Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (882)

Search Parameters:
Keywords = cocoa

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1659 KiB  
Article
Fermentation with Pectin Trans-Eliminase to Reduce Cadmium Levels in Nacional and CCN-51 Cocoa Bean Genotypes
by Wiston Javier Morales-Rodriguez, Jaime Morante-Carriel, Mercedes Carranza-Patiño, Darko Ormaza-Vásquez, María Concepción Ayuso-Yuste and María Josefa Bernalte-García
Plants 2025, 14(16), 2553; https://doi.org/10.3390/plants14162553 (registering DOI) - 16 Aug 2025
Abstract
Cocoa represents a crucial source of income in coastal regions of Ecuador, where the product is exported for the production of high-value chocolates. However, elevated levels of cadmium (Cd) in cocoa beans, attributable to volcanic soils, have the potential to impede international trade, [...] Read more.
Cocoa represents a crucial source of income in coastal regions of Ecuador, where the product is exported for the production of high-value chocolates. However, elevated levels of cadmium (Cd) in cocoa beans, attributable to volcanic soils, have the potential to impede international trade, particularly in accordance with European Union regulations. The main objective of this study was to reduce Cd concentrations in cocoa beans of two genotypes, Nacional and CCN-51, by applying different doses of pectin trans-eliminase (PTE) enzyme during the fermentation process in conjunction with mucilage washing techniques, pre-drying resting periods, and various drying methods. To this end, a Taguchi orthogonal design (L9) was employed to evaluate nine treatments per genotype, complemented with two controls. The most efficacious treatment for Nacional was identified as T7, involving a 0.30 mL·kg−1 PTE dose, the absence of mucilage washing, a 48 h resting period, and drying in a marquee. This treatment resulted in a 68.6% reduction in Cd concentration (from 0.28 to 0.09 mg·kg−1). For CCN-51, T3 (0.10 mL·kg−1 PTE, complete washing, 48 h resting, and splint drying) yielded a 26.4% reduction in Cd (from 0.42 to 0.31 mg·kg−1). It is noteworthy that none of the treatments exceeded the EU regulatory threshold of 0.8 mg·kg−1. A physico-chemical analysis was conducted, which revealed significant treatment effects on pH (ranging from 5.63 to 6.85) and acidity (0.02% to 0.03%). Sensory evaluation indicated enhancements in cocoa and nutty flavors, along with a reduction in undesirable astringency and bitterness, particularly in Nacional samples. The findings of this study demonstrate that the combination of enzyme-assisted fermentation and optimized postharvest techniques represents a pragmatic approach to the mitigation of cadmium in cocoa, while simultaneously preserving or enhancing product quality. Full article
Show Figures

Figure 1

22 pages, 1868 KiB  
Article
Comparative Decoding of Physicochemical and Flavor Profiles of Coffee Prepared by High-Pressure Carbon Dioxide, Ice Drip, and Traditional Cold Brew
by Zihang Wang, Yixuan Zhou, Yinquan Zong, Jihong Wu and Fei Lao
Foods 2025, 14(16), 2840; https://doi.org/10.3390/foods14162840 (registering DOI) - 16 Aug 2025
Abstract
High-pressure carbon dioxide (HPCD) has been widely used in the extraction of high-quality bioactive compounds. The flavor profiles of cold brew coffee (CBC) prepared by HPCD, traditional cold brew (TCB), and ice drip (ID) were comprehensively evaluated by chromatographic approaches, and their variations [...] Read more.
High-pressure carbon dioxide (HPCD) has been widely used in the extraction of high-quality bioactive compounds. The flavor profiles of cold brew coffee (CBC) prepared by HPCD, traditional cold brew (TCB), and ice drip (ID) were comprehensively evaluated by chromatographic approaches, and their variations were investigated by multivariate statistical methods. ID produced the lightest coffee color while HPCD produced the darkest. No significant difference was found in pH among the three coffee processes. The concentrations of chlorogenic acids and caffeine were the highest in ID but the lowest in HPCD. Seventeen of the forty-eight volatiles were identified as key aroma compounds, contributing nutty, cocoa, caramel, baked, and other coffee flavors to all CBCs. Among them, linalool (OAV = 100.50) was found only in ID and provided ID with unique floral and fruity notes; 2-methyl-5-propylpyrazine (OAV = 17.70) was found only in TCB and gave a roasted aroma. With significantly lower levels of medicine-like and plastic off-flavors, HPCD had a refined aroma experience featuring nutty, cocoa, and caramel notes, though their contents were not the highest. Orthogonal partial least squares discriminant analysis (OPLS-DA) identified 36 aromas that could differentiate three cold brew methods, with TCB and HPCD being the most similar. Aroma sensory tests showed that no significant difference was perceived between TCB and HPCD. These findings provide a profound understanding of CBC flavor produced by cold brew methods from the aspect of composition, indicating that HPCD has great potential to realize TCB-like flavor characteristics in a shorter time. Full article
(This article belongs to the Special Issue Flavor, Palatability, and Consumer Acceptance of Foods)
Show Figures

