real-world settings. Technological developments in imaging, including photon-counting detector computed tomography, quantitative magnetic resonance imaging, and four-dimensional computed tomography, have enhanced the ability to visualize structural and dynamic musculoskeletal abnormalities with greater precision. Molecular imaging and biochemical markers such as CTX-II (C-terminal cross-linked telopeptides of type II collagen) and PINP (procollagen type I N-propeptide) provide early, objective indicators of tissue degeneration and bone turnover, while genetic and epigenetic profiling can elucidate individual patterns of susceptibility. Point-of-care ultrasound and portable diagnostic devices have expanded real-time imaging and functional assessment capabilities across diverse clinical settings. Artificial intelligence and machine learning algorithms now automate image interpretation, predict clinical outcomes, and enhance clinical decision support, complementing conventional clinical evaluations. Wearable sensors and mobile health technologies extend continuous monitoring beyond traditional healthcare environments, generating real-world data critical for dynamic disease management. However, standardization of diagnostic protocols, rigorous validation of novel methodologies, and thoughtful integration of multimodal data remain essential for translating technological advances into improved patient outcomes. Despite these advances, several key limitations constrain widespread clinical adoption. Imaging modalities lack standardized acquisition protocols and reference values, making cross-site comparison and clinical interpretation difficult. AI-driven diagnostic tools often suffer from limited external validation and transparency (“black-box” models), impacting clinicians’ trust and hindering regulatory approval. Molecular markers like CTX-II and PINP, though promising, show variability due to diurnal fluctuations and comorbid conditions, complicating their use in routine monitoring. Integration of multimodal data, especially across imaging, omics, and wearable devices, remains technically and logistically complex, requiring robust data infrastructure and informatics expertise not yet widely available in MSK clinical practice. Furthermore, reimbursement models have not caught up with many of these innovations, limiting access in resource-constrained healthcare settings. As these fields converge, musculoskeletal diagnostics methods are poised to evolve into a more precise, personalized, and patient-centered discipline, driving meaningful improvements in musculoskeletal health worldwide. Full article
(This article belongs to the Special Issue Advances in Musculoskeletal Imaging: From Diagnosis to Treatment)
11 pages, 664 KiB  
Article
Does Keratoconus Follow Rundle’s Curve?
by Srujana Sahebjada, Adam A. Moktar, Sara Vogrin, Elsie Chan, Paul N. Baird and Mark Daniell
J. Clin. Transl. Ophthalmol. 2025, 3(3), 12; https://doi.org/10.3390/jcto3030012 - 26 Jun 2025
Viewed by 349
Abstract
Background: Rundle’s curve describes the natural progression of disease as gradually worsening before reaching a peak and stabilizing. This study aimed to investigate whether Rundle’s curve could be applied to keratoconus over a five-year follow-up period. Methods: Longitudinal study. Patients with keratoconus who [...] Read more.
Background: Rundle’s curve describes the natural progression of disease as gradually worsening before reaching a peak and stabilizing. This study aimed to investigate whether Rundle’s curve could be applied to keratoconus over a five-year follow-up period. Methods: Longitudinal study. Patients with keratoconus who underwent Pentacam tomography imaging from the Australian Study of Keratoconus were included in this study. Patients who received surgical treatment for keratoconus were excluded. Latent class analysis was performed for five parameters: Kmean front, Kmean back, pachymetry pupil, pachymetry minimum and pachymetry apex. A total of 522 patients and 1041 eyes were included for analysis. Most parameters were stable. However, worsening keratoconus in a minority of patients (less than 5% of the population) was observed across the last year of follow-up. The patients that showed progression in the final year were younger in age and had higher baseline parameters. Results: This study suggests keratoconus does not conform to the classic Rundle’s curve of disease progression. Instead, keratoconus exhibits a distinct course characterized by an increased risk of progression among younger individuals and eyes with higher baseline parameter values. Conclusions: These findings underscore the importance of considering treatments that halt disease progression, such as corneal collagen crosslinking, particularly in this specific subgroup of patients. Full article
Show Figures

