Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (981)

Search Parameters:
Keywords = cold-exposure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1201 KB  
Article
Cold-Stressed Soybean Sensitivity to Charcoal Rot
by Tomislav Duvnjak, Aleksandra Sudarić, Jasenka Ćosić, Karolina Vrandečić, Tamara Siber, Maja Matoša Kočar and Nina Cvenić
Plants 2026, 15(3), 395; https://doi.org/10.3390/plants15030395 - 28 Jan 2026
Abstract
Charcoal rot, caused by Macrophomina phaseolina, is an increasingly important constraint in soybean, particularly under hot and dry conditions. While heat and drought are known to favor disease development, short early-season cold spells—common in temperate regions—may predispose soybean to subsequent infection, yet [...] Read more.
Charcoal rot, caused by Macrophomina phaseolina, is an increasingly important constraint in soybean, particularly under hot and dry conditions. While heat and drought are known to favor disease development, short early-season cold spells—common in temperate regions—may predispose soybean to subsequent infection, yet this interaction remains poorly quantified. It was evaluated whether transient chilling increases charcoal rot severity and whether cultivar-specific differences modulate this predisposition. Nine commercial cultivars spanning MG 00, 0, and 0–I were grown in a controlled walk-in chamber under either optimal conditions (control) or a three-day cold spell initiated at the first fully expanded trifoliate (20–23 days after sowing, DAS). Standardized cut-stem inoculation was performed at 26 DAS, and stem lesion length was recorded every 3–4 days across five assessments at 3, 7, 10, 14, and 21 DPI. Two-way ANOVA (treatment, genotype, treatment × genotype) with Tukey’s HSD tested effects. Cold stress significantly increased lesion lengths at all assessments, with the strongest divergence at the earliest measurement. Genotype and treatment × genotype were also significant, revealing differential responses among cultivars; notably, one line (G9) showed consistently small treatment-induced increases. These results indicate that brief early-season cold exposure can predispose soybean to more severe charcoal rot, with the magnitude dependent on genotype and timing. Incorporating cold-stress predisposition into screening and breeding should enhance resilience under increasing climate variability. Full article
(This article belongs to the Special Issue Crop Improvement by Modern Breeding Strategies)
Show Figures

Figure 1

18 pages, 1912 KB  
Article
Characterization of the Microbiota Dynamics in Cold-Smoked Salmon Under Cold Chain Disruption Using 16S rRNA Amplicon Sequencing
by Joanna Bucka-Kolendo, Paulina Średnicka, Adrian Wojtczak, Dziyana Shymialevich, Agnieszka Zapaśnik, Ewelina Kiełek, Dave J. Baker and Barbara Sokołowska
Processes 2026, 14(3), 452; https://doi.org/10.3390/pr14030452 - 28 Jan 2026
Abstract
Background/Objectives: Cold-smoked salmon (CSS) is a ready-to-eat product with minimal preservation hurdles and a microbiota shaped by raw-material contamination and processing environments. Short breaks in refrigeration commonly occur during shopping and transport, yet their microbiological impact remains unclear. Here, we used ASV-resolved 16S [...] Read more.
Background/Objectives: Cold-smoked salmon (CSS) is a ready-to-eat product with minimal preservation hurdles and a microbiota shaped by raw-material contamination and processing environments. Short breaks in refrigeration commonly occur during shopping and transport, yet their microbiological impact remains unclear. Here, we used ASV-resolved 16S rRNA gene metataxonomics to characterize storage-driven microbiota dynamics in CSS—quantifying ASV-level genetic diversity and phylogeny-aware (UniFrac) community structure—and to evaluate the effect of a brief, consumer-mimicking 2 h room-temperature cold-chain disruption. Methods: Three CSS types (organic, conventional Norwegian, and conventional Scottish) were stored at 5 °C for 35 days. On day 16, half of each batch was exposed to 2 h at room temperature (RT) before analysis; paired controls remained refrigerated. Culture-based counts (total mesophiles, lactic acid bacteria, Photobacterium spp.; indicator/pathogen screens) were performed per ISO methods. Community profiling used 16S rRNA (V3–V4) amplicon sequencing with QIIME 2/DADA2 and SILVA taxonomy. Linear mixed effects modelled alpha diversity; beta diversity by PERMANOVA on UniFrac distances; differential abundance by ANCOM-BC. Results: ASV-resolved 16S rRNA gene profiles of CSS were dominated by Pseudomonadota and Bacillota, with storage-driven shifts and taxon-specific trajectories (e.g., increasing Latilactobacillus). Both time and product type significantly explained phylogeny-aware community structure (unweighted and weighted UniFrac), consistent with storage-driven phylogenetic convergence across products. At day 16, ASV-level genetic diversity (Shannon/Observed features) and genus-level composition did not differ between RT-disrupted and continuously refrigerated samples. Culture-dependent counts increased from baseline to day 16 and largely plateaued by day 35, with lactic acid bacteria in Norwegian CSS continuing to rise; no systematic effect of the 2 h RT exposure was observed in culture-based comparisons. Indicator/pathogen screens detected no unexpected pathogenic species throughout the study period. Conclusions: Refrigerated storage drives pronounced, phylogeny-aware microbiota shifts and cross-product convergence in cold-smoked salmon, whereas a single 2 h RT interruption at mid-storage did not measurably alter ASV-level genetic diversity or community structure under the tested conditions. Integrating culture-based enumeration with ASV-resolved 16S rRNA gene metataxonomics provides complementary insights for shelf-life evaluation and risk assessment in ready-to-eat seafood. Full article
Show Figures

