Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (575)

Search Parameters:
Keywords = cold pressed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9293 KiB  
Article
Thermal Stability of the Ultra-Fine-Grained Structure and Mechanical Properties of AlSi7MgCu0.5 Alloy Processed by Equal Channel Angular Pressing at Room Temperature
by Miloš Matvija, Martin Fujda, Ondrej Milkovič, Marek Vojtko and Katarína Gáborová
Crystals 2025, 15(8), 701; https://doi.org/10.3390/cryst15080701 (registering DOI) - 31 Jul 2025
Abstract
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by [...] Read more.
Understanding the limitations of cold-formed aluminum alloys in practice applications is essential, particularly due to the risk of substructural changes and a reduction in strength when exposed to elevated temperatures. In this study, the thermal stability of the ultra-fine-grained (UFG) structure formed by equal channel angular pressing (ECAP) at room temperature and the mechanical properties of the AlSi7MgCu0.5 alloy were investigated. Prior to ECAP, the plasticity of the as-cast alloy was enhanced by a heat treatment consisting of solution annealing, quenching, and artificial aging to achieve an overaged state. Four repetitive passes via ECAP route A resulted in the homogenization of eutectic Si particles within the α-solid solution, the formation of ultra-fine grains and/or subgrains with high dislocation density, and a significant improvement in alloy strength due to strain hardening. The main objective of this work was to assess the microstructural and mechanical stability of the alloy after post-ECAP annealing in the temperature range of 373–573 K. The UFG microstructure was found to be thermally stable up to 523 K, above which notable grain and/or subgrain coarsening occurred as a result of discontinuous recrystallization of the solid solution. Mechanical properties remained stable up to 423 K; above this temperature, a considerable decrease in strength and a simultaneous increase in ductility were observed. Synchrotron radiation X-ray diffraction (XRD) was employed to analyze the phase composition and crystallographic characteristics, while transmission electron microscopy (TEM) was used to investigate substructural evolution. Mechanical properties were evaluated through tensile testing, impact toughness testing, and hardness measurements. Full article
(This article belongs to the Special Issue Celebrating the 10th Anniversary of International Crystallography)
Show Figures

Figure 1

24 pages, 4295 KiB  
Article
Acrocomia aculeata Oil-Loaded Nanoemulsion: A Promising Candidate for Cancer and Diabetes Management
by Ariadna Lafourcade Prada, Jesus Rafael Rodríguez Amado, Renata Trentin Perdomo, Giovanna Bicudo Gomes, Danielle Ayr Tavares de Almeida, Leandro Fontoura Cavalheiro, Arquimedes Gasparotto Junior, Serafim Florentino Neto and Marco Antonio Utrera Martines
Pharmaceuticals 2025, 18(8), 1094; https://doi.org/10.3390/ph18081094 - 24 Jul 2025
Viewed by 271
Abstract
Background: Diabetes and cancer are two of the most life-threatening disorders affecting individuals of all ages worldwide. This study aimed to develop a novel Acrocomia aculeata (bocaiuva) fruit pulp oil-loaded nanoemulsion and evaluate its inhibitory effects on α-glucosidase and pancreatic lipase, as well [...] Read more.
Background: Diabetes and cancer are two of the most life-threatening disorders affecting individuals of all ages worldwide. This study aimed to develop a novel Acrocomia aculeata (bocaiuva) fruit pulp oil-loaded nanoemulsion and evaluate its inhibitory effects on α-glucosidase and pancreatic lipase, as well as its antiglycant activity and cytotoxicity against cancer cells. Additionally, this study assessed the impact of both the oil and the nanoemulsion on blood cells. Methods: The pulp oil was extracted by cold pressing. The oil’s physicochemical properties were determined according to the AOAC and the Brazilian Pharmacopeia. The lipid profile was performed by GC-MS. The nanoemulsion was prepared by the phase inversion method using ultrasonic stirring for particle size reduction and for homogenization. Response Surface Methodology was used for optimizing nanoemulsion preparation. Enzyme inhibition tests were conducted using assay kits. Cytotoxicity in cancer cells was evaluated using the Sulforhodamine B assay. Results: Comprehensive physicochemical and chemical characterization of bocaiuva oil was performed, identifying oleic acid (71.25%) as the main component. The oil contains 23.04% saturated fatty acids, 73.79% monounsaturated acids, and 3.0% polyunsaturated fatty acids. The nanoemulsion (particle size 173.6 nm; zeta potential −14.10 mV) inhibited α-glucosidase (IC50: 43.21 µg/mL) and pancreatic lipase (IC50: 41.99 µg/mL), and revealed a potent antiglycation effect (oxidative IC50: 18.36 µg/mL; non-oxidative pathway IC50: 16.33 µg/mL). The nanoemulsion demonstrated good cytotoxicity and selectivity against prostate cancer cells (IC50: 19.13 µg/mL) and breast cancer cells (IC50: 27.22 µg/mL), without inducing hemolysis, platelet aggregation, or anticoagulant effects. Conclusions: In this study, a comprehensive physical and chemical characterization of bocaiuva fruit pulp oil was conducted for the first time as a preliminary step toward its future standardization as an active ingredient in cosmetic and pharmaceutical formulations. The resulting nanoemulsion represents a novel alternative for managing diabetes and cancer. Although the nanoemulsion exhibited lower cytotoxicity compared to doxorubicin, it remains promising due to its composition of essential fatty acids, phenols, and carotenoids, which offer multiple health benefits. Further studies are needed to validate its efficacy and safety in clinical applications. Full article
(This article belongs to the Special Issue Nanotechnology in Biomedical Applications)
Show Figures

