Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = cold start ignition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7039 KiB  
Article
Performance Study of Spark-Ignited Methanol–Hydrogen Engine by Using a Fractal Turbulent Combustion Model Coupled with Chemical Reaction Kinetics
by Yingting Zhang, Yu Ding, Xiaohui Ren and La Xiang
J. Mar. Sci. Eng. 2025, 13(5), 959; https://doi.org/10.3390/jmse13050959 - 15 May 2025
Viewed by 504
Abstract
Methanol, a renewable and sustainable fuel, provides an effective strategy for reducing greenhouse gas emissions when synthesized through carbon dioxide hydrogenation integrated with carbon capture technology. The incorporation of hydrogen into methanol-fueled engines enhances combustion efficiency, mitigating challenges such as pronounced cycle-to-cycle variations [...] Read more.
Methanol, a renewable and sustainable fuel, provides an effective strategy for reducing greenhouse gas emissions when synthesized through carbon dioxide hydrogenation integrated with carbon capture technology. The incorporation of hydrogen into methanol-fueled engines enhances combustion efficiency, mitigating challenges such as pronounced cycle-to-cycle variations and cold-start difficulties. A simulation framework was developed using Python 3.13 and the Cantera 3.1.0 library to model the combustion system of a four-stroke spark-ignited (SI) methanol–hydrogen engine. This framework integrates a fractal turbulent combustion model with chemical reaction kinetics, complemented by early flame development and near-wall combustion models to address limitations during the initial and terminal combustion phases. The model was validated by using experimental data measured from a spark-ignited methanol engine. The effects of varying Hydrogen Energy Rates (HER) on engine power performance, combustion characteristics, and emissions (like formaldehyde and carbon monoxide) were subsequently analyzed under different operating loads, whilst the knock limit boundaries were established for different operational conditions. Findings demonstrate that increasing HER improves the engine power output and thermal efficiency, shortens the combustion duration, and reduces the formaldehyde and carbon monoxide emissions. Nevertheless, under high-load conditions, higher HER increases the knocking tendency, which constrains the maximum permissible HER decreasing from approximately 40% at 15% load to 20% at 100% load. The model has been developed into a Python library and will be open-sourced on Github. Full article
Show Figures

Figure 1

30 pages, 10034 KiB  
Article
Study on Cold Start of Methanol Direct Injection Engine Based on Laser Ignition
by Xiaoyu Liu, Jie Zhu and Zhongcheng Wang
Energies 2025, 18(8), 2119; https://doi.org/10.3390/en18082119 - 20 Apr 2025
Cited by 1 | Viewed by 359
Abstract
Methanol has garnered attention as a promising alternative fuel for marine engines due to its high octane number and superior knock resistance. However, methanol-fueled engines face cold-start challenges under low-temperature conditions. Laser ignition technology, an emerging ignition approach, shows potential to replace conventional [...] Read more.
Methanol has garnered attention as a promising alternative fuel for marine engines due to its high octane number and superior knock resistance. However, methanol-fueled engines face cold-start challenges under low-temperature conditions. Laser ignition technology, an emerging ignition approach, shows potential to replace conventional spark ignition systems. This study investigates the effects of laser ignition on combustion and emission characteristics of direct-injection methanol engines based on methanol fuel combustion mechanisms using the AVL-Fire simulation platform, focusing on optimizing key parameters, including ignition energy, longitudinal depth, and lateral position, to provide theoretical support for efficient and clean combustion in marine medium-speed methanol engines. Key findings include an ignition energy threshold (60 mJ) for methanol combustion stability, with combustion parameters (peak pressure, heat release rate) stabilizing when energy reaches ≥80 mJ, recommending 80 mJ as the optimal energy level (balancing ignition reliability and energy consumption economy). Laser longitudinal depth significantly influences flame propagation characteristics, showing a 23% increase in flame propagation speed at 15 mm depth and a reduction of unburned methanol mass fraction to 0.8% at the end of combustion. Full article
(This article belongs to the Special Issue Advanced Combustion Technologies and Emission Control)
Show Figures

