Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (114)

Search Parameters:
Keywords = collagen denaturation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1899 KiB  
Review
Extracellular Matrix (ECM) Aging in the Retina: The Role of Matrix Metalloproteinases (MMPs) in Bruch’s Membrane Pathology and Age-Related Macular Degeneration (AMD)
by Ali A. Hussain and Yunhee Lee
Biomolecules 2025, 15(8), 1059; https://doi.org/10.3390/biom15081059 - 22 Jul 2025
Viewed by 378
Abstract
The extracellular matrix (ECM) is a collagen-based scaffold that provides structural support and regulates nutrient transport and cell signaling. ECM homeostasis depends on a dynamic balance between synthesis and degradation, the latter being primarily mediated by matrix metalloproteinases (MMPs). These enzymes are secreted [...] Read more.
The extracellular matrix (ECM) is a collagen-based scaffold that provides structural support and regulates nutrient transport and cell signaling. ECM homeostasis depends on a dynamic balance between synthesis and degradation, the latter being primarily mediated by matrix metalloproteinases (MMPs). These enzymes are secreted as pro-forms and require activation to degrade ECM components. Their activity is modulated by tissue inhibitors of metalloproteinases (TIMPs). Aging disrupts this balance, leading to the accumulation of oxidized, cross-linked, and denatured matrix proteins, thereby impairing ECM function. Bruch’s membrane, a penta-laminated ECM structure in the eye, plays a critical role in supporting photoreceptor and retinal pigment epithelium (RPE) health. Its age-related thickening and decreased permeability are associated with impaired nutrient delivery and waste removal, contributing to the pathogenesis of age-related macular degeneration (AMD). In AMD, MMP dysfunction is characterized by the reduced activation and sequestration of MMPs, which further limits matrix turnover. This narrative review explores the structural and functional changes in Bruch’s membrane with aging, the role of MMPs in ECM degradation, and the relevance of these processes to AMD pathophysiology, highlighting emerging regulatory mechanisms and potential therapeutic targets. Full article
(This article belongs to the Special Issue Role of Matrix Metalloproteinase in Health and Disease)
Show Figures

Figure 1

13 pages, 3031 KiB  
Article
Impact of Aging and Pathologies on Human Oral Mucosa: Preliminary Investigation of Biophysical Markers from Thermal and Vibrational Analyses
by Valérie Samouillan, Camille Ober and Marie-Hélène Lacoste-Ferré
Biomolecules 2025, 15(7), 978; https://doi.org/10.3390/biom15070978 - 8 Jul 2025
Viewed by 363
Abstract
This study first examines the potential of using Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) to extract molecular and organizational markers from human oral mucosa. These indicators are then examined in relation to age and pathophysiological conditions. Oral mucosa biopsies were [...] Read more.
This study first examines the potential of using Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) to extract molecular and organizational markers from human oral mucosa. These indicators are then examined in relation to age and pathophysiological conditions. Oral mucosa biopsies were collected from 38 patients during surgical procedures and analyzed using FTIR and DSC-validated protocols. The patients were divided into two age groups, namely 20–40 and 70–90 years. Vibrational markers of the lamina propria and epithelium, including lipid-to-protein and collagen-to-protein ratios and lipid order, were extracted from the FTIR spectra of both layers. Hydration levels and collagen thermal stability were determined from DSC thermograms of the entire biopsy. The preliminary findings of this study, which will require further validation in a larger patient cohort, indicate a significant decrease in bound water content and collagen denaturation temperature in the older population. This suggests that oral mucosa undergoes structural dehydration and collagen destabilization with age. Further comparisons within the older group revealed links between biophysical markers of the oral mucosa and chronic or local pathologies. Patients with cardiovascular diseases exhibit altered collagen organization, while patients with diabetes display differences in the lipid-to-protein ratio and the order of lipid chains in the epithelium. Gingivitis is associated with variations in the collagen-to-protein ratio, which supports the role of inflammation in extracellular matrix remodeling. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Graphical abstract