Figure 1

15 pages, 1237 KB  
Article
Whole-Body Cryotherapy at −90 °C for 9 Weeks: Effects on Immune Function, Stress, and Immune-Related and Vascular Blood Parameters in Healthy Adults—Results of an Exploratory One-Armed Pilot Study
by Punito Michael Aisenpreis, Sibylle Aisenpreis, Manuel Feisst and Robert Schleip
J. Clin. Med. 2026, 15(3), 967; https://doi.org/10.3390/jcm15030967 - 25 Jan 2026
Viewed by 84
Abstract
Background/Objectives: Whole-body cryotherapy (WBC), a brief exposure to extreme cold (−90 °C), has been proposed to modulate immune, metabolic, and stress-related pathways. This exploratory one-armed pilot study investigated the effects of an 18-session WBC protocol on immune markers, body composition, and perceived [...] Read more.
Background/Objectives: Whole-body cryotherapy (WBC), a brief exposure to extreme cold (−90 °C), has been proposed to modulate immune, metabolic, and stress-related pathways. This exploratory one-armed pilot study investigated the effects of an 18-session WBC protocol on immune markers, body composition, and perceived stress in healthy adults. Methods: Nineteen participants (mean age 52.9 ± 9.8 years) completed 18 WBC sessions over 9 weeks (3–6 min each), followed by a 9-week follow-up. Assessments were performed at baseline (M1), post-intervention (M2), and follow-up (M3). Primary outcomes included immune parameters (lymphocytes, granulocytes, cytokines, soluble ACE2), body composition (waist circumference, water compartments, lean mass), and perceived stress (Trier Inventory for Chronic Stress, TICS). Results: Waist circumference decreased from 83.8 ± 5.7 cm (M1) to 80.2 ± 4.2 cm (M2) (p = 0.001; M1 vs. M2; p = 0.004). Total body water (p = 0.008), lean body mass (p = 0.008), intracellular water (p = 0.005), and extracellular water (p = 0.021) also showed time-dependent effects. Immune modulation included increased lymphocytes (25.6 ± 7.1% to 29.3 ± 8.3%, p = 0.012) and decreased granulocytes (63.5 ± 6.8% to 58.7 ± 7.9%, p = 0.011) at M2. Anti-inflammatory IL-10 (virus-stimulated) rose markedly (33.5 ± 29.3 to 63.5 ± 50.5 pg/mL, p < 0.001), while IFN-γ (virus-stimulated) increased over time (p = 0.031). Soluble ACE2 decreased at follow-up (0.5 ± 0.7 to 0.3 ± 0.4 ng/mL, p = 0.029). Perceived stress improved in several TICS domains, including Work Overload (p = 0.009) and Pressure to Succeed (p = 0.018). Conclusions: This pilot study demonstrates that repeated WBC at −90 °C induces measurable changes in immune regulation, body composition, and perceived stress. These findings support the feasibility and potential physiological relevance of WBC and providing effect-size estimates for future randomized controlled trials. Full article
(This article belongs to the Section Cardiology)
32 pages, 14257 KB  
Article
Study of the Relationship Between Urban Microclimate, Air Pollution, and Human Health in the Three Biggest Cities in Bulgaria
by Reneta Dimitrova, Stoyan Georgiev, Angel M. Dzhambov, Vladimir Ivanov, Teodor Panev and Tzveta Georgieva
Urban Sci. 2026, 10(2), 69; https://doi.org/10.3390/urbansci10020069 - 24 Jan 2026
Viewed by 113
Abstract
Public health impacts of non-optimal temperatures and air pollution have received insufficient attention in Southeast Europe, one of the most air-polluted regions in Europe, simultaneously pressured by climate change. This study employed a multimodal approach to characterize the microclimate and air quality and [...] Read more.
Public health impacts of non-optimal temperatures and air pollution have received insufficient attention in Southeast Europe, one of the most air-polluted regions in Europe, simultaneously pressured by climate change. This study employed a multimodal approach to characterize the microclimate and air quality and conduct a health impact assessment in the three biggest cities in Bulgaria. Simulation of atmospheric thermo-hydrodynamics and assessment of urban microclimate relied on the Weather Research and Forecasting model. Concentrations of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) were calculated with a land-use regression model. Ischemic heart disease (IHD) hospital admissions were linked to daily measurements at background air quality stations. The results showed declining trends in PM2.5 but persistent levels of NO2, especially in Sofia and Plovdiv. Distributed lag nonlinear models revealed that, in Sofia and Plovdiv, PM2.5 was associated with IHD hospitalizations, with a fifth of cases in Sofia attributable to PM2.5. For NO2, an increased risk was observed only in Sofia. In Sofia, the risk of IHD was increased at cold temperatures, while both high and low temperatures were associated with IHD in Plovdiv and Varna. Short-term effects were observed in response to heat, while the effects of cold weather took up to several weeks to become apparent. These findings highlight the complexity of exposure–health interactions and emphasize the need for integrated policies addressing traffic emissions, urban design, and disease burden. Full article
Show Figures