Graphical abstract

18 pages, 2803 KiB  
Article
Single-Gelator Structuring of Hemp Oil Using Agarose: Comparative Assembly, Electronic Nose Profiling, and Functional Performance of Hydroleogels Versus Oleogels in Shortbread Cookies
by Oliwia Paroń and Joanna Harasym
Polymers 2025, 17(14), 1988; https://doi.org/10.3390/polym17141988 - 20 Jul 2025
Viewed by 304
Abstract
This study demonstrates an innovative single-gelator approach using agarose (1% and 2% w/w) to structure cold-pressed hemp oil into functional fat replacers for shortbread cookies, achieving a 40% reduction in saturated fatty acids compared to butter. Comprehensive characterization revealed that hydroleogels exhibited [...] Read more.
This study demonstrates an innovative single-gelator approach using agarose (1% and 2% w/w) to structure cold-pressed hemp oil into functional fat replacers for shortbread cookies, achieving a 40% reduction in saturated fatty acids compared to butter. Comprehensive characterization revealed that hydroleogels exhibited superior crispiness (45.67 ± 3.86 N for 2% agarose hydroleogel—HOG 2%) but problematic water activity (0.39–0.61), approaching microbial growth thresholds. Conversely, oleogels showed lower crispiness (2.27–3.43 N) but optimal moisture control (aw = 0.12–0.16) and superior color stability during 10-day storage. Electronic nose analysis using 10 metal oxide sensors revealed that oleogel systems preserved characteristic aroma profiles significantly better than hydroleogels, with 2% agarose oleogel (OG 2%) showing 34% less aroma decay than pure hemp oil. The 2% agarose oleogel demonstrated optimal performance with minimal baking loss (5.87 ± 0.20%), excellent structural integrity, and stable volatile compound retention over storage. Morphological analysis showed that hemp oil cookies achieved the highest specific volume (2.22 ± 0.07 cm3/g), while structured systems ranged from 1.12 to 1.31 cm3/g. This work establishes agarose as a versatile single gelator for hemp oil structuring and validates electronic nose technology for the objective quality assessment of fat-replaced bakery products, advancing healthier food design through molecular approaches. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