26 pages, 7838 KiB  
Article
Ultrafast ROS Scavenging Activity of Amur Maple Tree Extracts Confers Robust Cardioprotection for Myocardial Ischemia/Reperfusion Injury
by Aoyang Pu, Woo-Sup Sim, Yuen-Kei Liem, Yimin Lai, Bong-Woo Park, Kyoung-Tae Lee, Hun-Jun Park and Kiwon Ban
Antioxidants 2025, 14(6), 671; https://doi.org/10.3390/antiox14060671 - 31 May 2025
Viewed by 639
Abstract
Ginnalin A (GA), a polyphenolic compound derived from amur maple trees, has been identified as a powerful scavenger of reactive oxygen species (ROS). Recognizing the pivotal role of ROS in exacerbating secondary damage during myocardial ischemia-reperfusion injury (MIRI), we fractionated GA-enriched extracts from [...] Read more.
Ginnalin A (GA), a polyphenolic compound derived from amur maple trees, has been identified as a powerful scavenger of reactive oxygen species (ROS). Recognizing the pivotal role of ROS in exacerbating secondary damage during myocardial ischemia-reperfusion injury (MIRI), we fractionated GA-enriched extracts from the leaves of the amur maple tree, Acer tataricum L. subsp. ginnala (Maxim.) Wesm., using common solvents of dichloromethane (DCM) and ethyl acetate (EA). When co-administered for 30 min, the DCM- and EA-fractioned extracts effectively protected cardiomyocytes from H2O2-induced damage. ROS-sensitive probes indicated that treatment with ginnala extracts significantly reduced both intracellular and mitochondrial ROS levels. Instead of enhancing the activity of antioxidative enzymes, the ginnala extracts acted as natural antioxidases, directly scavenging various ROS such as superoxide, H2O2, hydroxyl radical, and Fe2+ within just 20 min. In a MIRI rat model, the in vivo administration of ginnala extracts provided significant cardioprotection by preserving viable myocardia and enhancing cardiac functions. Additionally, treatment with ginnala extracts significantly reduced cardiac fibrosis and denatured collagen. Our study suggests that the ultrafast ROS scavenging capability of ginnala extracts offers substantial heart protection during MIRI. Incorporating ginnala extracts as a pharmacological intervention during reperfusion could effectively mitigate ROS-induced cardiac injury. Full article
(This article belongs to the Special Issue Plant Antioxidants, Inflammation, and Chronic Disease)
Show Figures

Figure 1

17 pages, 3169 KiB  
Article
Influence of the Silkworm-Derived (Bombyx mori) Functional Substance (Silkrose-BM) on the Fish Meat Quality of Yellowtail (Seriola quinqueradiata)
by Athira Athira, Haruki Nishiguchi, Daichi Hayashi, Yuki Otsu, Chiemi Miura, Ibnu Bangkit Bioshina Suryadi, Muhammad Fariz Zahir Ali and Takeshi Miura
Fishes 2025, 10(3), 130; https://doi.org/10.3390/fishes10030130 - 17 Mar 2025
Viewed by 600
Abstract
Popular foods such as sushi and sashimi depend on the quality of raw fish meat to maintain consumer satisfaction. Recently, dietary insect meal and insect-derived substances have been extensively studied for application in aquaculture as a protein alternative or immunostimulant. However, the impact [...] Read more.
Popular foods such as sushi and sashimi depend on the quality of raw fish meat to maintain consumer satisfaction. Recently, dietary insect meal and insect-derived substances have been extensively studied for application in aquaculture as a protein alternative or immunostimulant. However, the impact of insect functional substances on the fish meat quality of teleosts remains unclear. Here, we investigated the influence of dietary inclusion of silkrose-BM, a novel bioactive polysaccharide derived from the silkworm, Bombyx mori, on the meat quality of yellowtail (Seriola quinqueradiata). This study was conducted by comparing two groups given different feeds, commercial EP and feeds containing Silkrose-BM (0.1%), after a culture period of six months in separate floating-net cages. The yellowtail were specifically cut into loins and several meat quality parameters were observed, including proximate, meat color changes, total collagen, drip loss, muscle histology, and gene expression (qRT-PCR). The results of the color-change analysis showed that discoloration of red muscle in the EP feed group occurred faster than in the silkrose-BM group, indicating an antioxidant property of silkrose-BM. Dietary silkrose-BM also significantly reduced drip loss and increased the total collagen content of yellowtail meat. Furthermore, qRT-PCR analysis showed that genes related to lipid and protein degradation were downregulated in the muscles of fish fed on silkrose-BM. In contrast, proximate analysis indicated no significant change in the nutritional composition of the meat between the groups. Taken together, our results suggest that dietary silkrose-BM could improve fish meat quality by minimizing protein denaturation and inhibiting lipid oxidation during fish meat storage. Full article
(This article belongs to the Special Issue Advances in Aquaculture Feed Additives)
Show Figures