Figure 1

23 pages, 472 KiB  
Review
Exploring the Effects of Synergistic Combustion of Alcohols and Biodiesel on Combustion Performance and Emissions of Diesel Engines: A Review
by Fangyuan Zheng and Haeng Muk Cho
Energies 2024, 17(24), 6274; https://doi.org/10.3390/en17246274 (registering DOI) - 12 Dec 2024
Cited by 6 | Viewed by 1547
Abstract
Diesel engines are extensively employed in transportation, agriculture, and industry due to their high thermal efficiency and fuel economy. However, the combustion of conventional diesel fuel is accompanied by substantial emissions of pollutants, including carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx [...] Read more.
Diesel engines are extensively employed in transportation, agriculture, and industry due to their high thermal efficiency and fuel economy. However, the combustion of conventional diesel fuel is accompanied by substantial emissions of pollutants, including carbon monoxide (CO), hydrocarbons (HC), nitrogen oxides (NOx), and carbon dioxide (CO2), posing significant threats to environmental quality. Biodiesel, as a renewable and cleaner alternative fuel, can significantly reduce emissions of CO, HC, and particulate matter (PM) due to its unique molecular structure. Nonetheless, its lower calorific value and poor cold-start performance limit its application, while its high oxygen content may contribute to increased NOx emissions. To address these limitations, researchers have proposed blending biodiesel with alcohol-based fuels such as methanol, ethanol, or butanol to create synergistic combustion systems that optimize engine performance and emission characteristics. This paper systematically reviews the effects of alcohol fuels on the performance and emission characteristics of biodiesel blends in diesel engines. Studies indicate that the addition of alcohol fuels can significantly enhance engine performance by improving fuel atomization, extending ignition delay, and increasing premixed combustion efficiency. These enhancements result in higher cylinder pressure, net heat release rate (HRR), and brake thermal efficiency (BTE), while reducing brake-specific fuel consumption (BSFC) to some extent. Moreover, most studies report that alcohol fuels help reduce CO, HC, smoke, and NOx emissions but tend to increase CO2 emissions. However, some findings suggest that in certain cases, the opposite results may occur. The impact of different types of alcohol fuels on performance and emissions varies significantly, requiring a comprehensive evaluation of their properties, such as latent heat, viscosity, and oxygen content. Although the appropriate addition of alcohol fuels demonstrates substantial potential for optimizing engine performance and reducing emissions, excessive blending may lead to adverse effects, necessitating careful control of the blending ratio. Future research should consider mixing two or more alcohol fuels with biodiesel to explore synergistic effects beyond the capabilities of single alcohols. Additionally, further studies should focus on optimizing fuel compositions and emission control strategies for varying operating conditions. Full article
(This article belongs to the Special Issue Combustion of Alternative Fuel Blends)
Show Figures

Figure 1

19 pages, 6402 KiB  
Review
Key Role of Cold-Start Circuits in Low-Power Energy Harvesting Systems: A Research Review
by Xiao Shi, Mengye Cai and Yanfeng Jiang
J. Low Power Electron. Appl. 2024, 14(4), 55; https://doi.org/10.3390/jlpea14040055 - 22 Nov 2024
Cited by 1 | Viewed by 2135
Abstract
The primary functions of an energy harvesting system include the harvesting, transformation, management, and storage of energy. Until now, various types of energy, with different power levels, have been harvested and stored by the energy harvesting system. In low-power scenarios, such as microwaves, [...] Read more.
The primary functions of an energy harvesting system include the harvesting, transformation, management, and storage of energy. Until now, various types of energy, with different power levels, have been harvested and stored by the energy harvesting system. In low-power scenarios, such as microwaves, sound, friction, and pressure, a specific low-power energy harvesting system is required. Due to the absence of an external power supply in such systems, cold-start circuits play a crucial role in igniting the low-power energy harvesting system, ensuring a reliable start-up from the initial state. This paper reviews the categorization and characteristics of energy harvesting systems, with a focus on the design and performance parameters of cold-start circuits. A tabular comparison of existing cold-start strategies is presented herein. The study demonstrates that resonance-based integrated cold-start methods offer significant advantages in terms of conversion efficiency and dynamic range, while ring oscillator-based integrated cold-start methods achieve the lowest start-up voltage. Additionally, the paper discusses the challenges of self-starting and future research directions, highlighting the potential role of emerging technologies, such as artificial intelligence (AI) and neural networks, in optimizing the design of energy harvesting systems. Full article
Show Figures