18 pages, 1321 KiB  
Article
In Silico Proteomic Profiling and Bioactive Peptide Potential of Rapeseed Meal
by Katarzyna Garbacz, Jacek Wawrzykowski, Michał Czelej and Adam Waśko
Foods 2025, 14(14), 2451; https://doi.org/10.3390/foods14142451 - 12 Jul 2025
Viewed by 352
Abstract
Rapeseed meal, a byproduct of oil extraction, is increasingly recognised as a valuable source of plant protein and health-promoting peptides. This study aimed to identify key proteins in cold-pressed rapeseed meal and assess their potential to release bioactive peptides through in silico hydrolysis [...] Read more.
Rapeseed meal, a byproduct of oil extraction, is increasingly recognised as a valuable source of plant protein and health-promoting peptides. This study aimed to identify key proteins in cold-pressed rapeseed meal and assess their potential to release bioactive peptides through in silico hydrolysis using plant-derived proteases, namely papain, bromelain, and ficin. Proteomic profiling via two-dimensional electrophoresis and MALDI-TOF/TOF mass spectrometry revealed cruciferin as the dominant protein, along with other metabolic and defence-related proteins. In silico digestion of these sequences using the BIOPEP database generated thousands of peptide fragments, of which over 50% were predicted to exhibit bioactivities, including ACE and DPP-IV inhibition, as well as antioxidant, neuroprotective, and anticancer effects. Among the evaluated enzymes, bromelain exhibited the highest efficacy, yielding the greatest quantity and diversity of bioactive peptides. Notably, peptides with antihypertensive and antidiabetic properties were consistently identified across all of the protein and enzyme variants. Although certain rare functions, such as anticancer and antibacterial activities, were observed only in specific hydrolysates, their presence underscores the broader functional potential of peptides derived from rapeseed. These findings highlight the potential of rapeseed meal as a sustainable source of functional ingredients while emphasising the necessity for experimental validation to confirm the predicted bioactivities. Full article
Show Figures

Figure 1

20 pages, 2533 KiB  
Article
Analysis of the Alterations in Symbiotic Microbiota and Their Correlation with Intestinal Metabolites in Rainbow Trout (Oncorhynchus mykiss) Under Heat Stress Conditions
by Changqing Zhou and Fengyuan Ding
Animals 2025, 15(14), 2017; https://doi.org/10.3390/ani15142017 - 8 Jul 2025
Viewed by 295
Abstract
Global warming represents one of the most pressing environmental challenges to cold-water fish farming. Heat stress markedly alters the mucosal symbiotic microbiota and intestinal microbial metabolites in fish, posing substantial barriers to the healthy artificial breeding of rainbow trout (Oncorhynchus mykiss). [...] Read more.
Global warming represents one of the most pressing environmental challenges to cold-water fish farming. Heat stress markedly alters the mucosal symbiotic microbiota and intestinal microbial metabolites in fish, posing substantial barriers to the healthy artificial breeding of rainbow trout (Oncorhynchus mykiss). However, the relationship between mucosal commensal microbiota, intestinal metabolites, and host environmental adaptability under heat stress remains poorly understood. In this study, rainbow trout reared at optimal temperature (16 °C) served as controls, while those exposed to maximum tolerated temperature (24 °C, 21 d) comprised the heat stress group. Using 16S rRNA amplicon sequencing and ultra-high-performance liquid chromatography–mass spectrometry (UHPLC-MS), we analysed the mucosal commensal microbiota—including gastrointestinal digesta, gastrointestinal mucosa, skin mucus, and gill mucosa—and intestinal metabolites of rainbow trout under heat stress conditions to explore adaptive and regulatory mechanisms. Analysis of microbial composition and diversity revealed that heat stress exerted the greatest impact on the diversity of gill and skin mucus microbiota, followed by gastrointestinal digesta, with relatively minor effects on the gastrointestinal mucosa. At the phylum level, Proteobacteria, Firmicutes, and Bacteroidetes were predominant in the stomach, intestine, and surface mucosa. At the genus level, Acinetobacter showed the greatest increase in abundance in skin and gill mucosa under heat stress, while Enterobacteriaceae exhibited the most pronounced increase in intestinal digesta, gastric digesta, and gastric mucosa. Differential metabolites in the intestinal digesta under heat stress were predominantly enriched in pathways associated with amino acid metabolism, particularly tryptophan metabolism. This study provides a comprehensive characterisation of microbiota and metabolic profile alterations in rainbow trout under heat stress condition, offering a theoretical foundation for understanding the response mechanisms of fish commensal microbiota to thermal stress. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