Figure 1

15 pages, 3821 KiB  
Article
Isolation and Characterisation of Acid Soluble Collagens and Pepsin Soluble Collagens from Eel (Anguilla japonica Temminck et Schlegel) Skin and Bone
by Ningning Zhang, Shaoli Guo, Yuting Zheng and Weili Li
Foods 2025, 14(3), 502; https://doi.org/10.3390/foods14030502 - 5 Feb 2025
Viewed by 1332
Abstract
Eel (Anguilla japonica) is an important and valuable food fish in East Asia and its by-products have been reported to include bioactive and profitable components. This study aimed to extract, characterise, and compare the structure and properties of acid-soluble collagens (ASCs) [...] Read more.
Eel (Anguilla japonica) is an important and valuable food fish in East Asia and its by-products have been reported to include bioactive and profitable components. This study aimed to extract, characterise, and compare the structure and properties of acid-soluble collagens (ASCs) and pepsin-soluble collagens (PSCs) from the skin and bone of eel (Anguilla japonica), providing insights into their composition, structure, and properties for various applications. The yields of ASC-S (from skin), PSC-S (from skin), ASC-B (from bone), and PSC-B (from bone) were 12.16%, 15.54%, 0.79%, and 1.34% on a dry weight basis, respectively. Glycine, the dominant amino acid, accounted for 16.66% to 22.67% of total amino acids in all samples. SDS-PAGE and FTIR analyses showed the typical triple-helical structure of type I collagen with slight variations in molecular order in extract and intermolecular cross-linking between skin and bone collagens. The denaturation temperature (Tmax1) measured by differential scanning calorimetry (DSC) is 81.39 °C and 74.34 °C, respectively, for ASC-B and ASC-S. Bone collagen has higher thermal resistance than skin collagen. Surface morphology imaged using a scanning electron microscope (SEM) showed that the bone collagen had a denser network structure, whilst the skin collagen was more fibrous and porous. The findings suggest that eel-derived collagens from skin and bone can serve as potential alternatives in the food, cosmetic, and healthcare industries. Full article
Show Figures

Figure 1

14 pages, 2090 KiB  
Article
Prolonged Impact of Bisphosphonates and Glucocorticoids on Bone Mechanical Properties
by Alaa Mansour, Zaher Jabbour, Ammar Alsheghri, Amir Elhadad, Karla R. Berridi, Hanan Moussa, Jose Luis Ramirez-Garcialuna, Iskandar Tamimi, Sailer Santos dos Santos, Janet Henderson, Jun Song and Faleh Tamimi
Pharmaceuticals 2025, 18(2), 164; https://doi.org/10.3390/ph18020164 - 26 Jan 2025
Viewed by 1116
Abstract
Background: This study aimed at investigating the prolonged effects of glucocorticoids and bisphosphonates on bone. Methods: Six-to-eight-month-old skeletally mature male Sprague Dawley rats were randomized to receive a cancer therapy combination of zoledronic acid (ZA = 0.13 mg/kg) and dexamethasone (DX = 3.8 [...] Read more.
Background: This study aimed at investigating the prolonged effects of glucocorticoids and bisphosphonates on bone. Methods: Six-to-eight-month-old skeletally mature male Sprague Dawley rats were randomized to receive a cancer therapy combination of zoledronic acid (ZA = 0.13 mg/kg) and dexamethasone (DX = 3.8 mg/kg) (treatment group, n = 10) or sterile phosphate buffer saline solution (control group, n = 10). The rats received weekly intraperitoneal injections for 8 weeks, which were stopped 6 weeks before euthanasia. Mineralized bone samples were characterized by three-point bending tests, micro-CT imaging, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Bone collagen was assessed using tensile tests on the demineralized bones and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy on mineralized and demineralized bones. Results: The samples in the treatment group showed increased tibial cortical thickness, mineral crystal size, and toughness. Analyses of demineralized tibiae revealed decreased collagen tensile strength in the experimental group. The spectroscopic and TGA/DSC analyses showed that the ZA + DX treatment increased the collagen amide I 1660/1690 cm−1 area ratio and collagen denaturalization temperature, indicating a higher level of collagen cross-linking. Conclusions: Bisphosphonates and glucocorticoids led to prolonged changes in the mechanical properties of bone as a result of increased cortical thickness, increased crystal size, and the deterioration of collagen quality. Full article
(This article belongs to the Special Issue The Pharmacology of Bisphosphonates: New Advances)
Show Figures