Figure 1

18 pages, 4339 KiB  
Article
Exploiting Lubricant Formulation to Reduce Particle Emissions from Gas Powered Engines
by Chiara Guido, Pierpaolo Napolitano, Davide Di Domenico, Dario Di Maio, Carlo Beatrice, Bruno Griffaton and Nicolas Obrecht
Energies 2024, 17(15), 3781; https://doi.org/10.3390/en17153781 - 31 Jul 2024
Cited by 1 | Viewed by 968
Abstract
The present paper illustrates the results of an experimental study aimed at evaluating the effect of lubricant oil features on the emissive behaviour of a heavy duty spark ignition engine fuelled with methane. The activity was performed within a research project between CNR-STEMS [...] Read more.
The present paper illustrates the results of an experimental study aimed at evaluating the effect of lubricant oil features on the emissive behaviour of a heavy duty spark ignition engine fuelled with methane. The activity was performed within a research project between CNR-STEMS and TotalEnergies in which oils with different formulations were characterized, focusing on their potentiality in particle emission reduction. Considering the ultralow particle emission level in the exhaust of gas engines, a specific testing procedure was designed to guarantee highly reliable and accurate results. In particular, the engine was operated under transient conditions, along the World Harmonized Transient Cycle in cold- and hot-start conditions. The results of the test campaign clearly highlight that the lubricant formulation is a key technology for the control of particles, revealing this as an important aspect in view of the upcoming severe regulation limits on particle emissions. The experimental findings show the capability of reformulated oils to drop down the total particle number to 60–70% with respect to a baseline standard oil. The interest in the present study also lies in providing information extendable to more sustainable fuels, like hydrogen or biomethane, nowadays of great interest as alternative energy sources. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

5 pages, 1293 KiB  
Proceeding Paper
Three-Dimensional Design and Prediction of Temperature Distribution of a Partially Ceramic Coated Piston Used in Homogeneous Charge Compression Ignition Engine
by C. Sakthi Rajan, J. Venkatesh, K. Jayakumar and G. Prakash Kanna
Eng. Proc. 2024, 61(1), 21; https://doi.org/10.3390/engproc2024061021 - 31 Jan 2024
Cited by 1 | Viewed by 820
Abstract
The goal of this research is to analyze the effects of a partial thermal barrier coating on piston temperature distribution in homogeneous charge compression ignition (HCCI) engines, which are investigated using La2Zr2O7 nanocoating with 1 mm thickness for [...] Read more.
The goal of this research is to analyze the effects of a partial thermal barrier coating on piston temperature distribution in homogeneous charge compression ignition (HCCI) engines, which are investigated using La2Zr2O7 nanocoating with 1 mm thickness for numerical analysis. The thermal assessments of both conventional and coated pistons were performed using ANSYS V16. Engine testing was conducted on a single-cylinder, water-cooled CI engine for both the coated and conventional casings. According to the analytical results, the coated piston component’s surface temperature increased to 53 °C, which increased the temperature of the air–fuel mixture in the crevice and wall quenching zones. As a result, cold start HC emissions dramatically drop without impacting engine performance compared to normal engines. The maximum HC emission reduction over the standard engine was 43.2%. Full article
Show Figures

Figure 1

16 pages, 4637 KiB  
Article
Solid Particle Number (SPN) Portable Emission Measurement Systems (PEMS) for Heavy-Duty Applications
by Barouch Giechaskiel, Anastasios Melas, Stijn Broekaert, Roberto Gioria and Ricardo Suarez-Bertoa
Appl. Sci. 2024, 14(2), 654; https://doi.org/10.3390/app14020654 - 12 Jan 2024
Cited by 2 | Viewed by 1860
Abstract
A heavy-duty engine is homologated in a test cell. However, starting with Euro VI regulation, the in-service conformity is controlled with the engine installed in the vehicle using portable emission measurement systems (PEMS). In Europe, the application of solid particle number (SPN) PEMS [...] Read more.
A heavy-duty engine is homologated in a test cell. However, starting with Euro VI regulation, the in-service conformity is controlled with the engine installed in the vehicle using portable emission measurement systems (PEMS). In Europe, the application of solid particle number (SPN) PEMS started in 2021 for compression ignition (diesel) vehicles and in 2023 for positive ignition vehicles, thus including those operating with compressed natural gas (CNG). Even though today only particles with sizes > 23 nm are regulated, the Euro 7 proposal includes particles > 10 nm. There are not many studies on the accuracy of the SPN PEMS, especially for heavy-duty applications. In this study, PEMS measuring > 23 and >10 nm from two instrument manufacturers were compared with laboratory-grade instruments. The particle detector of one PEMS was a condensation particle counter (CPC), and of the other a the diffusion charger (DC). The results showed the robustness and good accuracy (40% or 1 × 1011 #/kWh) of the PEMS for ambient temperatures from −7 °C to 35 °C, active regeneration events, different fuels (Diesel B7, HVO, and CNG), different test cycles, cold start or hot engine operations, and high exhaust gas humidity content. Nevertheless, for the DC-based PEMS, sensitivity to pre-charged urea particles was identified, and for the CPC-based PEMS, sensitivity to pressure changes with one vehicle was nnoticed. Nevertheless, the results of this study confirm that the PEMS are accurate enough to measure even the stricter Euro 7 limits. Full article
(This article belongs to the Special Issue Atmospheric Pollutants: Dispersion and Environmental Behavior)
Show Figures

