Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (141)

Search Parameters:
Keywords = coastal lagoon system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6753 KB  
Article
Holistic Ecosystem Assessment of the Mangalia–Limanu Coastal Lake (Black Sea, Romania)
by Ana Bianca Pavel, Catalina Gavrila, Irina Catianis, Gabriel Iordache, Florina Radulescu, Adrian Teaca and Laura Dutu
Limnol. Rev. 2025, 25(4), 51; https://doi.org/10.3390/limnolrev25040051 - 23 Oct 2025
Viewed by 260
Abstract
The Mangalia–Limanu coastal lake system, located in southeastern Romania along the Black Sea, represents a transitional aquatic environment shaped by the interplay between freshwater and marine influences. This study provides an integrated assessment of its physicochemical water parameters, sedimentological and geochemical properties, and [...] Read more.
The Mangalia–Limanu coastal lake system, located in southeastern Romania along the Black Sea, represents a transitional aquatic environment shaped by the interplay between freshwater and marine influences. This study provides an integrated assessment of its physicochemical water parameters, sedimentological and geochemical properties, and benthic macroinvertebrate communities, aiming to evaluate its current ecological status and environmental dynamics. Field measurements using a multiparameter sonde revealed a predominantly freshwater to oligohaline system with moderate spatial heterogeneity. DO levels frequently reached supersaturation (>180%), coupled with high pH (~9.1), indicating intense daytime photosynthetic activity. Conductivity, TDS, and salinity increased longitudinally toward the port water area, while nitrate concentrations showed stronger signals upstream. Sediments were dominated by organic matter (18–88%), with lower carbonate (3–53%) and siliciclastic (8–49%) contents. Organic-rich deposits prevailed in the western-central sector, where reduced hydrodynamics and submerged vegetation favor autochthonous organic accumulation, whereas the eastern sector, exposed to marine action, showed more siliciclastic-rich substrates. Geochemical analyses revealed localized exceedances of Cr, Ni, Cu, Zn, and Pb regulatory thresholds (Order 161/2006), suggesting potential contamination hotspots. Benthic communities included 26 taxa, dominated by polychaetas, gammarids, and gastropods, with moderate diversity (H′ < 2). The results highlight a system under moderate anthropogenic pressure but retaining transitional lagoon characteristics, emphasizing the need for continued ecological monitoring and integrated management measures. Full article
Show Figures

Figure 1

19 pages, 5921 KB  
Article
A Two-Stage Semiempirical Model for Satellite-Derived Bathymetry Based on Log-Ratio Reflectance Indices
by Felivalentín Lamas-Torres, Joel Artemio Morales Viscaya, Leonardo Tenorio-Fernández and Rafael Cervantes-Duarte
Geomatics 2025, 5(4), 57; https://doi.org/10.3390/geomatics5040057 - 18 Oct 2025
Viewed by 268
Abstract
Accurate bathymetric information is crucial for coastal management, navigation, and ecosystem monitoring, yet conventional hydrographic surveys are costly and logistically demanding. This study introduces a two-stage semiempirical model for satellite-derived bathymetry (SDB) based on log-ratio reflectance indices from atmospherically corrected Landsat 8 imagery. [...] Read more.
Accurate bathymetric information is crucial for coastal management, navigation, and ecosystem monitoring, yet conventional hydrographic surveys are costly and logistically demanding. This study introduces a two-stage semiempirical model for satellite-derived bathymetry (SDB) based on log-ratio reflectance indices from atmospherically corrected Landsat 8 imagery. The approach combines the optical sensitivity of the green/blue band ratio and the attenuation properties of the red/blue ratio within a parametric regression framework, enhancing both stability and interpretability. The methodology was evaluated in two contrasting coastal environments: the turbid Magdalena-Almejas Lagoon System (Mexico) and the clear-water coral reef setting of Buck Island (U.S. Virgin Islands). Results demonstrated that the proposed model outperformed traditional semiempirical approaches (Lyzenga, Stumpf, Hashim), achieving R2=0.8155 (RMSE = 1.16 m) in Magdalena-Almejas and R2=0.9157 (RMSE = 1.38 m) in Buck Island. Performance was statistically superior to benchmark methods according to cross-validated confidence intervals and was comparable to an artificial neural network, while avoiding overfitting in data-scarce environments. These findings highlight the model’s suitability as a transparent, cost-efficient, and scalable alternative for SDB, particularly valuable in regions where in situ data are limited. Full article
Show Figures