Figure 1

13 pages, 7796 KiB  
Article
Something Old and Something New—A Pilot Study of Shrinkage and Modern Imaging Devices
by Josephine V. W. Hearing, Raymund E. Horch, Rafael Schmid, Carol I. Geppert and Maximilian C. Stumpfe
Life 2025, 15(1), 30; https://doi.org/10.3390/life15010030 - 30 Dec 2024
Viewed by 963
Abstract
Shrinkage, a heat-induced process, reorganizes collagen fibers, thereby reducing wound surface area. This technique, commonly applied in surgeries like periareolar mastopexy and skin grafting, is well-established. Despite its widespread use, modern imaging has recently enabled detailed observation of shrinkage’s effects on tissue temperature [...] Read more.
Shrinkage, a heat-induced process, reorganizes collagen fibers, thereby reducing wound surface area. This technique, commonly applied in surgeries like periareolar mastopexy and skin grafting, is well-established. Despite its widespread use, modern imaging has recently enabled detailed observation of shrinkage’s effects on tissue temperature and oxygenation. The aim of this study is to investigate the effects of shrinkage on histological level, temperature, and tissue oxygenation. Skin flaps were collected, marked, and subjected to shrinkage in vitro, with wound dimensions recorded before and after shrinkage. Biopsy samples were analyzed histologically. In our clinical set up, Snapshot NIR® and FLIR thermography were used to assess tissue oxygenation and temperature changes before and after shrinkage. Shrinkage significantly reduced wound area by almost 47% ± 8.5%, with a 16.5% ± 6.0% reduction in length and a 36.5% ± 7.7% reduction in width. Tissue temperature rose by an average of 38.3 °C post-shrinkage, reaching approximately 65 °C. A slight decrease in oxygen saturation was observed following shrinkage. Histological analyses reveal collagen fiber denaturation and structural reorganization. Thermal shrinkage is an effective method for reducing wound size and tension, demonstrating potential for facilitating larger full-thickness skin grafts. Although minor decreases in oxygenation were observed, shrinkage may enhance wound healing by reducing tension at wound edges. Further studies are needed to quantify its impact on functional and cosmetic outcomes. Full article
Show Figures