Figure 1

18 pages, 3294 KiB  
Article
Permanent or Transitory Crops? The Dilemma for Biodiversity Conservation: A Case Study with Dung Beetles (Scarabaeidae: Scarabaeinae) in the Colombian Caribbean
by Jorge Luis Rangel-Acosta, Neis José Martínez-Hernández, Alfonso Siado-García and Carlos Andrés Daza-Guerra
Diversity 2025, 17(8), 574; https://doi.org/10.3390/d17080574 - 15 Aug 2025
Abstract
Crops of cocoa, avocado, cassava, yam, and maize are of utmost importance to the economy of the Colombian Caribbean, as they serve as the primary source of income for many families. However, establishing these crops requires the replacement of natural ecosystems, with limited [...] Read more.
Crops of cocoa, avocado, cassava, yam, and maize are of utmost importance to the economy of the Colombian Caribbean, as they serve as the primary source of income for many families. However, establishing these crops requires the replacement of natural ecosystems, with limited understanding of how these areas contribute to biodiversity conservation. This study analyzed the diversity of dung beetles in both transitory and permanent crops within a landscape in San Jacinto, Bolívar, to assess their contribution to the conservation of diversity within this insect group. Dung beetle communities were sampled in permanent crops of avocado and cocoa, transitory crops (cassava, yam, and maize), and a forest fragment. The forest fragment exhibited high levels of species richness, abundance, and diversity regardless of the sampling period; these values were only matched by those of the permanent cocoa crop, and only during the rainy season. Our findings highlight the necessity of preserving forest fragments for biodiversity conservation, while also indicating that certain permanent crops may contribute to this effort. Full article
(This article belongs to the Special Issue Diversity, Distribution and Zoogeography of Coleoptera)
Show Figures

Figure 1

19 pages, 3030 KiB  
Article
Sustainable Extraction of Bioactive Compounds from Cocoa Shells Waste and Brewer’s Spent Grain Using a Novel Two-Stage System Integrating Ohmic-Accelerated Steam Distillation (OASD) and Supercritical CO2 Extraction (SSCO2)
by Hao-Yu Ivory Chu, Xinyu Zhang, Yuxin Wang, Taghi Miri and Helen Onyeaka
Sustainability 2025, 17(16), 7373; https://doi.org/10.3390/su17167373 - 14 Aug 2025
Abstract
This study introduces a novel, two-stage extraction system that combines Ohmic-Accelerated Steam Distillation (OASD) with Supercritical CO2 Extraction (SSCO2) to efficiently recover bioactive compounds from plant-based wastes with varying cell wall complexities. Brewer’s spent grain (BSG) and cocoa shell were [...] Read more.
This study introduces a novel, two-stage extraction system that combines Ohmic-Accelerated Steam Distillation (OASD) with Supercritical CO2 Extraction (SSCO2) to efficiently recover bioactive compounds from plant-based wastes with varying cell wall complexities. Brewer’s spent grain (BSG) and cocoa shell were selected as representative models for soft and rigid cell wall structures, respectively. The optimized extraction process demonstrated significantly enhanced efficiency compared to traditional methods, achieving recovery rates in BSG of 89% for antioxidants, 91% for phenolic acids, and 90% for polyphenolic compounds. Notably, high yields of p-coumaric acid (95%), gallic acid (94%), ferulic acid (82%), quercetin (87%), and resveratrol (82%) were obtained with minimal cellular structural damage. For cocoa shells, despite their lignin-rich, rigid cell walls, recovery rates reached 73% for antioxidants, 79% for phenolic acids, and 74% for polyphenolic compounds, including chlorogenic acid (94%), catechin (83%), vanillin (81%), and gallic acid (94%). Overall, this hybrid technique significantly improved extraction efficiency by approximately 60% for BSG and 50% for cocoa shell relative to conventional approaches, highlighting its novelty, scalability, and potential for broad application in the sustainable valorization of diverse plant-based waste streams. This research presents a green and efficient platform suitable for valorizing agri-food by-products, supporting circular economy goals. Further studies may explore scale-up strategies and economic feasibility for industrial adoption. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