Figure 1

30 pages, 4855 KB  
Article
Towards Reliable High-Resolution Satellite Products for the Monitoring of Chlorophyll-a and Suspended Particulate Matter in Optically Shallow Coastal Lagoons
by Samuel Martin, Philippe Bryère, Pierre Gernez, Pannimpullath Remanan Renosh and David Doxaran
Remote Sens. 2025, 17(20), 3430; https://doi.org/10.3390/rs17203430 - 14 Oct 2025
Viewed by 482
Abstract
Coastal lagoons are fragile and dynamic ecosystems that are particularly vulnerable to climate change and anthropogenic pressures such as urbanization and eutrophication. These vulnerabilities highlight the need for frequent and spatially extensive monitoring of water quality (WQ). While satellite remote sensing offers a [...] Read more.
Coastal lagoons are fragile and dynamic ecosystems that are particularly vulnerable to climate change and anthropogenic pressures such as urbanization and eutrophication. These vulnerabilities highlight the need for frequent and spatially extensive monitoring of water quality (WQ). While satellite remote sensing offers a valuable tool to support this effort, the optical complexity and shallow depths of lagoons pose major challenges for retrieving water column biogeochemical parameters such as chlorophyll-a ([chl-a]) and suspended particulate matter ([SPM]) concentrations. In this study, we develop and evaluate a robust satellite-based processing chain using Sentinel-2 MSI imagery over two French Mediterranean lagoon systems (Berre and Thau), supported by extensive in situ radiometric and biogeochemical datasets. Our approach includes the following: (i) a comparative assessment of six atmospheric correction (AC) processors, (ii) the development of an Optically Shallow Water Probability Algorithm (OSWPA), a new semi-empirical algorithm to estimate the probability of bottom contamination (BC), and (iii) the evaluation of several [chl-a] and [SPM] inversion algorithms. Results show that the Sen2Cor AC processor combined with a near-infrared similarity correction (NIR-SC) yields relative errors below 30% across all bands for retrieving remote-sensing reflectance Rrs(λ). OSWPA provides a spatially continuous and physically consistent alternative to binary BC masks. A new [chl-a] algorithm based on a near-infrared/blue Rrs ratio improves the retrieval accuracy while the 705 nm band appears to be the most suitable for retrieving [SPM] in optically shallow lagoons. This processing chain enables high-resolution WQ monitoring of two coastal lagoon systems and supports future large-scale assessments of ecological trends under increasing climate and anthropogenic stress. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

24 pages, 3374 KB  
Article
Characterization of the Meiobenthic Community Inhabiting the Zwin Coastal Lagoon (Belgium, the Netherlands) and the Role of the Sedimentary Environment
by Elisa Baldrighi, Francesca Alvisi, Carl Van Colen, Eleonora Grassi, Linda Catani, Francesca Ape, Claudio Vasapollo, Elena Manini, Jeffrey G. Baguley and Federica Semprucci
Water 2025, 17(18), 2669; https://doi.org/10.3390/w17182669 - 9 Sep 2025
Cited by 1 | Viewed by 725
Abstract
Coastal waters are sensitive habitats that support high biodiversity and provide essential ecosystem goods. Changes in sedimentation regimes due to land-use and engineering activities in the coastal zone affect biodiversity and these habitats’ ecological value. This study aims to characterize the meiobenthic communities [...] Read more.
Coastal waters are sensitive habitats that support high biodiversity and provide essential ecosystem goods. Changes in sedimentation regimes due to land-use and engineering activities in the coastal zone affect biodiversity and these habitats’ ecological value. This study aims to characterize the meiobenthic communities inhabiting the Zwin tidal lagoon, located on the border between Belgium and the Netherlands, and to evaluate to what extent the sedimentological characteristics and the quantity and composition of organic matter influence the composition and distribution of meiofauna. The meiobenthic community showed traits of a well-established population dominated by nematodes, followed by copepods + nauplii. Notably, meiofauna rapidly colonized the area after its opening to the sea in February 2019 (two years before sampling), showing that even very weak tidal currents were sufficient to suspend and transport these animals to the new environment. Our results suggest that the Zwin lagoon is a productive system with high food quality (i.e., PRT/CHO ≥ 1), predominantly of marine origin. Major structural differences in communities were related to the sedimentary environments at the investigated stations and estimations of the quantity of food. The present findings confirm that sedimentary dynamics and depositional processes, through their influence on sediment properties (e.g., grain size) and organic matter’s quantity and composition, shape meiofaunal communities and their vertical and horizontal distributions. Full article
(This article belongs to the Special Issue Marine Biodiversity and Its Relationship with Climate/Environment)
Show Figures