Figure 1

17 pages, 4910 KB  
Article
Proteomic Variation in Two Genotypes of Bitter Gourd During Cold Acclimation
by Kai Yan, Yu Ning, Lihong Su, Hai Xu, Zhenlu Lv, Yang Wang, Longzheng Chen and Huashan Lian
Horticulturae 2026, 12(1), 123; https://doi.org/10.3390/horticulturae12010123 - 22 Jan 2026
Viewed by 29
Abstract
Bitter gourd (Momordica charantia L.) is widely consumed worldwide due to its unique flavor and medicinal value. In subtropical regions, low spring temperatures limit bitter gourd growth, leading to plant mortality and yield loss. Thus, elucidating the mechanisms of cold tolerance in [...] Read more.
Bitter gourd (Momordica charantia L.) is widely consumed worldwide due to its unique flavor and medicinal value. In subtropical regions, low spring temperatures limit bitter gourd growth, leading to plant mortality and yield loss. Thus, elucidating the mechanisms of cold tolerance in bitter gourd could facilitate the development of cold-resistant cultivars via genetic engineering or molecular breeding. In this study, a cold-tolerant (CT) and a cold-sensitive (CS) inbred line of bitter gourd were used to investigate proteomic differences under cold stress. Before cold stress, 504 differentially accumulated proteins (DAPs) were identified, with 123 up-accumulated in CT plants compared to CS plants. Upon exposure to cold stress, these numbers changed to 388 DAPs (259 up-accumulated in CT) at 6 h and further to 649 DAPs (415 up-accumulated in CT) at 24 h. K-means cluster analysis identified 65 cold-stress response proteins that may contribute to cold tolerance in CT plants, including evm.TU.chr4.3733 (Proline dehydrogenase 1), evm.TU.chr10.115 (Delta(1)-pyrroline-2-carboxylate reductase), and evm.TU.chr10.815 (Calcium-dependent protein kinase 3). Glucose and starch levels remained stable in both CS and CT plants during cold stress, and the baseline concentration of glucose was consistently and significantly higher in CT plants than in CS plants. Before cold stress, proline content was similar in both CT and CS plants. Following 6 h of cold stress, CS plants accumulated significantly higher proline levels than CT plants. This trend, however, reversed after 24 h, with proline content becoming significantly lower in CS plants. Differential protein accumulation between CT and CS plants under cold stress reflects their distinct responses, with core DAPs serving as key functional determinants of enhanced cold tolerance in the CT genotype. This study revealed important proteomic data underlying the cold stress response in bitter gourd. Full article
(This article belongs to the Special Issue Tolerance of Horticultural Plants to Abiotic Stresses)
Show Figures