40 pages, 13344 KiB  
Article
Geopolymers from Olive Stone Bottom Ashes for Sustainable Construction: Influence of the Molding Method
by Elena Picazo Camilo, Juan José Valenzuela Expósito, Raúl Carrillo Beltrán, Griselda Elisabeth Perea Toledo and Francisco Antonio Corpas Iglesias
Sustainability 2025, 17(13), 6219; https://doi.org/10.3390/su17136219 - 7 Jul 2025
Viewed by 331
Abstract
The forming methodology influences the physicochemical, mechanical, and microstructural properties. In this study, which aims to develop a geopolymeric material for potential insulation applications in buildings such as vertical walls, geopolymers were developed using industrial wastes from different industries: slate stone cutting sludge [...] Read more.
The forming methodology influences the physicochemical, mechanical, and microstructural properties. In this study, which aims to develop a geopolymeric material for potential insulation applications in buildings such as vertical walls, geopolymers were developed using industrial wastes from different industries: slate stone cutting sludge (SSCS) and chamotte (CH) were used as precursors, and olive stone bottom ash (OSBA) and sodium silicate (Na2SiO3) were used as alkaline activators. Two forming methods were evaluated: uniaxial pressing and casting of the material, varying the forming method and the liquid/solid ratio. The results showed that the pressed geopolymers achieved higher bulk densities (up to 2.13 g/cm3) and significantly higher compressive strength (28.04 MPa at 28 days), attributable to a higher compactness and degree of geopolymer reaction. In contrast, the casting geopolymers exhibited surface efflorescence, related to slower curing and higher porosity, which reduced their compressive strength (17.88 MPa). In addition, the pressed geopolymers showed better thermal stability and fire performance. These results demonstrate that the variation of the forming method has a direct influence on the material properties of geopolymers, and that the pressing process allows for a reduction of the alkaline activator content, thus reducing its environmental footprint. Full article
Show Figures

Figure 1

18 pages, 5372 KiB  
Article
Effect of B4C Reinforcement on the Mechanical Properties and Corrosion Resistance of CoCrMo, Ti, and 17-4 PH Alloys
by Ömer Faruk Güder, Ertuğrul Adıgüzel and Aysel Ersoy
Appl. Sci. 2025, 15(13), 7284; https://doi.org/10.3390/app15137284 - 27 Jun 2025
Viewed by 268
Abstract
This study investigates the effect of boron carbide (B4C) ceramic reinforcement on the microstructural, mechanical, electrical, and electrochemical properties of CoCrMo, Ti, and 17-4 PH alloys produced via powder metallurgy for potential biomedical applications. A systematic experimental design was employed, incorporating [...] Read more.
This study investigates the effect of boron carbide (B4C) ceramic reinforcement on the microstructural, mechanical, electrical, and electrochemical properties of CoCrMo, Ti, and 17-4 PH alloys produced via powder metallurgy for potential biomedical applications. A systematic experimental design was employed, incorporating varying B4C contents into each matrix through mechanical alloying, cold pressing, and vacuum sintering. The microstructural integrity and dispersion of B4C were examined using scanning electron microscopy. The performance of the materials was evaluated using several methods, including Vickers hardness, pin-on-disk wear testing, ultrasonic elastic modulus measurements, electrical conductivity, and electrochemical assessments (potentiodynamic polarization and EIS). This study’s findings demonstrated that B4C significantly enhanced the hardness and wear resistance of all alloys, especially Ti- and CoCrMo-based systems. However, an inverse correlation was observed between B4C content and corrosion resistance, especially in 17-4 PH matrices. Ti-5B4C was identified as the most balanced composition, exhibiting high wear resistance, low corrosion rate and elastic modulus values approaching those of human bone. Weibull analysis validated the consistency and reliability of key performance metrics. The results show that adding B4C can change the properties of biomedical alloys, offering engineering advantages for B4C-reinforced biomedical implants. Ti-B4C composites exhibit considerable potential for application in advanced implant technologies. Full article
Show Figures