Figure 1

17 pages, 13910 KB  
Article
Sediment Dynamics and Erosion in a Complex Coastal Lagoon System in the Southern Gulf of Mexico
by Rosalinda Monreal-Jiménez, Noel Carbajal, Víctor Kevin Contreras-Tereza and David Salas-Monreal
Water 2025, 17(16), 2408; https://doi.org/10.3390/w17162408 - 14 Aug 2025
Viewed by 736
Abstract
The complex lagoon system of Carmen, Pajonal, and Machona in the Southern Gulf of Mexico is characterized by highly active sedimentary dynamics. To reproduce the sedimentary dynamics processes, the MOHID model, coupled with the SWAN wave model, was applied to different scenarios through [...] Read more.
The complex lagoon system of Carmen, Pajonal, and Machona in the Southern Gulf of Mexico is characterized by highly active sedimentary dynamics. To reproduce the sedimentary dynamics processes, the MOHID model, coupled with the SWAN wave model, was applied to different scenarios through a climatic analysis of winds. Historical wind data indicate that the region has experienced a significant shift in the principal wind component over the last two decades. Furthermore, hurricanes have impacted the lagoon system on multiple occasions in recent decades. Five numerical experiments were conducted, considering both historical and present-day wind conditions, the impact of Hurricane Larry, and engineering works such as breakwaters, to better understand the sedimentary dynamics of the lagoon system. Model results revealed intense and variable sediment transport depending on the intensity and direction of the prevailing winds, waves, extreme weather events, and breakwater locations. Full article
(This article belongs to the Section Water Erosion and Sediment Transport)
Show Figures

Figure 1

16 pages, 7614 KB  
Article
Untangling the Toxicity Dilemma of the Orbetello Lagoon Sediments in Paracentrotus lividus Bioassay: Trace Metals vs. Ammonium
by Davide Sartori, Simona Macchia, Giorgio Tranchida, Paolo Altemura, Vincenzo Tancredi, Alice Scuderi, Maria Elena Piccione, Stefano Ferrari and Andrea Gaion
Nitrogen 2025, 6(3), 62; https://doi.org/10.3390/nitrogen6030062 - 28 Jul 2025
Viewed by 885
Abstract
This study assesses sediment toxicity in the historically contaminated Orbetello Lagoon (southern Tuscany) using Paracentrotus lividus embryo development bioassays. Elutriates from 15 sites were analysed for trace metals, organic matter, and ammonium. Despite elevated mercury concentrations, toxicity did not consistently correlate with metal [...] Read more.
This study assesses sediment toxicity in the historically contaminated Orbetello Lagoon (southern Tuscany) using Paracentrotus lividus embryo development bioassays. Elutriates from 15 sites were analysed for trace metals, organic matter, and ammonium. Despite elevated mercury concentrations, toxicity did not consistently correlate with metal levels. Instead, Principal Component Analysis (PCA) identified ammonium as a key driver of developmental toxicity, suggesting that it significantly influences both biological effects and metal bioavailability. These results demonstrate that ammonium, often overlooked, can confound sediment toxicity assessments and should be integrated into risk evaluation frameworks for coastal systems affected by legacy pollution. Full article
Show Figures