14 pages, 1261 KiB  
Article
Promising Protocol for In Vivo Experiments with Betulin
by Pavel Šiman, Aleš Bezrouk, Alena Tichá, Hana Kozáková, Tomáš Hudcovic, Otto Kučera and Mohamed Niang
Pharmaceutics 2025, 17(8), 1051; https://doi.org/10.3390/pharmaceutics17081051 - 13 Aug 2025
Viewed by 137
Abstract
Background/Objectives: Betulin is a promising agent in many areas of medicine and is being investigated, particularly in the field of cancer. However, in in vivo experiments, its water insolubility becomes a significant obstacle. This study describes a promising method for the administration [...] Read more.
Background/Objectives: Betulin is a promising agent in many areas of medicine and is being investigated, particularly in the field of cancer. However, in in vivo experiments, its water insolubility becomes a significant obstacle. This study describes a promising method for the administration of betulin in in vivo experiments and the determination of betulin levels in organ samples. Methods: Betulin was first dissolved in ethanol, and this solution was then mixed with acylglycerols, followed by evaporation of the ethanol. Olive oil and food-grade lard were determined to be suitable lipids for noninvasive application per os. A method for processing the organs of experimental animals for betulin determination was developed. Determination of betulin levels in blood is also likely the only viable option for use in future clinical studies and practice. Results: The maximum amount of betulin usable (i.e., absorbable by organisms) in olive oil (10 mg/mL), suppository mass (6 mg/mL), food lard (4 mg/mL), and cocoa butter (2 mg/mL) carriers was found microscopically. A specific distribution of betulin concentration in the organs of experimental animals (Wistar rats) after a weekly diet containing betulin was discovered. The blood was shown to be particularly advantageous, as it allows continuous monitoring of betulin levels in the body. In these pilot experiments, a statistically significant (p < 0.001) synergistic effect of betulin on solid Ehrlich adenocarcinoma tumors was observed when betulin was combined with cytostatic Namitecan (NMRI mice). The high-purity betulin used in this study is very stable even under fluctuating storage conditions. Conclusions: Our study suggests that both the method of betulin administration and the proposed analytical procedure could greatly increase the reliability and reproducibility of in vivo studies, as well as future preclinical and clinical studies on the effects of betulin and potentially other similar water-insoluble triterpenoids on living organisms. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

20 pages, 3854 KiB  
Article
Immobilized Pseudomonas fluorescens Lipase on Eggshell Membranes for Sustainable Lipid Structuring in Cocoa Butter Substitute
by Marta Ostojčić, Marija Stjepanović, Blanka Bilić Rajs, Ivica Strelec, Natalija Velić, Mirna Brekalo, Volker Hessel and Sandra Budžaki
Processes 2025, 13(8), 2548; https://doi.org/10.3390/pr13082548 - 12 Aug 2025
Viewed by 165
Abstract
As the supply of cocoa becomes increasingly volatile, biotechnological innovations such as lipid engineering with lipases play a crucial role in supporting more stable, ethical, and sustainable chocolate production systems. This study explores the potential of Pseudomonas fluorescens lipase immobilized on eggshell membrane-based [...] Read more.
As the supply of cocoa becomes increasingly volatile, biotechnological innovations such as lipid engineering with lipases play a crucial role in supporting more stable, ethical, and sustainable chocolate production systems. This study explores the potential of Pseudomonas fluorescens lipase immobilized on eggshell membrane-based carriers for the synthesis of a cocoa butter substitute (CBS). The carriers were prepared by treating eggshells with different acids to generate chemically distinct support materials. Lipase immobilization was performed using both adsorption and covalent binding techniques. All resulting biocatalysts were characterized and compared to the free enzyme with respect to pH and temperature optima, as well as thermal and solvent stability. Immobilization caused shifts in the enzyme’s optimal operating conditions and significantly improved its stability at elevated temperatures and in the presence of organic solvents. Among the tested systems, the lipase immobilized by adsorption onto a hydrochloric acid-treated carrier exhibited the best performance. Using this biocatalyst, a CBS containing 93.54 ± 0.16% of the target triacylglycerols (POP, POS, and SOS) was successfully synthesized and reused over five consecutive synthesis cycles without significant loss of activity. These findings demonstrate the potential of waste-derived biomaterials for the development of efficient, stable, and reusable biocatalysts in the enzymatic production of functional lipids. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