Figure 1

35 pages, 2913 KiB  
Article
Effect of Supplementation of Antioxidant Lipids Synthetized by Enzymatic Acidolysis with EPA/DHA Concentrate and Maqui (Aristotelia chilensis (Mol.) Stuntz) Seed Oil for Mitigating High-Fat Diet-Induced Obesity and Metabolic Disorders in Mice
by Benjamín Claria, Alejandra Espinosa, Alicia Rodríguez, María Elsa Pando, Gretel Dovale-Rosabal, Nalda Romero, Katherynne Mayorga, Evelyn Tapia, Jenifer Saez, Melissa Tsuchida, Karla Vásquez, Rodrigo Valenzuela, Álvaro Pérez, Patricio Díaz and Santiago P. Aubourg
Antioxidants 2025, 14(7), 790; https://doi.org/10.3390/antiox14070790 - 26 Jun 2025
Viewed by 558
Abstract
Bioactive compounds have shown significant potential in the management of obesity and metabolic syndrome (MetS). This study investigates the effects of antioxidant lipids (ALω-3), synthetized through enzymatic acidolysis using non-specific lipase B from Candida antarctica under supercritical CO2 conditions. These lipids were [...] Read more.
Bioactive compounds have shown significant potential in the management of obesity and metabolic syndrome (MetS). This study investigates the effects of antioxidant lipids (ALω-3), synthetized through enzymatic acidolysis using non-specific lipase B from Candida antarctica under supercritical CO2 conditions. These lipids were derived from a concentrate of rainbow trout (Oncorhynchus mykiss) belly oil, rich in long-chain polyunsaturated omega-3 fatty acids (LCPUFAn-3), and cold-pressed maqui seed oil (MO, Aristotelia chilensis (Mol.) Stuntz). Their effects were then evaluated in a murine high-fat diet (HFD) model. The fatty acid profile, tocopherol and tocotrienol content, and thin-layer chromatography of ALω-3 were analyzed. After 8 weeks on an HFD, male C57BL/6 mice were divided into four groups and switched to a control diet (CD) with the following supplements for 3 weeks: Glycerol (G), commercial marine Omega-3 (CMω-3), a mixture of LCPUFAn-3 concentrate + MO (Mω-3), or ALω-3. The total body and organ weights, serum markers, and liver and visceral fat pro-inflammatory marker expression levels were assessed. ALω-3 contained 13.4% oleic, 33.9% linoleic, 6.3% α-linolenic, 10.7% eicosapentaenoic, and 16.2% docosahexaenoic fatty acids. The β, γ, δ-tocopherol, and β, γ-tocotrienol values were 22.9 ± 1.4, 24.9 ± 0.2, 6.8 ± 0.7, 22.9 ± 1.7, and 22.4 ± 4.7 mg·kg−1, respectively, with α-tocopherol detected in traces. ALω-3 supplementation increased serum Trolox equivalent capacity, significantly reduced serum GPT levels (p < 0.01), and enhanced postprandial glucose tolerance (p < 0.001), although it did not alter insulin resistance (HOMA-IR). These findings indicate ALω-3′s potential for mitigating the glucose intolerance, liver damage, and oxidative stress associated with obesity and MetS, highlighting the need for additional research to explore its potential health benefits. Full article
(This article belongs to the Collection Advances in Antioxidant Ingredients from Natural Products)
Show Figures

Figure 1

13 pages, 2467 KiB  
Article
Thermal-Tribological Synergy in PTFE-Based Self-Lubricating Retainers for Ball Bearings Under Oil-Depleted Conditions
by Zhining Jia and Caizhe Hao
Lubricants 2025, 13(7), 280; https://doi.org/10.3390/lubricants13070280 - 23 Jun 2025
Viewed by 408
Abstract
To investigate the temperature rise characteristics and tribological performance of angular contact ball bearings equipped with polymer-based self-lubricating retainers under oil-depleted conditions. PTFE-based composite retainers were fabricated using cold-press sintering technology. Comparative experiments on 7206C were conducted on three bearing configurations (domestic, imported [...] Read more.
To investigate the temperature rise characteristics and tribological performance of angular contact ball bearings equipped with polymer-based self-lubricating retainers under oil-depleted conditions. PTFE-based composite retainers were fabricated using cold-press sintering technology. Comparative experiments on 7206C were conducted on three bearing configurations (domestic, imported NSK, and YSU-S1/S2 self-lubricating retainer bearing) using a dedicated fatigue tester under oil-depleted lubrication. This study demonstrates that angular contact ball bearings equipped with PTFE-based self-lubricating retainers exhibit superior thermal behavior under oil-depleted conditions. Compared to domestic and imported NSK bearings, the retainer-equipped bearing reduced equilibrium temperatures by 2~3 °C versus NSK/domestic bearings, with 60% lower peak temperatures. The high speed further facilitates the formation of transfer films, resulting in a smoother raceway and notably enhancing the bearing’s temperature rise characteristics. This study establishes a material–process–performance framework, bridging polymer composites and industrial bearing design. Full article
Show Figures