Figure 1

15 pages, 5198 KiB  
Article
Study on the Structural Changes of Boneless Chicken Claw Collagen and Its Effect on Water Retention Performance
by Zheng Tang, Yiguo He, Jing Zhang, Zhifeng Zhao, Yiming Nie and Xingxiu Zhao
Foods 2024, 13(22), 3682; https://doi.org/10.3390/foods13223682 - 19 Nov 2024
Cited by 1 | Viewed by 1406
Abstract
The purpose of this study was to explore the water retention mechanism of chicken claws by detecting the structural changes in collagen in boneless chicken claws under different expansion rates. Firstly, boneless chicken claw collagen with different expansion rates (0%, 10%, 20%, 30%, [...] Read more.
The purpose of this study was to explore the water retention mechanism of chicken claws by detecting the structural changes in collagen in boneless chicken claws under different expansion rates. Firstly, boneless chicken claw collagen with different expansion rates (0%, 10%, 20%, 30%, 40%, 50%) was extracted by the acid–enzyme complex method, and the changes in collagen were determined by scanning electron microscopy (SEM), ultraviolet spectroscopy (UV), Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), low-field nuclear magnetic resonance LF-NMR) and surface hydrophobicity to explore the mechanism that leads to changes in the water retention performance. The results of scanning electron microscopy showed that with the increase in the expansion rate, collagen molecules showed curling, shrinking, breaking and crosslinking, forming a loose and irregular pore-like denatured collagen structure. UV analysis showed that the maximum absorption wavelength of chicken claw collagen was blue shifted under different expansion rates, and the maximum absorption peak intensity increased first and then decreased with the increase in expansion rate. The FTIR results showed that collagen had obvious characteristic absorption peaks in the amide A, B, I, II and III regions under different expansion rates, and that the intensity and position of the characteristic absorption peaks changed with the expansion rate. The results of the CD analysis showed that collagen at different expansion rates had obvious positive absorption peaks at 222 nm, and that the position of negative absorption peaks was red shifted with the increase in expansion rate. This shows that the expansion treatment makes the collagen of chicken claw partially denatured, and that the triple helix structure becomes relaxed or unwound, which provides more space for the combination of water molecules, thus enhancing the water absorption capacity of boneless chicken claw. The results of the surface hydrophobicity test showed that the surface hydrophobicity of boneless chicken claw collagen increased with the increase in expansion rate and reached the maximum at a 30% expansion rate, and then decreased with the further increase in the expansion rate. The results of LF-NMR showed that the water content of boneless chicken claws increased significantly after the expansion treatment, and that the water retention performance of chicken claws was further enhanced with the increase in the expansion rate. In this study, boneless chicken claws were used as raw materials, and the expansion process of boneless chicken claws was optimized by acid combined with a water-retaining agent, which improved the expansion rate of boneless chicken claws and the quality of boneless chicken claws. The effects of the swelling degree on the collagen structure, water absorption and water retention properties of boneless chicken claws were revealed by structural characterization. These findings explain the changes in the water retention of boneless chicken claws after expansion. By optimizing the expansion treatment process, the water retention performance and market added value of chicken feet products can be significantly improved, which is of great economic significance. Full article
Show Figures

Figure 1

18 pages, 3205 KiB  
Article
Studying the Process of Enzyme Treatment on Beef Meat-Bone Paste Quality
by Assemgul Baikadamova, Aitbek Kakimov, Zhanibek Yessimbekov, Anuarbek Suychinov, Rasul Turagulov, Duman Orynbekov, Gulmira Zhumadilova and Yerlan Zharykbasov
Appl. Sci. 2024, 14(19), 8703; https://doi.org/10.3390/app14198703 - 26 Sep 2024
Cited by 2 | Viewed by 1957
Abstract
Animal bones, particularly from cattle after slaughter, are commonly discarded, posing environmental challenges and highlighting the need for sustainable valorization. This study investigated the effect of enzyme and organic acid treatment on physicochemical properties, particle size, microstructure and safety of meat-bone paste (MBP). [...] Read more.
Animal bones, particularly from cattle after slaughter, are commonly discarded, posing environmental challenges and highlighting the need for sustainable valorization. This study investigated the effect of enzyme and organic acid treatment on physicochemical properties, particle size, microstructure and safety of meat-bone paste (MBP). Two samples were prepared: a control (MBP-C) without enzyme treatment and an experimental sample (MBP-E) treated with pepsin and ascorbic acid. Results showed that the enzyme reaction rate increased from 0.004 mmol/min at 60 min to 0.014 mmol/min at 120–180 min before declining to 0.006 mmol/min at 480 min, suggesting substrate depletion or product inhibition. Temperature greatly influenced reaction rates, peaking at 0.0129 mmol/min at 30 °C, with significant declines at higher temperatures due to enzyme denaturation. The enzyme’s kinetic performance was proportional to the pepsin concentration, demonstrating enhanced catalytic efficiency at higher enzyme concentrations. Particle size analysis revealed that enzyme treatment significantly reduced bone particle size, with 86.33% of particles measuring between 0.05 and 0.2 mm, compared to 86.4% between 0.25 and 0.75 mm in the untreated sample. Microscopy confirmed these findings, showing an average particle size reduction from 0.21 mm to 0.052 mm after enzyme treatment. Physicochemical analysis revealed no significant differences in chemical composition between the two samples. However, enzyme-treated MBP-E exhibited a lower pH (5.9) compared to MBP-C (7.02), attributed to the addition of ascorbic acid. Water-binding capacity significantly increased in MBP-E (82.54% vs. 77.28%), indicating enhanced hydration and collagen loosening during enzymatic action. Enzyme treatment significantly reduced the total viable count and eliminated pathogenic bacteria (E. coli, Listeria, Salmonella), improving MBP safety. These findings highlight the potential of this approach for valorizing animal bones as a valuable food ingredient while promoting sustainable waste management practices. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