11 pages, 4661 KiB  
Article
Somatic Embryogenesis in Native Peruvian Fine-Flavor Cocoa Genotypes
by Karol Rubio, Santos Leiva, Manuel Oliva, Jorge R. Diaz-Valderrama and Juan Carlos Guerrero-Abad
Int. J. Plant Biol. 2025, 16(3), 84; https://doi.org/10.3390/ijpb16030084 - 1 Aug 2025
Viewed by 170
Abstract
Cacao genotypes propagation through plant tissue culture represents a strategic approach for establishing a core collection of elite plants to be used as a donor material source, necessary for increasing new planting areas of cacao. This study aimed to evaluate somatic embryo regeneration [...] Read more.
Cacao genotypes propagation through plant tissue culture represents a strategic approach for establishing a core collection of elite plants to be used as a donor material source, necessary for increasing new planting areas of cacao. This study aimed to evaluate somatic embryo regeneration in ten native fine-aroma cacao genotypes (INDES-06, INDES-11, INDES-14, INDES-32, INDES-52, INDES-53, INDES-63, INDES-64, INDES-66, INDES-70) from the INDES-CES germplasm collection, under in vitro conditions using culture medium supplemented with different concentrations of Thidiazuron (0, 10, and 20 nM). Our results showed an average of 20 and 100% of callogenesis in all genotypes evaluated, but the callus development did not appear after early stages of its induction; however, primary somatic embryos were observed after 42 days after TDZ treatment in the INDES-52, INDES-53, INDES-64, INDES-66, INDES-70 genotypes. The INDES-52 genotype was more responsive to under 20 nM of TDZ, generating an average of 17 embryos per explant. This study contributes to the adaptation and establishment of a protocol for somatic embryo regeneration of fine-flavor cacao genotypes. Full article
(This article belongs to the Section Plant Reproduction)
Show Figures

Figure 1

23 pages, 2345 KiB  
Article
From Waste to Biocatalyst: Cocoa Bean Shells as Immobilization Support and Substrate Source in Lipase-Catalyzed Hydrolysis
by Luciana Lordelo Nascimento, Bruna Louise de Moura Pita, César de Almeida Rodrigues, Paulo Natan Alves dos Santos, Yslaine Andrade de Almeida, Larissa da Silveira Ferreira, Maira Lima de Oliveira, Lorena Santos de Almeida, Cleide Maria Faria Soares, Fabio de Souza Dias and Alini Tinoco Fricks
Molecules 2025, 30(15), 3207; https://doi.org/10.3390/molecules30153207 - 30 Jul 2025
Viewed by 262
Abstract
This study reports the development of a sustainable biocatalyst system for free fatty acid (FFA) production from cocoa bean shell (CBS) oil using Burkholderia cepacia lipase (BCL). CBS was explored as both a support material and a reaction substrate. Six immobilized [...] Read more.
This study reports the development of a sustainable biocatalyst system for free fatty acid (FFA) production from cocoa bean shell (CBS) oil using Burkholderia cepacia lipase (BCL). CBS was explored as both a support material and a reaction substrate. Six immobilized systems were prepared using organic (CBS), inorganic (silica), and hybrid (CBS–silica) supports via physical adsorption or covalent binding. Among them, the covalently immobilized enzyme on CBS (ORG-CB) showed the most balanced performance, achieving a catalytic efficiency (Ke) of 0.063 mM−1·min−1 (18.6% of the free enzyme), broad pH–temperature tolerance, and over 50% activity retention after eight reuse cycles. Thermodynamic analysis confirmed enhanced thermal resistance for ORG-CB (Ed = 32.3 kJ mol−1; ΔH‡ = 29.7 kJ mol−1), while kinetic evaluation revealed that its thermal deactivation occurred faster than for the free enzyme under prolonged heating. In application trials, ORG-CB reached 60.1% FFA conversion from CBS oil, outperforming the free enzyme (49.9%). These findings validate CBS as a dual-function material for enzyme immobilization and valorization of agro-industrial waste. The results also reinforce the impact of immobilization chemistry and support composition on the operational and thermal performance of biocatalysts, contributing to the advancement of green chemistry strategies in enzyme-based processing. Full article
(This article belongs to the Special Issue Biotechnology and Biomass Valorization)
Show Figures