Figure 1

15 pages, 2636 KiB  
Article
Effect of Androgens on Human Fascia
by Caterina Fede, Yunfeng Sun, Xiaoxiao Zhao, Andrea Angelini, Pietro Ruggieri and Carla Stecco
Biology 2025, 14(7), 746; https://doi.org/10.3390/biology14070746 - 23 Jun 2025
Viewed by 1706
Abstract
Androgens are emerging as important regulators of connective tissue remodeling, but current knowledge about their role in human fascia is still limited. This study examined the expression of the androgen receptor (AR) in human deep fascia and investigated the effects of dihydrotestosterone (DHT) [...] Read more.
Androgens are emerging as important regulators of connective tissue remodeling, but current knowledge about their role in human fascia is still limited. This study examined the expression of the androgen receptor (AR) in human deep fascia and investigated the effects of dihydrotestosterone (DHT) on collagen production by fascial fibroblasts. Fascia lata and thoracolumbar fascia samples were collected from four adult donors (two male and two female). AR expression was assessed by immunohistochemistry and immunocytochemistry. Fascial fibroblasts were treated in vitro for 24 h with DHT at concentrations reflecting physiological levels: 0.4 ng/mL (female), 4 ng/mL (male average), and 10 ng/mL (high male dose). Collagen content was quantified using Picrosirius Red staining, and collagen I and III were evaluated using immunocytochemistry and image analysis, and were compared to an untreated control group. AR was detected in all samples. Low-dose DHT (0.4 ng/mL) significantly increased collagen I (4.80 ± 1.75%) and decreased collagen III (3.32 ± 0.46%) compared to controls (2.09 ± 0.91% and 10.46 ± 0.53%, respectively; p < 0.05). Higher DHT doses induced smaller or no significant changes in collagen subtype expression (e.g., 10 ng/mL: 2.03 ± 0.81% for collagen I, 8.49 ± 1.85% for collagen III). The results demonstrated that human fascia is hormonally responsive via AR, with DHT modulating matrix composition in a dose-dependent manner. The distinct effects at male and female levels may help explain gender differences in fascial stiffness and pain. Full article
Show Figures

Figure 1

16 pages, 4557 KiB  
Article
A Fluid Dynamic In Vitro System to Study the Effect of Hyaluronic Acid Administration on Collagen Organization in Human Skin Explants
by Andrea Galvan, Maria Assunta Lacavalla, Federico Boschi, Barbara Cisterna, Edoardo Dalla Pozza, Enrico Vigato, Flavia Carton, Manuela Malatesta and Laura Calderan
Int. J. Mol. Sci. 2025, 26(11), 5397; https://doi.org/10.3390/ijms26115397 - 4 Jun 2025
Viewed by 545
Abstract
Hyaluronic acid (HA) is an unbranched polysaccharide particularly abundant in the extracellular matrix (ECM) of soft connective tissues. In humans, about 50% of the total HA in the organism is localized in the skin. HA plays an essential role in the hydration of [...] Read more.
Hyaluronic acid (HA) is an unbranched polysaccharide particularly abundant in the extracellular matrix (ECM) of soft connective tissues. In humans, about 50% of the total HA in the organism is localized in the skin. HA plays an essential role in the hydration of the ECM, in the regulation of tissue homeostasis, in the resistance to mechanical stimuli/forces, and in the modulation of tissue regeneration. For these reasons, HA is widely used in regenerative medicine and cosmetics. In this study we used an innovative fluid dynamic system to investigate the effects of a cross-linked macrostructural HA formulation on dermal collagen of healthy human skin explants. The good preservation of skin explants provided by the bioreactor allowed applying refined high-resolution microscopy techniques to analyze in situ the HA-induced modifications on the ECM collagen fibrils up to 48 h from the application on the skin surface. Results demonstrated that this HA formulation, commercially proposed for subcutaneous injection, may act on dermal ECM also when applied transcutaneously, improving ECM hydration and modifying the organization of the collagen fibrils. These findings, obtained by the original combination of explanted human skin use with an advanced culture system and multiscale imaging techniques, are consistent with the volumizing and anti-aging effect of HA. Full article
Show Figures