13 pages, 2836 KiB  
Article
Biocompatibility Study of Purified and Low-Temperature-Sterilized Injectable Collagen for Soft Tissue Repair: Intramuscular Implantation in Rats
by Tae-Hoon Koo, Jason K. Lee, Shawn P. Grogan, Ho Jong Ra and Darryl D. D’Lima
Gels 2024, 10(10), 619; https://doi.org/10.3390/gels10100619 - 26 Sep 2024
Cited by 2 | Viewed by 1735
Abstract
The clinical application of collagen-based biomaterials is expanding rapidly, especially in tissue engineering and cosmetics. While oral supplements and injectable skin boosters are popular for enhancing skin health, clinical evidence supporting their effectiveness remains limited. Injectable products show potential in revitalizing skin, but [...] Read more.
The clinical application of collagen-based biomaterials is expanding rapidly, especially in tissue engineering and cosmetics. While oral supplements and injectable skin boosters are popular for enhancing skin health, clinical evidence supporting their effectiveness remains limited. Injectable products show potential in revitalizing skin, but safety concerns persist due to challenges in sterilization and the risk of biological contamination. Traditional methods of sterilization (heat and irradiation) can denature collagen. This study addresses these issues by introducing a novel technique: the double filtration and low-temperature steam sterilization of a collagen gel. In vitro tests documented the sterility and confirmed that the collagen did not show cytotoxicity, degradation, integrity, and viscosity characteristics changes after the processing and sterilization. The collagen gel induced new collagen expression and the proliferation of human dermal fibroblasts when the cells were cultured with the collagen gel. An in vivo study found no adverse effects in rats or significant lesions at the implantation site over 13 weeks. These results suggest that this novel method to process collagen gels is a safe and effective skin booster. Advanced processing methods are likely to mitigate the safety risks associated with injectable collagen products, though further research is needed to validate their biological effectiveness and clinical benefits. Full article
(This article belongs to the Special Issue Designing Gels for Wound Dressing)
Show Figures

Graphical abstract

16 pages, 3758 KiB  
Article
Properties of Skin Collagen from Southern Catfish (Silurus meridionalis) Fed with Raw and Cooked Food
by Qi Zhang, Shufang Hou, Yanmei Liu, Jia Du, Yongkang Jia, Qiushi Yang, Tingting Xu, Yasuaki Takagi, Dapeng Li and Xi Zhang
Foods 2024, 13(18), 2901; https://doi.org/10.3390/foods13182901 - 13 Sep 2024
Cited by 1 | Viewed by 1524
Abstract
The southern catfish (Silurus meridionalis) is an economically important carnivorous freshwater fish in China. In this study, we compared the properties of skin collagen from southern catfish fed with raw food (RF) and cooked food (CF). The skin collagen yield in [...] Read more.
The southern catfish (Silurus meridionalis) is an economically important carnivorous freshwater fish in China. In this study, we compared the properties of skin collagen from southern catfish fed with raw food (RF) and cooked food (CF). The skin collagen yield in the RF group (8.66 ± 0.11%) was significantly higher than that of the CF group (8.00 ± 0.27%). SDS-PAGE, circular dichroism spectroscopy, and FTIR analyses revealed that the collagen extracted from southern catfish skin in both groups was type I collagen, with a unique triple helix structure and high purity. The thermal denaturation temperature of collagen in the RF group (35.20 ± 0.11 °C) was significantly higher than that of the CF group (34.51 ± 0.25 °C). The DPPH free radical scavenging rates were 68.30 ± 2.41% in the RF collagen and 61.78 ± 3.91% in the CF collagen, which was higher than that found in most fish collagen. Both the RF and CF groups had high ability to form fibrils in vitro. Under the same conditions, the CF group exhibited faster fibril formation and a thicker fibril diameter (p < 0.05). In addition, the RF group exhibited significantly higher expression of col1a1 compared to the CF group. These results indicated that feeding southern catfish raw food contributed to collagen production, and the collagen from these fish may have potential in biomaterial applications. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