Figure 1

18 pages, 5533 KiB  
Article
Fundamental Study for Applying a Propane Gas Injection System in a Small-Ship Engine
by Youngkun Kim, Bum Youl Park, Seungchul Woo, Jun Woo Jeong, Sihyun Park and Kihyung Lee
Energies 2023, 16(20), 7036; https://doi.org/10.3390/en16207036 - 10 Oct 2023
Viewed by 2136
Abstract
As a response to stricter exhaust emission regulations, an increasing number of diesel-powered ships are switching to liquefied natural gas (LNG) fuel or installing post-processing devices to reduce exhaust gas. However, these methods are not feasible for small ships operating primarily along the [...] Read more.
As a response to stricter exhaust emission regulations, an increasing number of diesel-powered ships are switching to liquefied natural gas (LNG) fuel or installing post-processing devices to reduce exhaust gas. However, these methods are not feasible for small ships operating primarily along the coast. This is because the cost of the exhaust gas post-processing devices is high, while a large-volume fuel system is required in the case of LNG. Thus, this study used a propane gas fuel system based on a 5.0 L gasoline engine for easy application to existing small ships without major modifications. To optimize the control according to changes in the fuel system, a 1D simulation was performed on the engine to be developed, and ignition timing optimization was investigated. In addition, fuel consumption was compared with that of a gasoline-based engine. The propane engine achieved over 95% power in comparison to a gasoline-based engine. During cold-start tests, starting performance at −15 °C was ensured. The purpose of this study is to provide guidelines to assist the development of LPG or propane engines based on gasoline engines through these processes. Full article
Show Figures

Figure 1

27 pages, 12999 KiB  
Article
Effect of Coolant Temperature on Performance and Emissions of a Compression Ignition Engine Running on Conventional Diesel and Hydrotreated Vegetable Oil (HVO)
by Alessandro Mancarella and Omar Marello
Energies 2023, 16(1), 144; https://doi.org/10.3390/en16010144 - 23 Dec 2022
Cited by 11 | Viewed by 3224
Abstract
To meet future goals of energy sustainability and carbon neutrality, disruptive changes to the current energy mix will be required, and it is expected that renewable fuels, such as hydrotreated vegetable oil (HVO), will play a significant role. To determine how these fuels [...] Read more.
To meet future goals of energy sustainability and carbon neutrality, disruptive changes to the current energy mix will be required, and it is expected that renewable fuels, such as hydrotreated vegetable oil (HVO), will play a significant role. To determine how these fuels can transition from pilot scale to the commercial marketplace, extensive research remains needed within the transportation sector. It is well-known that cold engine thermal states, which represent an inevitable portion of a vehicle journey, have significant drawbacks, such as increased incomplete combustion emissions and higher fuel consumption. In view of a more widespread HVO utilization, it is crucial to evaluate its performance under these conditions. In the literature, detailed studies upon these topics are rarely found, especially when HVO is dealt with. Consequently, the aim of this study is to investigate performance and exhaust pollutant emissions of a compression ignition engine running on either regular (petroleum-derived) diesel or HVO at different engine thermal states. This study shows the outcomes of warm-up/cool-down ramps (from cold starts), carried out on two engine operating points (low and high loads) without modifying the original baseline diesel-oriented calibration. Results of calibration parameter sweeps are also shown (on the same engine operating points), with the engine maintained at either high or low coolant temperature while combustion phasing, fuel injection pressure, and intake air flow rate are varied one-factor at a time, to highlight their individual effect on exhaust emissions and engine performance. HVO proved to produce less engine-out incomplete combustion species and soot under all examined conditions and to exhibit greater tolerance of calibration parameter changes compared to diesel, with benefits over conventional fuel intensifying at low coolant temperatures. This would potentially make room for engine recalibration to exploit higher exhaust gas recirculation, delayed injection timings, and/or lower fuel injection pressures to further optimize nitrogen oxides/thermal efficiency trade-off. Full article
(This article belongs to the Special Issue Trends and Prospects in a New Generation of Engines and Powertrains)
Show Figures