Figure 1

16 pages, 4359 KiB  
Article
Nonlinear Imaging Detection of Organ Fibrosis in Minute Samples for Early Stage Utilizing Dual-Channel Two-Photon and Second-Harmonic Excitation
by Bo-Song Yu, Qing-Di Cheng, Yi-Zhou Liu, Rui Zhang, Da-Wei Li, Ai-Min Wang, Li-Shuang Feng and Xiao Jia
Biosensors 2025, 15(6), 357; https://doi.org/10.3390/bios15060357 - 4 Jun 2025
Viewed by 2867
Abstract
Histopathological staining remains the fibrosis diagnostic gold standard yet suffers from staining artifacts and variability. Nonlinear optical techniques (e.g., spontaneous fluorescence, Second Harmonic Generation) enhance accuracy but struggle with rapid trace-level detection of fibrosis. To address these limitations, a dual-channel nonlinear optical imaging [...] Read more.
Histopathological staining remains the fibrosis diagnostic gold standard yet suffers from staining artifacts and variability. Nonlinear optical techniques (e.g., spontaneous fluorescence, Second Harmonic Generation) enhance accuracy but struggle with rapid trace-level detection of fibrosis. To address these limitations, a dual-channel nonlinear optical imaging system with excitation wavelengths at 780 nm and 820 nm was developed, enabling simultaneous spontaneous fluorescence and second-harmonic generation imaging through grid localization. This study applies dual-modality nonlinear imaging to achieve label-free, high-resolution visualization of pulmonary and renal fibrosis at the ECM microstructure scale. Through leveraging this system, it is demonstrated that collagen can be rapidly detected via spontaneous fluorescence at 780 nm, whereas the spatial distribution of collagen fibrils is precisely mapped using Second Harmonic Generation at 820 nm. This approach allows for the rapid and sensitive detection of trace fibrosis in a 5-day unilateral ureteral obstruction mouse model. Additionally, we identify that the elastic fibers, which can also be visualized, provide a foundation for staging diagnosis and delivering accurate and quantitative data for pathological studies and analysis. The research findings underscore the potential of this dual-channel nonlinear optical imaging system as a powerful tool for rapid, precise, and noninvasive fibrosis detection and staging. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

15 pages, 13996 KiB  
Article
Myopathic Ehlers-Danlos Syndrome (mEDS) Related to COL12A1: Two Novel Families and Literature Review
by Luciano Merlini, Patrizia Sabatelli, Vittoria Cenni, Mariateresa Zanobio, Alberto Di Martino, Francesco Traina, Cesare Faldini, Vincenzo Nigro and Annalaura Torella
Int. J. Mol. Sci. 2025, 26(11), 5387; https://doi.org/10.3390/ijms26115387 - 4 Jun 2025
Viewed by 2022
Abstract
Myopathic Ehlers-Danlos syndrome (RmEDS) is an emerging hybrid phenotype that combines connective and muscle tissue abnormalities. It has been associated with variants of the COL12A1 gene, which are known as Ullrich congenital muscular dystrophy-2 (UCMD2; 616470) and Bethlem myopathy-2 (BTHLM2; 616471). Here, we [...] Read more.
Myopathic Ehlers-Danlos syndrome (RmEDS) is an emerging hybrid phenotype that combines connective and muscle tissue abnormalities. It has been associated with variants of the COL12A1 gene, which are known as Ullrich congenital muscular dystrophy-2 (UCMD2; 616470) and Bethlem myopathy-2 (BTHLM2; 616471). Here, we report two splicing mutations of COL12A1 identified in three patients from two unrelated families who present a combination of joint hypermobility and axial, distal, and proximal weakness. The muscular strength of their neck and limb muscles was assessed at 4/5 (MRC); however, when measured with a myometer, the expected percentage by age and sex ranged from 35% to 40% for elbow flexion, 37% to 75% for knee extension, and was 50% for neck flexion. In addition to confirming the characteristic atrophy of the rectus femoris, we presented evidence of involvement of the neck and lumbar muscles through MRI and CT imaging. In vitro studies revealed filamentous disorganization and an altered pattern of collagen XII alpha 1 chain migration due to the skipping of exons 55 and 56 of collagen XII. Additionally, we review the myopathic involvement of COL12-RM in 30 patients across 18 families with dominant mutations and 15 patients from 13 families with recessive mutations. Full article
(This article belongs to the Special Issue Molecular Research on Skeletal Muscle Diseases)
Show Figures