Figure 1

26 pages, 7326 KiB  
Article
Cocoa Polyphenols Alter the Fecal Microbiome Without Mitigating Colitis in Mice Fed Healthy or Western Basal Diets
by Eliza C. Stewart, Mohammed F. Almatani, Marcus Hayden, Giovanni Rompato, Jeremy Case, Samuel Rice, Korry J. Hintze and Abby D. Benninghoff
Nutrients 2025, 17(15), 2482; https://doi.org/10.3390/nu17152482 - 29 Jul 2025
Viewed by 456
Abstract
Background/Objectives: Chronic inflammation and Western-style diets elevate colorectal cancer (CRC) risk, particularly in individuals with colitis, a feature of inflammatory bowel disease (IBD). Diets rich in polyphenol-containing functional foods, such as cocoa, may reduce gut inflammation and modulate the gut microbiome. This [...] Read more.
Background/Objectives: Chronic inflammation and Western-style diets elevate colorectal cancer (CRC) risk, particularly in individuals with colitis, a feature of inflammatory bowel disease (IBD). Diets rich in polyphenol-containing functional foods, such as cocoa, may reduce gut inflammation and modulate the gut microbiome. This study investigated the impact of cocoa polyphenol (CP) supplementation on inflammation and microbiome composition in mice with colitis, fed either a healthy or Western diet, before, during, and after the onset of disease. We hypothesized that CPs would attenuate inflammation and promote distinct shifts in the microbiome, especially in the context of a Western diet. Methods: A 2 × 2 factorial design tested the effects of the basal diet (AIN93G vs. total Western diet [TWD]) and CP supplementation (2.6% w/w CocoaVia™ Cardio Health Powder). Inflammation was induced using the AOM/DSS model of colitis. Results: CP supplementation did not reduce the severity of colitis, as measured by disease activity index or histopathology. CPs did not alter gene expression in healthy tissue or suppress the colitis-associated pro-inflammatory transcriptional profile in either of the two diet groups. However, fecal microbiome composition shifted significantly with CPs before colitis induction, with persistent effects on several rare taxa during colitis and recovery. Conclusions: CP supplementation did not mitigate inflammation or mucosal injury at the tissue level, nor did it affect the expression of immune-related genes. While CPs altered microbiome composition, most notably in healthy mice before colitis, these shifts did not correspond to changes in inflammatory signaling. Basal diet remained the primary determinant of inflammation, mucosal damage, and colitis severity in this model. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

18 pages, 1166 KiB  
Article
Incorporation of Pork Meat and Blood Plasma Proteins into a Cocoa Cream Matrix: Characterization, Comparison of Functional Properties, and In Vitro Simulated Digestion
by Milica Stožinić, Đurđica Ačkar, Branislav Šojić, Tea Sedlar, Ljiljana Popović, Biljana Pajin, Ivana Flanjak, Maja Bulatović, Jovana Petrović, Ivana Nikolić and Ivana Lončarević
Foods 2025, 14(14), 2547; https://doi.org/10.3390/foods14142547 - 21 Jul 2025
Viewed by 370
Abstract
Consumer requirements for confectionery products have changed significantly over the past decade. These changes are evident in the growing demand for products that are high in protein but lower in energy content and, as a result, the market for these types of products [...] Read more.
Consumer requirements for confectionery products have changed significantly over the past decade. These changes are evident in the growing demand for products that are high in protein but lower in energy content and, as a result, the market for these types of products is expanding. This study compared the chemical composition and functional properties of pork meat protein (MP) and blood plasma protein (BP) and evaluated their incorporation into cocoa cream formulations. Functional properties, such as water-holding capacity (WHC) and oil-holding capacity (OHC), were determined. Essential amino acid profiles were determined using HPLC analysis, and protein digestibility was evaluated both in the native form and after incorporation into the cocoa cream matrix via in vitro enzymatic digestion assays. Additionally, antioxidant activity of the enriched cocoa creams was assessed using the established ABTS assay. Results showed that BP contained a higher proportion of essential amino acids (26.44% of total amino acids), meeting the FAO/WHO recommendations, and exhibited superior digestibility compared to MP. Both proteins demonstrated high WHC and OHC values. The antioxidant potential of BP-enriched cocoa cream further supported its functional benefits. These findings indicate that blood plasma protein is a promising ingredient for enhancing the nutritional and functional quality of cocoa cream products. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