Figure 1

22 pages, 13389 KiB  
Article
Experimental Study on the Performance-Influencing Factors of an Aviation Heavy-Oil Two-Stroke Direct-Injection Ignition Engine
by Bo Lu, Taixue Bei, Rui Liu, Na Liu, Ying Luo and Yuchen Liu
Processes 2022, 10(12), 2646; https://doi.org/10.3390/pr10122646 - 8 Dec 2022
Viewed by 2116
Abstract
To study the influence of control parameters under cold-start and low-load conditions on the performance of a heavy-oil, two-stroke, direct-injection, ignition engine for use in aviation, the operation of a two-stroke, direct-injection engine was studied in a bench test. The results were as [...] Read more.
To study the influence of control parameters under cold-start and low-load conditions on the performance of a heavy-oil, two-stroke, direct-injection, ignition engine for use in aviation, the operation of a two-stroke, direct-injection engine was studied in a bench test. The results were as follows: ① When the ambient temperature is 15 °C, the battery voltage is 12.4 V, and the peak speed of the starting motor is 1200 r/min. As the concentration factor increases, the cold-start speed increases, and the fuel consumption increases. The influence on the cold start is reduced after reaching a certain concentration. The cold-start time decreases with the increasing magnetization pulse width. The cold-start time is the shortest at an oil–gas interval of 6 ms. ② Under small-load conditions of 3000 r/min and 14% to 16% throttle, a higher ignition energy increases the engine power. Pollutant emissions are the lowest when the fuel injection is 7.5 mg and the excess air coefficient is approximately 1.1. Full article
(This article belongs to the Special Issue Combustion and Emission Performance of Internal Combustion Engines)
Show Figures

Figure 1

13 pages, 965 KiB  
Article
Comparison of Gasoline Engine Exhaust Emissions of a Passenger Car through the WLTC and RDE Type Approval Tests
by Monika Andrych-Zalewska, Zdzislaw Chlopek, Jerzy Merkisz and Jacek Pielecha
Energies 2022, 15(21), 8157; https://doi.org/10.3390/en15218157 - 1 Nov 2022
Cited by 15 | Viewed by 2146
Abstract
The article presents a comparison of exhaust emission test results from a passenger car with a spark-ignition engine examined with the WLTC (Worldwide Harmonized Light-Duty Vehicles Test Cycle) test, which was carried out on a chassis dynamometer, and examined with a RDE (Real [...] Read more.
The article presents a comparison of exhaust emission test results from a passenger car with a spark-ignition engine examined with the WLTC (Worldwide Harmonized Light-Duty Vehicles Test Cycle) test, which was carried out on a chassis dynamometer, and examined with a RDE (Real Driving Emissions) test, which was conducted in real vehicle operating conditions. The exhaust emissions and the emitted particle number in the individual phases of both tests were determined. Large disparities were found in the results of the two tests. The cold start-up had a particularly significant impact on the test results in the case of the WLTC test. This impact is much greater than in the RDE test, mainly due to the fact that the RDE test is much longer than the WLTC test. Moreover, the engine load in the RDE test was greater than in the WLTC test. As a result of the conducted analyses, it was postulated that the research should be continued in stochastic conditions for the vehicle speed function, e.g., in the implementation of the speed function determined for the real conditions of the vehicle operation. Full article
(This article belongs to the Special Issue Internal Combustion Engine: Research and Application)
Show Figures