Figure 1

2 pages, 142 KiB  
Retraction
RETRACTED: Shen et al. Cold-Pressed Nigella Sativa Oil Standardized to 3% Thymoquinone Potentiates Omega-3 Protection against Obesity-Induced Oxidative Stress, Inflammation, and Markers of Insulin Resistance Accompanied with Conversion of White to Beige Fat in Mice. Antioxidants 2020, 9, 489
by Hsin Hsueh Shen, Stephen J. Peterson, Lars Bellner, Abu Choudhary, Lior Levy, Leah Gancz, Ariel Sasson, Joseph Trainer, Rita Rezzani, Abraham Resnick, David E. Stec and Nader G. Abraham
Antioxidants 2025, 14(7), 758; https://doi.org/10.3390/antiox14070758 - 20 Jun 2025
Viewed by 471
Abstract
The journal retracts the article “Cold-Pressed Nigella Sativa Oil Standardized to 3% Thymoquinone Potentiates Omega-3 Protection against Obesity-Induced Oxidative Stress, Inflammation, and Markers of Insulin Resistance Accompanied with Conversion of White to Beige Fat in Mice” [...] Full article
22 pages, 1664 KiB  
Article
Techno-Economic Assessment of Alternative-Fuel Bus Technologies Under Real Driving Conditions in a Developing Country Context
by Marc Haddad and Charbel Mansour
World Electr. Veh. J. 2025, 16(6), 337; https://doi.org/10.3390/wevj16060337 - 19 Jun 2025
Viewed by 731
Abstract
The long-standing need for a modern public transportation system in Lebanon, a developing country of the Middle East with an almost exclusive dependence on costly and polluting passenger cars, has become more pressing in recent years due to the worsening economic crisis and [...] Read more.
The long-standing need for a modern public transportation system in Lebanon, a developing country of the Middle East with an almost exclusive dependence on costly and polluting passenger cars, has become more pressing in recent years due to the worsening economic crisis and the onset of hyperinflation. This study investigates the potential reductions in energy use, emissions, and costs from the possible introduction of natural gas, hybrid, and battery-electric buses compared to traditional diesel buses in local real driving conditions. Four operating conditions were considered including severe congestion, peak, off-peak, and bus rapid transit (BRT) operation. Battery-electric buses are found to be the best performers in any traffic operation, conditional on having clean energy supply at the power plant and significant subsidy of bus purchase cost. Natural gas buses do not provide significant greenhouse gas emission savings compared to diesel buses but offer substantial reductions in the emission of all major pollutants harmful to human health. Results also show that accounting for additional energy consumption from the use of climate-control auxiliaries in hot and cold weather can significantly impact the performance of all bus technologies by up to 44.7% for electric buses on average. Performance of all considered bus technologies improves considerably in free-flowing traffic conditions, making BRT operation the most beneficial. A vehicle mix of diesel, natural gas, and hybrid bus technologies is found most feasible for the case of Lebanon and similar developing countries lacking necessary infrastructure for a near-term transition to battery-electric technology. Full article
(This article belongs to the Special Issue Zero Emission Buses for Public Transport)
Show Figures