Figure 1

24 pages, 10881 KB  
Article
Dynamics of Water Quality in the Mirim–Patos–Mangueira Coastal Lagoon System with Sentinel-3 OLCI Data
by Paula Andrea Contreras Rojas, Felipe de Lucia Lobo, Wesley J. Moses, Gilberto Loguercio Collares and Lino Sander de Carvalho
Geomatics 2025, 5(3), 36; https://doi.org/10.3390/geomatics5030036 - 25 Jul 2025
Viewed by 1068
Abstract
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the [...] Read more.
The Mirim–Patos–Mangueira coastal lagoon system provides a wide range of ecosystem services. However, its vast territorial extent and the political boundaries that divide it hinder integrated assessments, especially during extreme hydrological events. This study is divided into two parts. First, we assessed the spatial and temporal patterns of water quality in the lagoon system using Sentinel-3/OLCI satellite imagery. Atmospheric correction was performed using ACOLITE, followed by spectral grouping and classification into optical water types (OWTs) using the Sentinel Applications Platform (SNAP). To explore the behavior of water quality parameters across OWTs, Chlorophyll-a and turbidity were estimated using semi-empirical algorithms specifically designed for complex inland and coastal waters. Results showed a gradual increase in mean turbidity from OWT 2 to OWT 6 and a rise in chlorophyll-a from OWT 2 to OWT 4, with a decline at OWT 6. These OWTs correspond, in general terms, to distinct water masses: OWT 2 to clearer waters, OWT 3 and 4 to intermediate/mixed conditions, and OWT 6 to turbid environments. In the second part, we analyzed the response of the Patos Lagoon to flooding in Rio Grande do Sul during an extreme weather event in May 2024. Satellite-derived turbidity estimates were compared with in situ measurements, revealing a systematic underestimation, with a negative bias of 2.6%, a mean relative error of 78%, and a correlation coefficient of 0.85. The findings highlight the utility of OWT classification for tracking changes in water quality and support the use of remote sensing tools to improve environmental monitoring in data-scarce regions, particularly under extreme hydrometeorological conditions. Full article
(This article belongs to the Special Issue Advances in Ocean Mapping and Hydrospatial Applications)
Show Figures

Figure 1

17 pages, 1309 KB  
Article
Stakeholders’ Views on a Decadal Evolution of a Southwestern European Coastal Lagoon
by Mariana Pinho, Daniel Crespo, Dionísia Laranjeiro and Ana I. Lillebø
Sustainability 2025, 17(14), 6321; https://doi.org/10.3390/su17146321 - 10 Jul 2025
Viewed by 709
Abstract
Addressing environmental challenges requires the inclusion of local communities with relevant knowledge of the social–ecological system in which they are embedded, in addition to using transdisciplinary approaches that are critical to the co-production of successful and sustainable environmental solutions. A qualitative methodology was [...] Read more.
Addressing environmental challenges requires the inclusion of local communities with relevant knowledge of the social–ecological system in which they are embedded, in addition to using transdisciplinary approaches that are critical to the co-production of successful and sustainable environmental solutions. A qualitative methodology was used to examine stakeholders’ views of decadal changes in Ria de Aveiro, a coastal lagoon on Portugal’s Atlantic coast. Seven focus groups were conducted, which included 42 stakeholders from coastal parishes, in order to obtain identical geographical representation with a study conducted a decade ago. Participants represented a diverse sample of groups interested in or affected by management options and activities in the lagoon system and were asked to reflect on the main changes that occurred over the last decade. Positive changes reflected an increase in the levels of environmental awareness, a positive trajectory of the environmental status of Ria de Aveiro, and a decrease in illegal fishing activities. Persisting concerns referred to the lack of an efficient management body for Ria de Aveiro, pressures related to changes in the hydrodynamic regime of the lagoon, the disappearance of native species and increase in invasive alien species, the abandonment of traditional activities (e.g., harvesting of seagrass and seaweed, salt production, agriculture in lagoon margins, and artisanal fishing), and the degradation and lack of maintenance of salt pans. Our findings highlight the importance of longer-term transdisciplinary and social–ecological research and illustrate how stakeholder views regarding the shortfalls of the movement towards the integrated management of ecosystems remain. Full article
Show Figures