11 pages, 798 KiB  
Article
Endophytic Bacteria with Potential Antimicrobial Activity Isolated from Theobroma cacao in Brazilian Amazon
by Lívia Freitas da Silva Pinto, Taynara Cristina Santos Tavares, Oscar Victor Cardenas-Alegria, Elaine Maria Silva Guedes Lobato, Cristina Paiva de Sousa and Adriana Ribeiro Carneiro Nunes
Microorganisms 2025, 13(7), 1686; https://doi.org/10.3390/microorganisms13071686 - 18 Jul 2025
Viewed by 431
Abstract
Endophytic bacteria inhabit plant tissues without damaging them and have specialized adaptation capabilities that allow them to establish themselves in this ecological niche. Endophytes produce numerous secondary metabolites with antimicrobial, anticancer, and pesticide properties, among others. In this study, endophytic bacteria were isolated [...] Read more.
Endophytic bacteria inhabit plant tissues without damaging them and have specialized adaptation capabilities that allow them to establish themselves in this ecological niche. Endophytes produce numerous secondary metabolites with antimicrobial, anticancer, and pesticide properties, among others. In this study, endophytic bacteria were isolated and characterized from cocoa plants in a Brazilian municipality, with the view to evaluate their potential antagonistic activity on clinical bacterial strains. The isolates were identified through phenotypic analysis and molecular characterization. After bacterial isolation, it was possible to verify the presence of 11 different endophytic strains, with a bacterial load of up to 6.3 × 103 CFU/g in each plant. The morphological and biochemical profile of the isolates varied. At the taxonomic level, these bacteria showed 99% similarity with the genera Microbacterium, Curtobacterium, Pseudomonas, Bacillus, Ralstonia, and Methylobacterium. The strains of the phylum Actinobacteria, which are known for producing natural bioactive compounds with high biotechnological potential, were effective in inhibiting Staphylococcus aureus ATCC and multidrug-resistant clinical strains. This work aims to expand knowledge about endophytes, with the aim of applying them in other sectors, such as the production of compounds against resistant human pathogens. Full article
Show Figures

Figure 1

22 pages, 4534 KiB  
Article
Upcycled Cocoa Pod Husk: A Sustainable Source of Phenol and Polyphenol Ingredients for Skin Hydration, Whitening, and Anti-Aging
by Aknarin Anatachodwanit, Setinee Chanpirom, Thapakorn Tree-Udom, Sunsiri Kitthaweesinpoon, Sudarat Jiamphun, Ongon Aryuwat, Cholpisut Tantapakul, Maria Pilar Vinardell and Tawanun Sripisut
Life 2025, 15(7), 1126; https://doi.org/10.3390/life15071126 - 17 Jul 2025
Viewed by 814
Abstract
Theobroma cacao L. (cocoa) pod husk, a byproduct of the chocolate industry, has potential for commercial applications due to its bioactive compounds. This study aimed to determine the phytochemical composition, biological activity, and clinical efficacy of a standardized extract. This study compared 80% [...] Read more.
Theobroma cacao L. (cocoa) pod husk, a byproduct of the chocolate industry, has potential for commercial applications due to its bioactive compounds. This study aimed to determine the phytochemical composition, biological activity, and clinical efficacy of a standardized extract. This study compared 80% ethanol (CE) and 80% ethanol acidified (CEA) as extraction solvents. The result indicated that CEA yielded higher total phenolic content (170.98 ± 7.41 mg GAE/g extract) and total flavonoid content (3.91 ± 0.27 mg QE/g extract) than CE. Liquid chromatography–tandem mass spectrometry (LC/MS/MS) identified various phenolic and flavonoid compounds. CEA demonstrated stronger anti-oxidant (IC50 = 5.83 ± 0.11 μg/mL in the DPPH assay and 234.17 ± 4.01 mg AAE/g extract in the FRAP assay) compared to CE. Additionally, CEA exhibited anti-tyrosinase (IC50 = 9.51 ± 0.01 mg/mL), anti-glycation (IC50 = 62.32 ± 0.18 µg/mL), and anti-collagenase (IC50 = 0.43 ± 0.01 mg/mL), nitric oxide (NO) production inhibitory (IC50 = 62.68 μg/mL) activities, without causing toxicity to cells. A formulated lotion containing CEA (0.01–1.0% w/w) demonstrated stability over six heating–cooling cycles. A clinical study with 30 volunteers showed no skin irritation. The 1.0% w/w formulation (F4) improved skin hydration (+52.48%), reduced transepidermal water loss (−7.73%), and decreased melanin index (−9.10%) after 4 weeks of application. These findings suggest cocoa pod husk extract as a promising active ingredient for skin hydrating and lightening formulation. Nevertheless, further long-term studies are necessary to evaluate its efficacy in anti-aging treatments. Full article
(This article belongs to the Special Issue Bioactive Compounds for Medicine and Health)
Show Figures