Figure 1

24 pages, 8142 KB  
Article
Evaluating the Hydrogen Embrittlement Resistance of Nickel-Based Coatings as Diffusion Barriers for Carbon Steels
by Mmesoma Mario Alaneme and Zoheir Farhat
Hydrogen 2026, 7(1), 13; https://doi.org/10.3390/hydrogen7010013 - 17 Jan 2026
Viewed by 253
Abstract
This study evaluates the hydrogen embrittlement (HE) resistance of nickel-based electroplated coatings applied on cold-finished mild steel, with emphasis on their performance as diffusion barriers to impede hydrogen ingress. Nickel coatings were deposited using Watts plating bath under controlled electroplating parameters. Electrochemical hydrogen [...] Read more.
This study evaluates the hydrogen embrittlement (HE) resistance of nickel-based electroplated coatings applied on cold-finished mild steel, with emphasis on their performance as diffusion barriers to impede hydrogen ingress. Nickel coatings were deposited using Watts plating bath under controlled electroplating parameters. Electrochemical hydrogen charging was performed in an alkaline medium at progressively increasing charging current densities to simulate varying levels of hydrogen exposure. Tensile testing was conducted immediately after charging to assess the mechanical response of both uncoated and nickel-coated specimens, focusing on key properties such as elongation, yield strength, ultimate tensile strength, and toughness. The results revealed a gradual degradation in ductility and toughness for the uncoated steel samples with increasing hydrogen content. In contrast, the nickel-coated specimens maintained mechanical stability up to a critical hydrogen threshold, beyond which a pronounced reduction in tensile response was observed. Fractographic analysis supported these trends, revealing a transition from ductile to brittle fracture characteristics with increasing concentrations of hydrogen. These findings highlight the protective capabilities and limitations of nickel-based coatings in mitigating hydrogen-induced degradation, offering insights into their application in industries where hydrogen embrittlement of structural materials is a major concern. Full article
Show Figures

Figure 1

31 pages, 3971 KB  
Article
Antibiotic-Mediated Modulation of the Gut Microbiome Identifies Taurine as a Modulator of Adipocyte Function Through TGR5 Signaling
by Elisabeth Jäger, Viktoriya Peeva, Thorsten Gnad, Sven-Bastiaan Haange, Ulrike Rolle-Kampczyk, Claudia Stäubert, Petra Krumbholz, John T. Heiker, Claudia Gebhardt, Ute Krügel, Paromita Sen, Monika Harazin, Viktoria Stab, Julia Münzker, Nazha Hamdani, Alexander Pfeifer, Martin von Bergen, Andreas Till and Wiebke K. Fenske
Int. J. Mol. Sci. 2026, 27(2), 917; https://doi.org/10.3390/ijms27020917 - 16 Jan 2026
Viewed by 187
Abstract
Gut microbiota has emerged as a modulator of host metabolism and energy balance. However, the precise microbial metabolites mediating thermogenic activation in obesity remain largely undefined. We investigated the effect of antibiotic treatment under a high-fat diet on metabolites and its contribution to [...] Read more.
Gut microbiota has emerged as a modulator of host metabolism and energy balance. However, the precise microbial metabolites mediating thermogenic activation in obesity remain largely undefined. We investigated the effect of antibiotic treatment under a high-fat diet on metabolites and its contribution to lipolysis and thermogenesis. Antibiotic treatment in high-fat diet-fed rats reduced adiposity and enhanced adaptive thermogenesis. Metabolomics revealed elevated taurine levels in the cecum content and plasma of antibiotic-treated animals, correlating with increased expressions of UCP1 and TGR5 in brown adipose tissue. Taurine enhanced lipolysis and oxygen consumption in mouse adipose tissue and human adipocytes. Thereby, taurine modulated lipolysis dependent on TGR5 signaling in adipose tissue. Human data confirmed that taurine promotes browning of white adipocytes and that acute cold exposure leads to a marked drop in circulating taurine, suggesting its rapid recruitment into thermogenic tissues. Besides its synthesis in the liver and dietary uptake, taurine can be a microbiota-derived metabolite that activates adipose thermogenesis and lipolysis through TGR5 and possibly taurine transporter-dependent mechanisms. These findings uncover a gut–adipose axis with therapeutic potential for metabolic disease. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Graphical abstract