12 pages, 1037 KiB  
Article
Brillouin Biosensing of Viscoelasticity across Phase Transitions in Ovine Cornea
by Chingis Kharmyssov and Zhandos Utegulov
Biosensors 2024, 14(8), 371; https://doi.org/10.3390/bios14080371 - 30 Jul 2024
Cited by 2 | Viewed by 1728
Abstract
Noninvasive in situ monitoring of viscoelastic characteristics of corneal tissue at elevated temperatures is pivotal for mechanical property-informed refractive surgery techniques, including thermokeratoplasty and photorefractive keratectomy, requiring precise thermal modifications of the corneal structure during these surgical procedures. This study harnesses Brillouin light [...] Read more.
Noninvasive in situ monitoring of viscoelastic characteristics of corneal tissue at elevated temperatures is pivotal for mechanical property-informed refractive surgery techniques, including thermokeratoplasty and photorefractive keratectomy, requiring precise thermal modifications of the corneal structure during these surgical procedures. This study harnesses Brillouin light scattering spectroscopy as a biosensing platform to noninvasively probe the viscoelastic properties of ovine corneas across a temperature range of 25–64 °C. By submerging the tissue samples in silicone oil, consistent hydration and immiscibility are maintained, allowing for their accurate sensing of temperature-dependent mechanical behaviors. We identify significant phase transitions in the corneal tissue, particularly beyond 40 °C, likely due to collagen unfolding, marking the beginning of thermal destabilization. A subsequent transition, observed beyond 60 °C, correlates with collagen denaturation. These phase transformations highlight the cornea’s sensitivity to both physiologically reversible and irreversible viscoelastic changes induced by mild to high temperatures. Our findings underscore the potential of the Brillouin biosensing technique for real-time diagnostics of corneal biomechanics during refractive surgeries to attain optimized therapeutic outcomes. Full article
(This article belongs to the Special Issue Advanced Optical Methods for Biosensing)
Show Figures

Figure 1

22 pages, 8272 KiB  
Article
Innovative Implementation of Computational Fluid Dynamics in Proteins Denaturation Process Prediction in Goose Breast Meat and Heat Treatment Processes Optimization
by Arkadiusz Szpicer, Weronika Bińkowska, Adrian Stelmasiak, Magdalena Zalewska, Iwona Wojtasik-Kalinowska, Karol Piwowarski and Andrzej Półtorak
Appl. Sci. 2024, 14(13), 5567; https://doi.org/10.3390/app14135567 - 26 Jun 2024
Cited by 2 | Viewed by 1832
Abstract
This study aimed to calculate the optimal thermal processing parameters for goose meat using CFD simulation. CFD provides a precise determination of heat treatment conditions by predicting protein denaturation and mass loss, leading to higher quality and improved sensory experience and, thus, acceptance [...] Read more.
This study aimed to calculate the optimal thermal processing parameters for goose meat using CFD simulation. CFD provides a precise determination of heat treatment conditions by predicting protein denaturation and mass loss, leading to higher quality and improved sensory experience and, thus, acceptance of products. Accurate calculation of these conditions reduces energy losses and enhances process efficiency in the food industry. This study focused on the prediction of protein denaturation and cooking loss in goose breast meat during roasting. Specific CFD techniques, including conjugate heat transfer and phase change models, were utilized to ensure accuracy in protein denaturation prediction. These models accounted for variations in meat composition, such as fat and water content across different samples, which improved the accuracy of the predictions. Optimal conditions were determined using a mathematical model. These conditions were 164.65 °C, 63.58% humidity, and a fan rotation of 16.59 rpm for 2000 s. The myosin, collagen, and actin denaturation levels, as well as cooking loss, closely matched predicted values. The findings show that CFD is a valuable method for evaluating protein denaturation and cooking loss in goose breast meat, potentially improving product quality and consistency in gastronomy and the meat industry. This innovative optimization method enhances food production efficiency and elevates sensory characteristics, physicochemical properties, and nutritional value, contributing to consumer satisfaction and market competitiveness. The model proposed in this paper can be adapted to predict denaturation in other types of meat or food products with necessary modifications, offering broad applicability. Potential limitations of using CFD in protein denaturation prediction in complex food matrices include the need for detailed compositional data and computational resources, which can be addressed in future research. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