Figure 1

17 pages, 983 KiB  
Article
Oak Acorns as Functional Foods: Antioxidant Potential and Safety Assessment
by Vesna Stankov Jovanović, Vladan Djurić, Violeta Mitić, Ana Barjaktarević, Snežana Cupara, Marija Ilić and Jelena Nikolić
Foods 2025, 14(14), 2486; https://doi.org/10.3390/foods14142486 - 16 Jul 2025
Viewed by 406
Abstract
With the growing interest in natural and health-supporting foods, oak acorns (Quercus robur) are gaining renewed attention for their nutritional and antioxidant potential. This study explored how different processing methods affect bioactive compounds in three acorn-based products: raw acorn flour, roasted [...] Read more.
With the growing interest in natural and health-supporting foods, oak acorns (Quercus robur) are gaining renewed attention for their nutritional and antioxidant potential. This study explored how different processing methods affect bioactive compounds in three acorn-based products: raw acorn flour, roasted “coffee,” and washed-and-roasted “super coffee.” Extracts were obtained using methanol, acetone, and hexane to evaluate total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity via ABTS, DPPH, CUPRAC, FRAP, and TRP assays. Methanol proved to be the most effective solvent, extracting up to 66.53 mg GAE/g dw of phenolics in raw flour and 76.50 mg GAE/g dw in roasted “coffee,” reflecting a 15% increase in TPC after thermal treatment. However, the same treatment resulted in a 17% decrease in flavonoid content, from 181.5 mg RE/g dw in raw flour to 150.67 mg RE/g dw in “super coffee.” Antioxidant activity followed a similar pattern, with methanol extracts showing the highest values, up to 584 mg TE/g dw in the CUPRAC assay and 126.7 mg TE/g dw in ABTS. Safety was also assessed through the quantification of 16 priority polycyclic aromatic hydrocarbons (PAHs). The total PAH levels in the roasted “coffee” and “super coffee” samples were 222 ng/g dw and 290 ng/g dw, respectively. Importantly, PAH4 compounds, used as key safety indicators in EU regulations, were present in low concentrations, primarily as benzo[a]anthracene (34.3–39.8 ng/g), and none exceeded the maximum limits established for cocoa-based products. Benzo[a]pyrene, a major carcinogen, was not detected. The results confirm that acorns of Quercus robur, especially in their native flour form, are rich in antioxidants, naturally gluten-free, and safe when thermally processed, making them a strong candidate for use in functional foods. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