17 pages, 2089 KB  
Article
Characterization and Expression of Two Cytoplasmic Phosphoenolpyruvate Carboxykinase Genes Associated with Larval Diapause and Temperature Stress in the Wheat Blossom Midge, Sitodiplosis mosellana
by Qitong Huang, Yuxia Nie, Xiaobin Liu, Qian Ma, Wenqian Tang and Weining Cheng
Biology 2026, 15(2), 147; https://doi.org/10.3390/biology15020147 - 14 Jan 2026
Viewed by 197
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK), a key gluconeogenic enzyme, is associated with adaptation to environmental stress. However, its potential role in diapause is not known. Here, two cytoplasmic genes encoding PEPCK (SmPEPCK1-1 and SmPEPCK1-2) in Sitodiplosis mosellana, a significant wheat pest undergoing [...] Read more.
Phosphoenolpyruvate carboxykinase (PEPCK), a key gluconeogenic enzyme, is associated with adaptation to environmental stress. However, its potential role in diapause is not known. Here, two cytoplasmic genes encoding PEPCK (SmPEPCK1-1 and SmPEPCK1-2) in Sitodiplosis mosellana, a significant wheat pest undergoing obligatory larval diapause during the third instar, were cloned, and their expression patterns during diapause and thermal stress were assessed, together with the effects of SmPEPCK1-2 knockdown on larval development. Both SmPEPCK1-1 and SmPEPCK1-2 were evolutionarily conserved and contained canonical functional domains and motifs. Their expression was induced by diapause, and was found to be tissue-specific, with the highest levels observed in the fat bodies of diapausing larvae. Furthermore, exposure to heat stress in oversummering larvae or cold stress in overwintering larvae enhanced the expression of both genes within specific temperature ranges (35–40 °C and −10–0 °C, respectively). RNA interference-mediated knockdown of SmPEPCK1-2 did not affect cocoon-breaking rates and timing but significantly prolonged the duration of larval development from cocoon-breaking to pupation. These findings indicate that both SmPEPCK genes are closely involved in tolerance to diapause-related stress, with SmPEPCK1-2 also contributing to the regulation of larval development. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

32 pages, 1855 KB  
Review
Exposure to Nitrogen Dioxide (NO2) Emitted from Traffic-Related Sources: Review
by Walter Mucha and Anna Mainka
Appl. Sci. 2026, 16(2), 859; https://doi.org/10.3390/app16020859 - 14 Jan 2026
Viewed by 165
Abstract
Nitrogen dioxide (NO2) remains one of the most relevant traffic-related air pollutants in urban environments, despite decades of regulatory efforts and advances in vehicle emission control technologies. This review synthesizes current knowledge on ambient NO2 concentrations associated with road transport, [...] Read more.
Nitrogen dioxide (NO2) remains one of the most relevant traffic-related air pollutants in urban environments, despite decades of regulatory efforts and advances in vehicle emission control technologies. This review synthesizes current knowledge on ambient NO2 concentrations associated with road transport, identifies key determinants of spatial and temporal variability, and evaluates the effectiveness of mitigation approaches under increasingly stringent air quality standards. The study is based on a comprehensive review of peer-reviewed literature reporting NO2 measurements in urban, traffic, and background environments worldwide, complemented by an assessment of regulatory frameworks and mitigation strategies. The evidence confirms that road transport is the dominant contributor to elevated NO2 concentrations, particularly at traffic sites, with traffic intensity, fleet composition, driving behavior, cold-start emissions, and street geometry emerging as primary controlling factors. Meteorological conditions influence dispersion but generally play a secondary role compared with emission-related drivers. Urban infrastructure, especially street canyons and tunnels, amplifies near-road NO2 levels and population exposure. Mitigation measures such as Low Emission Zones, vehicle fleet modernization, and infrastructural interventions can reduce NO2 concentrations, but their effectiveness is moderate and highly context-dependent. Sustained compliance with EU limit values and World Health Organization guideline levels requires integrated, multi-scale mitigation strategies. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

45 pages, 2580 KB  
Review
Thermogenesis in Adipose Tissue: Adrenergic and Non-Adrenergic Pathways
by Md Arafat Hossain, Ankita Poojari and Atefeh Rabiee
Cells 2026, 15(2), 131; https://doi.org/10.3390/cells15020131 - 12 Jan 2026
Viewed by 446
Abstract
Obesity has reached epidemic proportions, driven by energy imbalance and limited capacity for adaptive thermogenesis. Brown (BAT) and beige adipose tissues dissipate energy through non-shivering thermogenesis (NST), primarily via uncoupling protein-1 (UCP1), making them attractive targets for increasing energy expenditure (EE). The canonical [...] Read more.
Obesity has reached epidemic proportions, driven by energy imbalance and limited capacity for adaptive thermogenesis. Brown (BAT) and beige adipose tissues dissipate energy through non-shivering thermogenesis (NST), primarily via uncoupling protein-1 (UCP1), making them attractive targets for increasing energy expenditure (EE). The canonical β-adrenergic pathway robustly activates NST in rodents through β3 adrenoceptors; however, translational success in humans has been limited by low β3 expression, off-target cardiovascular effects, and the emerging dominance of β2-mediated signaling in human BAT. Consequently, attention has shifted to non-adrenergic and UCP1-independent mechanisms that offer greater tissue distribution and improved safety profiles. This review examines a broad spectrum of alternative receptors and pathways—including GPRs, TRP channels, TGR5, GLP-1R, thyroid hormone receptors, estrogen receptors, growth hormone, BMPs, sirtuins, PPARs, and interleukin signaling—as well as futile substrate cycles (Ca2+, creatine, and glycerol-3-phosphate) that sustain thermogenesis in beige adipocytes and skeletal muscle. Pharmacological agents (natural compounds, peptides, and small molecules) and non-pharmacological interventions (cold exposure, exercise, diet, and time shift) targeting these pathways are critically evaluated. We highlight the translational gaps between rodent and human studies, the promise of multimodal therapies combining low-dose adrenergic agents with non-adrenergic activators, and emerging strategies such as sarco/endoplasmic reticulum calcium ATPase protein (SERCA) modulators and tissue-specific delivery. Ultimately, integrating adrenergic and non-adrenergic approaches holds the greatest potential for safe, effective, and sustainable obesity management. Full article
Show Figures