Figure 1

21 pages, 8181 KiB  
Article
Particle Number and Size Distributions (PNSD) from a Hybrid Electric Vehicle (HEV) over Laboratory and Real Driving Emission Tests
by Daisy Thomas, Hu Li, Xin Wang, Karl Ropkins, Alison S. Tomlin, Chris D. Bannister and Gary Hawley
Atmosphere 2022, 13(9), 1510; https://doi.org/10.3390/atmos13091510 - 16 Sep 2022
Cited by 2 | Viewed by 2410
Abstract
Particle number (PN) emissions from hybrid electric vehicles (HEV) during engine ignition and re-ignition events are an important but scarcely reported area. The objectives of the present work are to study the effects of drive cycle properties on the engine behaviour of a [...] Read more.
Particle number (PN) emissions from hybrid electric vehicles (HEV) during engine ignition and re-ignition events are an important but scarcely reported area. The objectives of the present work are to study the effects of drive cycle properties on the engine behaviour of a hybrid electric vehicle (HEV) and to investigate how this impacts the tailpipe PN emissions and their size distributions (PNSD). Worldwide harmonised light vehicles test cycle (WLTC) testing was conducted, as well as chassis dynamometer emission measurements over a realistic real driving emissions (RDE) speed pattern, using a Euro 5 Toyota Prius HEV with a Cambustion DMS500 sampling PN concentrations at the tailpipe. It is shown that the number of vehicle stops during a test cycle has a direct impact on the re-ignition activity for the HEV. 64 ± 3% of the total PN from WLTC testing was produced during engine re-ignition events while only 6 ± 1% was from stabilised engine operation. Similar proportions were observed for the RDE-style test cycle. The majority of engine reignition and destabilised activity, and hence PN emission, was during the low-speed sections of the drive cycles used. The average PNSD across cycle phases was different between cycles, due to the influence of dynamic properties on engine behaviour and hence the PN emission profile. The PNSD at the engine re-ignition and destabilised events had a merged wide peak with a maximum at 60 nm diameter and a shoulder at 12 nm diameter. The HEV had increased emissions of particles smaller than 23 nm under cold start, but similar overall PN emission values, compared to a warm start. The results of this work highlight the importance of controlling HEV PN emissions to limit human exposure to PN in urban environments where the majority of PN emissions occur. The sensitivity of HEV PN emission factors and PNSD to engine behaviour and, in turn, test cycle dynamic properties, is important to note when considering legislative test cycles, particularly with reference to the freedoms afforded by the RDE test cycle. The results also indicate that substantial improvements to air quality could be made by reducing the particle measurement protocol PN cut-off size to 10 nm. Full article
(This article belongs to the Special Issue Traffic Related Emission)
Show Figures

Figure 1

15 pages, 2031 KiB  
Article
On-Road and Laboratory Emissions from Three Gasoline Plug-In Hybrid Vehicles-Part 2: Solid Particle Number Emissions
by Anastasios Melas, Tommaso Selleri, Jacopo Franzetti, Christian Ferrarese, Ricardo Suarez-Bertoa and Barouch Giechaskiel
Energies 2022, 15(14), 5266; https://doi.org/10.3390/en15145266 - 20 Jul 2022
Cited by 9 | Viewed by 2375
Abstract
Plug-in hybrid electric vehicles (PHEVs) are a promising technology for reducing the tailpipe emissions of CO2 as well as air pollutants, especially in urban environments. However, several studies raise questions over their after-treatment exhaust efficiency when their internal combustion engine (ICE) ignites. [...] Read more.
Plug-in hybrid electric vehicles (PHEVs) are a promising technology for reducing the tailpipe emissions of CO2 as well as air pollutants, especially in urban environments. However, several studies raise questions over their after-treatment exhaust efficiency when their internal combustion engine (ICE) ignites. The rationale is the high ICE load during the cold start in combination with the cold conditions of the after-treatment devices. In this study, we measured the solid particle number (SPN) emissions of two Euro 6d and one Euro 6d-TEMP gasoline direct injection (GDI) PHEVs (electric range 52–61 km) all equipped with a gasoline particulate filter, in the laboratory and on-road with different states of charge of the rechargeable electric energy storage system (REESS) and ambient temperatures. All vehicles met the regulation limits but it was observed that, even for fully charged REESS, when the ICE ignited SPN emissions were similar or even higher in some cases compared to the operation of these vehicles solely with their ICE (discharged REESS) and also when compared to conventional GDI vehicles. On-road SPN emission rate spikes during the first 30 s after a cold start were, on average, 2 to 15 times higher with charged compared to discharged REESS due to higher SPN concentrations and exhaust flow rates. For one vehicle in the laboratory under identical driving conditions, the ICE ignition at high load resulted in 10-times-higher SPN emission rate spikes at cold-start compared to hot-start. At −10 °C, for all tested vehicles, the ICE ignited at the beginning of the cycle even when the REESS was fully charged, and SPN emissions increased from 30% to 80% compared to the cycle at 23 °C in which the ICE ignited. The concentration of particles below 23 nm, which is the currently regulated lower particle size, was low (≤18%), showing that particles larger than 23 nm were mainly emitted irrespective of cold or hot engine operation and ambient temperature. Full article
(This article belongs to the Special Issue Environmental Impact of New Energy Technologies)
Show Figures