36 pages, 15335 KiB  
Article
An Application of Deep Learning Models for the Detection of Cocoa Pods at Different Ripening Stages: An Approach with Faster R-CNN and Mask R-CNN
by Juan Felipe Restrepo-Arias, María José Montoya-Castaño, María Fernanda Moreno-De La Espriella and John W. Branch-Bedoya
Computation 2025, 13(7), 159; https://doi.org/10.3390/computation13070159 - 2 Jul 2025
Viewed by 777
Abstract
The accurate classification of cocoa pod ripeness is critical for optimizing harvest timing, improving post-harvest processing, and ensuring consistent quality in chocolate production. Traditional ripeness assessment methods are often subjective, labor-intensive, or destructive, highlighting the need for automated, non-invasive solutions. This study evaluates [...] Read more.
The accurate classification of cocoa pod ripeness is critical for optimizing harvest timing, improving post-harvest processing, and ensuring consistent quality in chocolate production. Traditional ripeness assessment methods are often subjective, labor-intensive, or destructive, highlighting the need for automated, non-invasive solutions. This study evaluates the performance of R-CNN-based deep learning models—Faster R-CNN and Mask R-CNN—for the detection and segmentation of cocoa pods across four ripening stages (0–2 months, 2–4 months, 4–6 months, and >6 months) using the RipSetCocoaCNCH12 dataset, which is publicly accessible, comprising 4116 labeled images collected under real-world field conditions, in the context of precision agriculture. Initial experiments using pretrained weights and standard configurations on a custom COCO-format dataset yielded promising baseline results. Faster R-CNN achieved a mean average precision (mAP) of 64.15%, while Mask R-CNN reached 60.81%, with the highest per-class precision in mature pods (C4) but weaker detection in early stages (C1). To improve model robustness, the dataset was subsequently augmented and balanced, followed by targeted hyperparameter optimization for both architectures. The refined models were then benchmarked against state-of-the-art YOLOv8 networks (YOLOv8x and YOLOv8l-seg). Results showed that YOLOv8x achieved the highest mAP of 86.36%, outperforming YOLOv8l-seg (83.85%), Mask R-CNN (73.20%), and Faster R-CNN (67.75%) in overall detection accuracy. However, the R-CNN models offered valuable instance-level segmentation insights, particularly in complex backgrounds. Furthermore, a qualitative evaluation using confidence heatmaps and error analysis revealed that R-CNN architectures occasionally missed small or partially occluded pods. These findings highlight the complementary strengths of region-based and real-time detectors in precision agriculture and emphasize the need for class-specific enhancements and interpretability tools in real-world deployments. Full article
Show Figures

Figure 1

28 pages, 7091 KiB  
Article
Dynamic Microbiome Responses to Structurally Diverse Anthocyanin-Rich Foods in a Western Diet Context
by Mohammed F. Almatani, Giovanni Rompato, Eliza C. Stewart, Marcus Hayden, Jeremy Case, Samuel Rice, Korry J. Hintze and Abby D. Benninghoff
Nutrients 2025, 17(13), 2201; https://doi.org/10.3390/nu17132201 - 1 Jul 2025
Cited by 1 | Viewed by 549
Abstract
Background/Objectives: Anthocyanin (ACN)-rich foods are known to influence the gut microbiota composition, but the temporal dynamics and structural specificity of these effects remain poorly understood. This study investigated how distinct ACN-rich fruit supplements impact the gut microbiome over time in the context of [...] Read more.
Background/Objectives: Anthocyanin (ACN)-rich foods are known to influence the gut microbiota composition, but the temporal dynamics and structural specificity of these effects remain poorly understood. This study investigated how distinct ACN-rich fruit supplements impact the gut microbiome over time in the context of a Western-style diet. We hypothesized that ACN-induced microbial shifts would occur rapidly, differ by ACN source, and require continued intake to persist. Methods: C57BL/6J mice were fed the total Western diet (TWD) supplemented with freeze-dried powders from bilberry (BB), tart cherry (TC), chokeberry (CB), elderberry (EB), black currant (BC), or black raspberry (BRB) for 0, 1, 3, or 7 days. Cocoa polyphenols (CPs) were included as a comparator with a distinct polyphenol profile. Fecal microbiota were collected at 0, 1, 3, and 7 days post exposure and analyzed by 16S rRNA sequencing. Results: ACN-rich supplements induced rapid microbial shifts detectable within one day of exposure. However, most changes reverted toward the baseline within days of supplement withdrawal, indicating limited persistence. Among the ACNs, BRB produced the most sustained microbiome alterations. Microbial responses varied by ACN source, suggesting that differences in glycoside and aglycone structures influence the community composition. Conclusions: ACN-rich foods can induce rapid but largely transient alterations in the gut microbiome, with variability linked to the polyphenol structure. These findings highlight the ecological sensitivity of the microbiome to specific dietary components and underscore the importance of sustained intake for maintaining microbial shifts. Full article
(This article belongs to the Special Issue Dietary Patterns and Gut Microbiota)
Show Figures

Figure 1

Back to TopTop