Figure 1

13 pages, 7859 KB  
Article
Itaconate Promotes Cold Adaptation and Myocardial Protection by Enhancing Brown Adipose Tissue Metabolism
by Zilong Geng, Xing Liu, Xiao Cheng, Shizhan Xu, Jin Zhang, Ao Tan, Shun Song and Shasha Zhang
Metabolites 2026, 16(1), 66; https://doi.org/10.3390/metabo16010066 - 12 Jan 2026
Viewed by 220
Abstract
Background/Objectives: Itaconic acid (ITA) is an immunometabolite with anti-inflammatory and metabolic regulatory functions, but its cellular source and role in brown adipose tissue (BAT) remain unclear. This study aims to reveal the expression patterns of the key ITA synthesis gene Irg1 in BAT [...] Read more.
Background/Objectives: Itaconic acid (ITA) is an immunometabolite with anti-inflammatory and metabolic regulatory functions, but its cellular source and role in brown adipose tissue (BAT) remain unclear. This study aims to reveal the expression patterns of the key ITA synthesis gene Irg1 in BAT at different developmental stages and to investigate the effects of cold exposure and exogenous ITA on BAT metabolic function and cardioprotection. Methods: Single-cell RNA sequencing was used to analyze the gene expression profiles of stromal vascular fraction (SVF) cells in BAT from P7 neonatal and adult mice. Bioinformatic methods were applied to identify cell types expressing Irg1. Cold exposure (4 °C) and exogenous ITA treatment were employed to evaluate BAT morphology, and the ITA content in BAT was detected using gas chromatography–triple quadrupole mass spectrometry, UCP1 protein expression, and body temperature changes. A transverse aortic constriction (TAC) surgery model was established to induce cardiac dysfunction, and BAT excision was performed to explore the BAT-dependent effects of ITA on myocardial hypertrophy, fibrosis, and cardiac function. Results: In P7 neonatal mouse BAT, Irg1 was predominantly expressed in a subset of interferon-responsive activated macrophages (macrophage27), while in adult mice, it was mainly expressed in neutrophils and a functionally similar macrophage subset (macrophage25). Cold exposure significantly suppressed Irg1 expression in neutrophils but did not affect its expression in macrophages, also resulting in a significant decrease in ITA content in BAT. Exogenous ITA significantly enhanced BAT thermogenesis under cold conditions, which manifested as reduced lipid droplets, upregulated UCP1 expression, and increased body temperature. In the TAC model, ITA treatment markedly improved cardiac function, attenuated myocardial hypertrophy and fibrosis, and these protective effects were significantly diminished after BAT excision. Conclusions: ITA promotes cold adaptation and ameliorates cardiac injury by enhancing BAT metabolic function, and its effects depend on the presence of BAT. This study provides new insights for the treatment of metabolic cardiovascular diseases. Full article
Show Figures