Figure 1

10 pages, 2507 KiB  
Article
The Clinical Outcomes of a Bioinductive Collagen Implant in Bursal-Sided Partial-Thickness Rotator Cuff Tears
by Jaesung Yoo and Daehee Lee
Medicina 2025, 61(6), 988; https://doi.org/10.3390/medicina61060988 - 27 May 2025
Viewed by 655
Abstract
Background and Objectives: Many middle-aged and older individuals experience shoulder pain, often due to partial-thickness rotator cuff tears (PTRCTs). If conservative treatment fails to relieve symptoms in a patient, surgical intervention may be necessary. In such cases, using a bioinductive collagen implant [...] Read more.
Background and Objectives: Many middle-aged and older individuals experience shoulder pain, often due to partial-thickness rotator cuff tears (PTRCTs). If conservative treatment fails to relieve symptoms in a patient, surgical intervention may be necessary. In such cases, using a bioinductive collagen implant may offer a viable alternative to conventional rotator cuff repair. Most notably, it offers potential advantages, particularly in reducing postoperative pain and promoting faster recovery. Accordingly, this study aims to evaluate the clinical outcomes of treating bursal-sided partial-thickness rotator cuff tears using bioinductive collagen implants alone, without concurrent rotator cuff repair. Materials and Methods: We followed 32 patients who had bursal-sided partial-thickness rotator cuff tears (Ellman grade I or II) and received conservative care for more than six months but continued to experience symptoms. These patients received surgery using bioinductive collagen implants without rotator cuff repair, and we followed up on their postoperative prognosis for at least one year after surgery. For a more accurate contrast, we performed clinical evaluation preoperatively and at 2 weeks, 6 weeks, 3 months, 6 months, and 12 months postoperatively. Visual Analog Scale (VAS), American Shoulder and Elbow Surgeons (ASES) score, Single Assessment Numeric Evaluation (SANE), and Western Ontario Rotator Cuff (WORC) score were used as assessment tools in this study. As for radiological outcomes, magnetic resonance imaging (MRI) and ultrasonography were helpful. This supported our assessment of graft integration and failure. Results: These 32 patients included 13 with Ellman grade I tear and 19 with grade II tear. In both cases, they underwent surgery only using bioinductive collagen implants, and any anchor-based cuff repair was completely excluded. As for VAS (3.8 ± 2.9), certain statistically significant improvements were found starting at 2 weeks postoperatively. On the other hand, the scores of ASES (58.6 ± 20.3), SANE (60.1 ± 23.2), and WORC (59.8 ± 22.4) began to indicate a significant improvement starting at 6 weeks postoperatively (p < 0.001), showing continuous progress. At each final step, we confirmed that there were no cases of graft failure by radiological evaluation and found successful healing indicators, such as much less pain in all patients. Conclusions: The findings of this study provide the clinical evidence that a surgery using bioinductive collagen implant for bursal-sided partial-thickness rotator cuff tears is a highly effective treatment option in patients unresponsive to conservative therapy. Particularly, its practical clinical effectiveness includes facilitating rapid recovery without a significant risk of complications. Full article
(This article belongs to the Special Issue Advancement in Upper Limb Rehabilitation and Injury Prevention)
Show Figures

Figure 1

Back to TopTop