Figure 1

27 pages, 21816 KB  
Article
Spatiotemporal Dynamics and Mechanisms of Coastal Rural Settlements Under Diverse Geomorphic Conditions: A Multi-Bay Analysis in Guangdong, China
by Ying Pan, Siyi Feng and Ying Shi
Land 2025, 14(7), 1390; https://doi.org/10.3390/land14071390 - 2 Jul 2025
Viewed by 791
Abstract
The spatiotemporal evolution of coastal rural settlements varies significantly across different geomorphic environments, yet this variation is underexplored in current research. Guided by Coupled Human and Natural Systems, this study examines the adaptation mechanisms between coastal rural settlements and landforms using an integrated [...] Read more.
The spatiotemporal evolution of coastal rural settlements varies significantly across different geomorphic environments, yet this variation is underexplored in current research. Guided by Coupled Human and Natural Systems, this study examines the adaptation mechanisms between coastal rural settlements and landforms using an integrated framework that combines various bay types, spatiotemporal characteristics, and dynamic drivers. Four representative bay types along Guangdong’s coast were analyzed: Hilly Ria Coast, Platform Ria Coast, Barrier-Lagoon Coast, and Estuarine Delta Coast. Using multi-source remote sensing data and optimized Geodetector modeling (1972 vs. 2022), we identified the patterns of spatiotemporal evolution and their driving forces. The results reveal distinct adaptation pathways: Hilly Ria Coast settlements expanded in a constrained manner, supported by tunnel–bridge infrastructure; Platform Ria Coasts developed multi-nucleated, port-oriented clusters through harbor-linked road networks; Barrier-Lagoon Coasts achieved balanced growth through integrated land–river–sea governance; and Estuarine Delta Coasts experienced urban–rural restructuring accompanied by water network degradation. This study proposes governance strategies tailored to specific landforms to support sustainable coastal planning. Full article
(This article belongs to the Topic Contemporary Waterfronts, What, Why and How?)
Show Figures

Figure 1

33 pages, 11447 KB  
Article
Structural Evolution of the Coastal Landscape in Klaipėda Region, Lithuania: 125 Years of Political and Sociocultural Transformations
by Thomas Gloaguen, Sébastien Gadal, Jūratė Kamičaitytė and Kęstutis Zaleckis
Land 2025, 14(7), 1356; https://doi.org/10.3390/land14071356 - 26 Jun 2025
Cited by 1 | Viewed by 822
Abstract
The coastal region of Klaipėda (Lithuania) has experienced major political, economic, social, and cultural transformations since the 20th century. Landscapes as evolving expressions of land use and land cover patterns offer a valuable lens to analyse these changes. This study examines the evolution [...] Read more.
The coastal region of Klaipėda (Lithuania) has experienced major political, economic, social, and cultural transformations since the 20th century. Landscapes as evolving expressions of land use and land cover patterns offer a valuable lens to analyse these changes. This study examines the evolution of physical landscape structures across the pre-Soviet, Soviet, and post-Soviet periods, using historical maps and open-access geospatial data. An ontological approach, combined with morphological and configurational metrics, reveals four major and relatively persistent landscape structures: hydrological systems (sea, lagoon, rivers), forest cover, farming intensity (from extensive grassland use to intensive arable farming), and semi-natural environments. Their structural evolution reflects broader cultural factors, such as contrasting land use traditions between former Prussian and Russian territories. The study also highlights the impact of Soviet collectivisation, marked by irrigation networks, agricultural intensification, and forest expansion. The post-Soviet period is characterised by widespread farmland abandonment and fragmentation, revealing new spatial dynamics and challenges in land reappropriation. Landscape transformations are predominantly structured around agricultural dynamics. Although the analysis was limited by the incomplete availability of data for this specific land use class, the centrality of agriculture in shaping territorial organisation is evident and reinforces the strong rural identity associated with the landscape. Full article
(This article belongs to the Special Issue Spatial-Temporal Evolution Analysis of Land Use)
Show Figures