Figure 1

21 pages, 3882 KB  
Article
Construction of a Nocturnal Low-Temperature Tolerance Index for Strawberry and Its Correlation with Yield
by Hongbo Cui, Qingyan Han, Yanni Liu, Qian Zhang, Jun Liu, Jianfeng Wang and Huanyu Zhang
Horticulturae 2026, 12(1), 81; https://doi.org/10.3390/horticulturae12010081 - 9 Jan 2026
Viewed by 204
Abstract
Strawberry is widely cultivated due to its short growth cycle, high yield, and significant profits. In high-latitude cold regions, the planting area of overwintering strawberry has expanded rapidly in recent years. However, although daytime temperatures inside solar greenhouses rise quickly with solar radiation, [...] Read more.
Strawberry is widely cultivated due to its short growth cycle, high yield, and significant profits. In high-latitude cold regions, the planting area of overwintering strawberry has expanded rapidly in recent years. However, although daytime temperatures inside solar greenhouses rise quickly with solar radiation, plants are frequently subjected to persistent nocturnal low-temperature stress (nocturnal temperature below 10 °C). This stress restricts photosynthesis, delays growth, and markedly reduces yield. Therefore, accurately evaluating the tolerance of strawberry varieties to low nocturnal temperatures is crucial for unheated overwintering production in cold regions. This study selected Snow White, Benihoppe, and Kaorino as experimental materials for overwintering cultivation trials in a typical cold-region solar greenhouse. We measured and analyzed growth and development, photosynthetic characteristics, phenological traits, and fruit yield. Based on photosynthetic physiology and phenotypic traits, we constructed the Photosynthesis–Fluorescence Index (PFI), the Production–Phenotype Index (PPI), and the Nocturnal Cold Tolerance Index (NCTI). The results showed that Kaorino exhibited significantly higher values in all three indices compared with Benihoppe and Snow White. After exposure to low night temperatures, Kaorino exhibited rapid photosynthetic induction, strong maintenance of PSII activity, vigorous growth, early maturation, and high yield. Moreover, all three composite indices were strongly and positively correlated with total yield (R2 > 0.97), demonstrating their effectiveness in distinguishing the nocturnal low-temperature tolerance of strawberry cultivars. These composite indices provide a scientifically robust method for selecting suitable cultivars for unheated overwinter strawberry production in high-latitude cold regions. Full article
(This article belongs to the Section Vegetable Production Systems)
Show Figures

Figure 1

17 pages, 20305 KB  
Article
Transcriptomic Analysis Identifies Acrolein Exposure-Related Pathways and Constructs a Prognostic Model in Oral Squamous Cell Carcinoma
by Yiting Feng, Lijuan Lou and Liangliang Ren
Int. J. Mol. Sci. 2026, 27(2), 632; https://doi.org/10.3390/ijms27020632 - 8 Jan 2026
Viewed by 153
Abstract
Acrolein, a highly reactive environmental toxicant widely present in urban air and tobacco smoke, has been implicated in the development of multiple malignancies. In oral tissues, chronic acrolein exposure induces oxidative stress, inflammation, and genetic mutations, all of which are closely linked to [...] Read more.
Acrolein, a highly reactive environmental toxicant widely present in urban air and tobacco smoke, has been implicated in the development of multiple malignancies. In oral tissues, chronic acrolein exposure induces oxidative stress, inflammation, and genetic mutations, all of which are closely linked to the development of oral squamous cell carcinoma (OSCC). Although accumulating evidence indicates a strong association between acrolein exposure and OSCC, its prognostic significance remains poorly understood. In this study, we analyzed transcriptome data to identify differentially expressed genes (DEGs) between tumor and adjacent normal tissues, and screened acrolein-related candidates by intersecting DEGs with previously identified acrolein-associated gene sets. Functional alterations of these genes were assessed using Gene Set Variation Analysis (GSVA), and a protein–protein interaction (PPI) network was constructed to identify key regulatory genes. A prognostic model was developed using Support Vector Machine–Recursive Feature Elimination (SVM-RFE) combined with LASSO-Cox regression and validated in an independent external cohort. Among the acrolein-related DEGs, four key genes (PLK1, AURKA, CTLA4, and PPARG) were ultimately selected for model construction. Kaplan–Meier analysis showed significantly worse overall survival in the high-risk group (p < 0.0001). Receiver operating characteristic (ROC) curve analysis further confirmed the strong predictive performance of the model, with area under the curve (AUC) values of 0.72 at 1 year, 0.72 at 3 years, and 0.75 at 5 years. Furthermore, the high risk score was significantly correlated with a ‘cold’ immune microenviroment, suggesting that acrolein-related genes may modulate the tumor immune microenvironment. Collectively, these findings highlight the role of acrolein in OSCC progression, suggesting the importance of reducing acrolein exposure for cancer prevention and public health, and call for increased attention to the relationship between environmental toxicants and disease initiation, providing a scientific basis for public health interventions and cancer prevention strategies. Full article
(This article belongs to the Special Issue Environmental Pollutants Exposure and Toxicity)
Show Figures