Figure 1

37 pages, 5930 KiB  
Article
The Effectiveness of a Topical Rosehip Oil Treatment on Facial Skin Characteristics: A Pilot Study on Wrinkles, UV Spots Reduction, Erythema Mitigation, and Age-Related Signs
by Diana Patricia Oargă (Porumb), Mihaiela Cornea-Cipcigan, Silvia Amalia Nemeș and Mirela Irina Cordea
Cosmetics 2025, 12(3), 125; https://doi.org/10.3390/cosmetics12030125 - 16 Jun 2025
Viewed by 2749
Abstract
Skin aging is a complex process influenced by several factors, including UV exposure, environmental stressors, and lifestyle choices. The demand for effective, natural skincare products has driven research into plant-based oils rich in bioactive compounds. Rosehip oil has garnered attention for its high [...] Read more.
Skin aging is a complex process influenced by several factors, including UV exposure, environmental stressors, and lifestyle choices. The demand for effective, natural skincare products has driven research into plant-based oils rich in bioactive compounds. Rosehip oil has garnered attention for its high content of carotenoids, phenolics, and antioxidants, which are known for their anti-aging, photoprotective, and skin-rejuvenating properties. Despite the growing interest in rosehip oil, limited studies have investigated its efficacy on human skin using advanced imaging technologies. This study aims to fill this gap by evaluating the efficacy of cold-pressed Rosa canina seed oil on facial skin characteristics, specifically wrinkles, ultraviolet (UV) spot reduction, and erythema mitigation, using imaging technologies (the VISIA analysis system). Seed oil pressed from R. canina collected from the Băișoara area of Cluj County has been selected for this study due to its high carotenoid, phenolic, and antioxidant contents. The oil has also been analyzed for the content of individual carotenoids (i.e., lutein, lycopene, β Carotene, and zeaxanthin) using HPLC-DAD (High-Performance Liquid Chromatography—Diode Array Detector), along with lutein and zeaxanthin esters and diesters. After the preliminary screening of multiple Rosa species for carotenoid, phenolic, and antioxidant contents, the R. canina sample with the highest therapeutic potential was selected. A cohort of 27 volunteers (aged 30–65) underwent a five-week treatment protocol, wherein three drops of the selected rosehip oil were topically applied to the face daily. The VISIA imaging was conducted before and after the treatment to evaluate changes in skin parameters, including the wrinkle depth, UV-induced spots, porphyrins, and texture. Regarding the bioactivities, rosehip oil showed a significant total carotenoids content (28.398 μg/mL), with the highest levels in the case of the β-carotene (4.49 μg/mL), lutein (4.33 μg/mL), and zexanthin (10.88 μg/mL) contents. Results indicated a significant reduction in mean wrinkle scores across several age groups, with notable improvements in individuals with deeper baseline wrinkles. UV spots also showed visible declines, suggesting ideal photoprotective and anti-pigmentary effects attributable to the oil’s high vitamin A and carotenoid content. Porphyrin levels, often correlated with bacterial activity, decreased in most subjects, hinting at an additional antimicrobial or microbiome-modulatory property. However, skin responses varied, possibly due to individual differences in skin sensitivity, environmental factors, or compliance with sun protection. Overall, the topical application of R. canina oil appeared to improve the facial skin quality, reduce the appearance of age-related markers, and support skin health. These findings reinforce the potential use of rosehip oil in anti-aging skincare formulations. Further long-term, large-scale studies are warranted to refine dosing regimens, investigate mechanisms of action, and explore synergistic effects with other bioactive compounds. Full article
(This article belongs to the Special Issue Skin Anti-Aging Strategies)
Show Figures

Figure 1

17 pages, 1975 KiB  
Article
Enhancing Oxidative Stability and Nutritional Quality of Flaxseed Oil Using Apricot, Sesame, and Black Cumin Oil Blends
by Dino Muhović, Gorica Cvijanović, Marija Bajagić, Lato Pezo, Lazar Pejić and Biljana Rabrenović
Foods 2025, 14(11), 2000; https://doi.org/10.3390/foods14112000 - 5 Jun 2025
Viewed by 868
Abstract
There is an unmet need for an affordable, high-quality, and non-thermally processed source of omega-3 fatty acids. Cold-pressed flaxseed oil comes closest to meeting these criteria. Flaxseed oil is also subject to rapid oxidative degradation. Sesame, black cumin, and apricot kernel oils are [...] Read more.
There is an unmet need for an affordable, high-quality, and non-thermally processed source of omega-3 fatty acids. Cold-pressed flaxseed oil comes closest to meeting these criteria. Flaxseed oil is also subject to rapid oxidative degradation. Sesame, black cumin, and apricot kernel oils are already used as functional foods and are more resistant to oxidative degradation. GC, HPLC, DPPH, the Folin−Ciocalteu method, and OXITEST were applied to the four cold-pressed oils and their binary blends with flaxseed oil. The fatty acid profile showed that the dominant fatty acid in flaxseed oil was linolenic acid with a content of 52.27 ± 0.17%, while oleic acid dominated in apricot kernel oil (69.45 ± 0.18%) and linoleic acid (58.80 ± 0.07%) in black cumin oil, while sesame oil was characterized by approximately equal proportions of oleic (42.21 ± 0.20%) and linoleic acids (43.37 ± 0.07%). The content of oleic acid showed a moderate, statistically significant correlation with the oxidative stability of oils and blends. The antioxidant capacity of flaxseed oil (25 ± 1.4 μmol TE/g) was most strongly influenced by the addition of black cumin oil (75 ± 3.5 μmol TE/g), so that the highest antioxidant capacity was achieved by the blend with an addition of 50% of this oil (57.5 ± 2.4 μmol TE/g). Oxidative stability tests show that apricot kernel oil stabilizes flaxseed oil the most and increases the oxidative stability of the blend by up to 60%. Full article
Show Figures