21 pages, 5548 KiB  
Article
Stem-Cell-Regenerative and Protective Effects of Squid (Symplectoteuthis oualaniensis) Skin Collagen Peptides against H2O2-Induced Fibroblast Injury
by Mingjun Wei, Lakshmi Jeevithan, Na Li, Lixin Liu, Jiren Xu, Wenhui Wu and Jeevithan Elango
Mar. Drugs 2024, 22(6), 255; https://doi.org/10.3390/md22060255 - 30 May 2024
Cited by 6 | Viewed by 2145
Abstract
Recently, there has been a growing interest in collagen peptides derived from marine sources for their notable ability to protect skin cells against apoptosis induced by oxidants. Therefore, the current study aimed to investigate the fundamental properties of collagen peptides, including their physicochemical, [...] Read more.
Recently, there has been a growing interest in collagen peptides derived from marine sources for their notable ability to protect skin cells against apoptosis induced by oxidants. Therefore, the current study aimed to investigate the fundamental properties of collagen peptides, including their physicochemical, thermal, structural, stem-cell-regenerative, and skin-cell-protective effects, in comparison to commercial collagen peptides. The acid-soluble (ASC) and pepsin-soluble (PSC) collagens exhibited three distinct bands on SDS-PAGE, namely α (α1 and α2), β, and γ chains, confirming a type I pattern. The thermal profiles obtained from TG and DSC analyses confirmed the denaturation of PSC and ASC at temperatures ranging from 51.94 to 56.4 °C and from 52.07 to 56.53 °C, respectively. The purified collagen peptides were analyzed using SDS-PAGE and MALDI-TOF mass spectrometry, revealing a mass range of 900–15,000 Da. Furthermore, the de novo peptide sequence analysis confirmed the presence of the Gly-X-Y repeating sequence in collagen peptides. Collagen peptide treatments significantly enhanced HFF-1 cell proliferation and migration compared to the control group. ELISA results confirmed the potential interactions between collagen peptides and HFF-1 cells through α2β1, α10β1, and α11β1 integrin receptors. Notably, collagen peptide treatment effectively restored the proliferation of HFF-1 cells damaged by H2O2. Consequently, the advantageous characteristics of squid skin collagen peptides highlight their promising role in regenerative medicine. Full article
(This article belongs to the Special Issue Fundamentals and Biomedical Applications of Marine Collagen)
Show Figures

Figure 1

15 pages, 1882 KiB  
Article
The Cryoprotective Effect of an Antifreeze Collagen Peptide Complex Obtained by Enzymatic Glycosylation on Tilapia
by Shouchun Liu, Luyao Zhang, Zhuyi Li, Jing Chen, Yinyu Zhang, Xuebo Yang, Qiuhan Chen, Hongying Cai, Pengzhi Hong, Chunhua Zhu and Saiyi Zhong
Foods 2024, 13(9), 1319; https://doi.org/10.3390/foods13091319 - 25 Apr 2024
Cited by 5 | Viewed by 1744
Abstract
Antifreeze peptides have become effective antifreeze agents for frozen products, but their low quantity of active ingredients and high cost limit large-scale application. This study used the glycosylation of fish collagen peptides with glucosamine hydrochloride catalyzed by transglutaminase to obtain a transglutaminase-catalyzed glycosylation [...] Read more.
Antifreeze peptides have become effective antifreeze agents for frozen products, but their low quantity of active ingredients and high cost limit large-scale application. This study used the glycosylation of fish collagen peptides with glucosamine hydrochloride catalyzed by transglutaminase to obtain a transglutaminase-catalyzed glycosylation product (TGP) and investigate its antifreeze effect on tilapia. Compared with the blank group, the freshness (pH value of 6.31, TVB-N value of 21.7 mg/100 g, whiteness of 46.28), textural properties (especially hardness and elasticity), and rheological properties of the TGP groups were significantly improved. In addition, the protein structures of the samples were investigated using UV absorption and fluorescence spectroscopy. The results showed that the tertiary structure of the TGP groups changed to form a dense polymer. Therefore, this approach can reduce the denaturation and decomposition of muscle fibers and proteins in fish meat more effectively and has a better protective effect on muscle structure and protein aggregation, improving the stability of fish meat. This study reveals an innovative method for generating antifreeze peptides by enzymatic glycosylation, and glycosylated fish collagen peptide products can be used as new and effective green antifreeze agents in frozen foods. Full article
Show Figures

Figure 1

Back to TopTop