Figure 1

19 pages, 11978 KiB  
Article
Effect of the Preheating Strategy on the Combustion Process of the Intake Manifold Burner
by Zhishuang Li, Ziman Wang and Haoyang Mo
Appl. Sci. 2022, 12(8), 3858; https://doi.org/10.3390/app12083858 - 11 Apr 2022
Cited by 1 | Viewed by 2625
Abstract
The intake air preheating is an effective method to improve the cold start performance of diesel engines. The combustion process and ignition probability were investigated in the present study. The average flame area (AFA) during the steady stage of the combustion process was [...] Read more.
The intake air preheating is an effective method to improve the cold start performance of diesel engines. The combustion process and ignition probability were investigated in the present study. The average flame area (AFA) during the steady stage of the combustion process was used to evaluate the effects of various factors on combustion. The increase of voltage was found to enhance the combustion process, while the increased diesel flow rate first promoted the combustion before deteriorating it. The increased intake air flow velocity enhanced the combustion within 2.64 m/s, and excessive air flow velocity hindered the combustion from 2.7 to 3 m/s. The cross-distributed vortex clusters in the combustion chamber, periodic diesel evaporation and vortexes with opposite rotation directions in the vicinity of the intake manifold burner were believed to be the main reasons for flame stripping and swirl motion. The temperature rise in the exhaust pipe was recorded to investigate the thermal distribution. The warm air was concentrated in the upper region because of the buoyancy effect of the flame. With the air flow velocity increasing from 1.4 to 10 m/s, the average temperature rise increased first before decreasing, while the combustion efficiency increased due to the increased air flow volume. Full article
(This article belongs to the Special Issue Internal Combustion Engines for Future Mobility)
Show Figures

Figure 1

29 pages, 7328 KiB  
Article
A Battery Management Strategy in a Lead-Acid and Lithium-Ion Hybrid Battery Energy Storage System for Conventional Transport Vehicles
by Andre T. Puati Zau, Mpho J. Lencwe, S. P. Daniel Chowdhury and Thomas O. Olwal
Energies 2022, 15(7), 2577; https://doi.org/10.3390/en15072577 - 1 Apr 2022
Cited by 19 | Viewed by 6171
Abstract
Conventional vehicles, having internal combustion engines, use lead-acid batteries (LABs) for starting, lighting, and ignition purposes. However, because of new additional features (i.e., enhanced electronics and start/stop functionalities) in these vehicles, LABs undergo deep discharges due to frequent engine cranking, which in turn [...] Read more.
Conventional vehicles, having internal combustion engines, use lead-acid batteries (LABs) for starting, lighting, and ignition purposes. However, because of new additional features (i.e., enhanced electronics and start/stop functionalities) in these vehicles, LABs undergo deep discharges due to frequent engine cranking, which in turn affect their lifespan. Therefore, this research study seeks to improve LABs’ performance in terms of meeting the required vehicle cold cranking current (CCC) and long lifespan. The performance improvement is achieved by hybridizing a lead-acid with a lithium-ion battery at a pack level using a fully active topology approach. This topology approach connects the individual energy storage systems to their bidirectional DC-DC converter for ease of control. Besides, a battery management strategy based on fuzzy logic and a triple-loop proportional-integral (PI) controller is implemented for these conversion systems to ensure effective current sharing between lead-acid and lithium-ion batteries. A fuzzy logic controller provides a percentage reference current needed from the battery and regulates the batteries’ state-of-charge (SoC) within the desired limits. A triple-loop controller monitors and limits the hybridized system’s current sharing and voltage within the required range during cycling. The hybridized system is developed and validated using Matlab/Simulink. The battery packs are developed using the battery manufacturers’ data sheets. The results of the research, compared with a single LAB, show that by controlling the current flow and maintaining the SoC within the desired limits, the hybrid energy storage system can meet the desired vehicle cold cranking current at a reduced weight. Furthermore, the lead-acid battery lifespan based on a fatigue cycle-model is improved from two years to 8.5 years, thus improving its performance in terms of long lifespan. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Graphical abstract

Back to TopTop