Figure 1

20 pages, 1047 KB  
Article
The Influence of One-Time Physical Activity at a Temperature of −10 °C on Erythrocyte Deformability in Young Men
by Aneta Teległów, Konrad Rembiasz, Janusz Pobędza, Iga Wilczyńska, Zygmunt Dziechciowski, Andrzej Czerwiński, Jakub Leśniowski, Jakub Marchewka and Piotr Mika
Appl. Sci. 2026, 16(1), 535; https://doi.org/10.3390/app16010535 - 5 Jan 2026
Viewed by 180
Abstract
The study aimed to determine the effect of acute, one-time physical effort performed under different environmental temperature conditions on erythrocyte deformability in healthy young men. This exploratory randomized parallel-group study involved 30 men randomly assigned to an experimental group exercising at −10 °C [...] Read more.
The study aimed to determine the effect of acute, one-time physical effort performed under different environmental temperature conditions on erythrocyte deformability in healthy young men. This exploratory randomized parallel-group study involved 30 men randomly assigned to an experimental group exercising at −10 °C in a climatic chamber and a control group exercising under thermoneutral outdoor conditions. Erythrocyte deformability was assessed using the elongation index (EI), reflecting erythrocyte elasticity and the ability to pass through microcirculation vessels. Participants performed an incremental 20 m shuttle run test. Venous blood samples were collected before and immediately after exercise, and erythrocyte deformability was analyzed using a Lorrca analyzer across a shear stress range of 0.30–60.00 Pa. A two-factor repeated-measures analysis of variance was applied. An increase in EI after exercise was observed in both groups, predominantly at higher shear stress values, indicating enhanced erythrocyte deformability under conditions of increased shear forces. However, the magnitude of post-exertion changes differed between groups. At lower shear stress levels (0.30 Pa and 0.58 Pa), EI tended to decrease after exercise. These findings indicate that a single bout of physical effort influences erythrocyte deformability, while the potential effects of cold exposure on this response remain uncertain and warrant further investigation. Full article
(This article belongs to the Special Issue Exercise Physiology and Rheology—New Experience)
Show Figures

Figure 1

16 pages, 3079 KB  
Article
Mechanisms and Critical Thresholds of Cold Storage Duration-Modulated Postharvest Quality Deterioration in Litchi Fruit During Ambient Shelf Life
by Hai Liu, Zhili Xu, Longlong Song, Lilang Li, Yan Liao, Hui Du and Fengjun Li
Foods 2026, 15(1), 176; https://doi.org/10.3390/foods15010176 - 5 Jan 2026
Viewed by 400
Abstract
While cold storage is essential to extend the postharvest preservation of litchi fruit, the abrupt transfer to ambient temperature during supply chain transitions may trigger rapid quality degradation. However, the comprehensive mechanisms and critical threshold of post-transfer quality deterioration remain insufficiently characterized. In [...] Read more.
While cold storage is essential to extend the postharvest preservation of litchi fruit, the abrupt transfer to ambient temperature during supply chain transitions may trigger rapid quality degradation. However, the comprehensive mechanisms and critical threshold of post-transfer quality deterioration remain insufficiently characterized. In this study, litchi fruits were stored at 4 °C for 10, 20, and 30 days, followed by simulated shelf life at 25 °C. Key indicators, including appearance quality, antioxidant capacity, lipid peroxidation, and enzymatic oxidation, were monitored, and principal component analysis (PCA) was used to determine quality deterioration thresholds. Litchi subjected to 30 d of cold storage exhibited significantly accelerated pericarp browning compared to those stored for 20 d and 10 d, with the browning index increasing by 25.7% (vs. 20 d) and 41.9% (vs. 10 d), respectively, after 24 h of ambient exposure. This was accompanied by a significant impairment of the antioxidant system. Compared to the fruits stored for 10 d and 20 d, the activities of key antioxidant enzymes (SOD, CAT, and APX) were substantially decreased in the 30 d group, with reductions ranging from approximately 9% to 28%. Concurrently, the non-enzymatic antioxidant capacity also declined. Meanwhile, 30 d of storage activated the browning-related enzymes: anthocyanase and peroxidase (POD) activities increased by 1.2- to 3.6-fold, and poly-phenol oxidase (PPO) activity increased by 11% to 37%, compared to the 10 d and 20 d groups, respectively. In contrast, phenylalanine ammonia lyase (PAL) activity was inhibited by 56.9%. It also enhanced membrane lipid metabolism disorders, which aggravated cell structure damage and oxidative stress. For practical application, PCA identified 10 d (4 °C) + 6 h (25 °C), and 20 d (4 °C) + 12 h (25 °C) as the optimal and critical quality thresholds, respectively. This study reveals the interactive regulatory relationship between cold storage duration and ambient exposure time mediated by oxidative stress, enzymatic browning, and membrane lipid metabolism, providing a theoretical basis for developing time-temperature-quality models to reduce postharvest losses in litchi. Full article
Show Figures

Graphical abstract

Back to TopTop