Figure 1

14 pages, 1230 KiB  
Article
Assessing the Functional and Structural Properties of Peanut Meals Modified by Transglutaminase-Coupled Glycation
by Yan Liu, Tingwei Zhu, Fusheng Chen, Xingfeng Guo, Chenxian Yang, Yu Chen and Lifen Zhang
Foods 2025, 14(11), 1999; https://doi.org/10.3390/foods14111999 - 5 Jun 2025
Viewed by 380
Abstract
To increase the added value of peanut meal (PM, protein content of 46.17%) and expand its application in food processing, cold-pressed PM was modified via transglutaminase (TGase)-coupled glycation to enhance its functional properties. The effects of the modification conditions (i.e., PM concentration, PM/glucose [...] Read more.
To increase the added value of peanut meal (PM, protein content of 46.17%) and expand its application in food processing, cold-pressed PM was modified via transglutaminase (TGase)-coupled glycation to enhance its functional properties. The effects of the modification conditions (i.e., PM concentration, PM/glucose mass ratio, temperature, and time) on the functional properties of PM were investigated, and its structural properties were evaluated using water contact angle measurements, fluorescence spectroscopy, and Fourier-transform infrared spectroscopy. It was found that TGase-coupled glycation modification altered the secondary structure of PM and increased both the water contact angle and the surface hydrophobicity, thereby significantly affecting its functional properties. Additionally, superior emulsification, foaming, and oil-absorbing properties were achieved for the modified PM, which were named EPM, FPM, and OPM, respectively (specimens under different modification conditions). Notably, the emulsification activity of the EPM sample was enhanced by 69.8% (i.e., from 18.48 to 31.38 m2/g); the foaming capacity of the FPM specimen was increased by 84.00% (i.e., from 21.00 to 46.00%); and the oil-absorbing capacity of the OPM sample was enhanced by 359.57% (i.e., from 1.41 to 6.48 g/g protein). Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Figure 1

19 pages, 9430 KiB  
Article
Tracing the Values of Fading Rural Architectural Heritage: The Case of Cold-Water Baths in Western Anatolia
by Selen Güler, Ozan Uştuk and Hülya Yüceer
Heritage 2025, 8(6), 193; https://doi.org/10.3390/heritage8060193 - 28 May 2025
Viewed by 452
Abstract
This research explores the underappreciated traditional cold-water baths of Western Anatolia, once integral to the region’s agrarian culture. Due to waves of change, which had markedly begun by the pandemic in 2019 and the aftermath of the 2020 Samos earthquake, there has been [...] Read more.
This research explores the underappreciated traditional cold-water baths of Western Anatolia, once integral to the region’s agrarian culture. Due to waves of change, which had markedly begun by the pandemic in 2019 and the aftermath of the 2020 Samos earthquake, there has been a growing interest in living in peri-urban areas, resulting in the invasion of agricultural grounds by new construction, mainly including detached houses with gardens. Such a harsh growth not only threatens the fertile lands, but also the irreplaceable cultural heritage they embrace. In this regional frame, this study focuses on three surviving baths within the Karaburun Peninsula, casting light on their current precarious state as relics of a diminishing rural way of life and local heritage. The traditional cold-water baths, constructed amidst agricultural fields for seasonal use in select villages throughout İzmir, stand as unique exemplars of rural architecture. Characterised by their singular domed chambers and their reliance on water from adjacent wells, these structures today face abandonment and disrepair. Through a multi-disciplinary lens blending ethnography, oral history, and spatial analysis, this paper portrays these unassuming yet culturally impactful baths, elucidating their intrinsic value within the heritage domain. The inquiry contributes significantly to the heritage conservation discussion, highlighting the broad spectrum of values beyond mere historical interest. By articulating the symbiotic relationship between heritage and its community, this research underscores the pressing need to weave these baths into the fabric of current social structures, safeguarding their place within the collective memory. Full article
Show Figures

Figure 1

Back to TopTop