Figure 1

12 pages, 2796 KB  
Article
Processes of Groundwater Contamination in Coastal Aquifers in Sri Lanka: A Geochemical and Isotope-Based Approach
by Movini Sathma Ratnayake, Sachintha Lakshan Senarathne, Saranga Diyabalanage, Chaminda Bandara, Sudeera Wickramarathne and Rohana Chandrajith
Water 2025, 17(11), 1571; https://doi.org/10.3390/w17111571 - 23 May 2025
Viewed by 1031
Abstract
Over the last decade, concern has increased about the deterioration of groundwater quality in coastal aquifers due to salinization processes resulting from uncontrolled abstraction and the impacts of global climate change. This study investigated the groundwater geochemistry of a narrow sandy peninsula bounded [...] Read more.
Over the last decade, concern has increased about the deterioration of groundwater quality in coastal aquifers due to salinization processes resulting from uncontrolled abstraction and the impacts of global climate change. This study investigated the groundwater geochemistry of a narrow sandy peninsula bounded by the ocean and brackish water lagoons in northern Sri Lanka. The population of the region has grown rapidly over the last decade with increasing agricultural activities, and therefore, the use of groundwater has increased. To investigate the effects of seawater intrusion and anthropogenic activities, selected water quality parameters and water isotopes (δ2H and δ18O) were measured in 51 groundwater samples. The results showed that selected shallow groundwater wells are vulnerable to contamination from anthropogenic processes and seawater intrusion, mainly indicated by Cl/Br ratios. Iron-rich groundwater (0.11 to 4.2 mg/L) could represent another problem in the studied groundwater. According to Water Quality Index calculations, 41% of shallow wells contained poor and unsuitable water for domestic and irrigation purposes. Most of the groundwater in the region was saturated with Ca and Mg containing mineral phases such as calcite, dolomite, magnesite and gypsum. Water isotopes (δ2H and δ18O) showed that about 50% of the groundwater samples were scattered near the local meteoric water line. This indicates sufficient rainwater infiltration. However, some samples exhibit elevated isotope values due to seawater admixture and secondary evaporation under semi-arid conditions. This study showed the utility of Cl/Br ratios as indicators for distinguishing anthropogenic sources of Cl contributions to groundwater in shallow, permeable aquifer systems. Full article
(This article belongs to the Special Issue Assessment of Groundwater Quality and Pollution Remediation)
Show Figures

Graphical abstract

26 pages, 4112 KB  
Article
Temporal Changes in Fishing Yields, Trophic Dynamics, and Fisheries in Three Mediterranean Lagoons: Logarou and Rodia-Tsoukalio (Greece) and Mar Menor (Spain)
by Theodore Zoulias, Angel Pérez-Ruzafa, Alexis Conides, Concepción Marcos, Sofia Reizopoulou, Dimitris Vafidis and Dimitris Klaoudatos
Ecologies 2025, 6(2), 35; https://doi.org/10.3390/ecologies6020035 - 5 May 2025
Viewed by 1418
Abstract
This study analyzes 1980–2020 landings data from three Mediterranean coastal lagoons—the Logarou and Rodia-Tsoukalio Lagoons (NW Greece) and the Mar Menor Lagoon (SE Spain)—to assess ecosystem changes and fishing pressure dynamics. The findings classify these systems as low-yielding, with productivity ranked as follows: [...] Read more.
This study analyzes 1980–2020 landings data from three Mediterranean coastal lagoons—the Logarou and Rodia-Tsoukalio Lagoons (NW Greece) and the Mar Menor Lagoon (SE Spain)—to assess ecosystem changes and fishing pressure dynamics. The findings classify these systems as low-yielding, with productivity ranked as follows: Yield Logarou > Yield Rodia-Tsoukalio = Yield Mar Menor. Mean trophic level analysis (mTrL) revealed significant differences driven by the contribution of detritivorous and mid-level carnivorous species (TrL Mar Menor > TrL Rodia-Tsoukalio > TrL Logarou). The fishing pressure indices suggest reduced fishing intensity in the Greek lagoons, while in Mar Menor, a stable Fisheries in Balance (FiB) trend corresponded with stable yields despite eutrophication. Cluster analysis (CA) and principal component analysis (PCA) linked ecosystem differences to sediment characteristics and changes in habitat structure. These results underscore a transition of Mediterranean coastal lagoons toward new ecological states, highlighting the urgent need for habitat conservation and adaptive management strategies to ensure sustainable fisheries under increasing environmental pressures. These findings may be extrapolated to similar transitional coastal ecosystems facing comparable anthropogenic stressors worldwide, providing a broader framework for understanding and managing lagoon systems under changing environmental conditions. Full article
Show Figures

Figure 1

28 pages, 14780 KB  
Article
Longyearbyen Lagoon (Spitsbergen): Gravel Spits Movement Rate and Mechanisms
by Nataliya Marchenko and Aleksey Marchenko
Geographies 2025, 5(2), 18; https://doi.org/10.3390/geographies5020018 - 3 Apr 2025
Viewed by 1137
Abstract
Understanding lagoon behavior is crucial for both scientific research and engineering decisions, especially in delicate Arctic environments. Lagoons are vital to coastal areas, often bolstering infrastructure resilience. Since spring 2019, we have monitored the Longyearbyen lagoon (Spitsbergen), vital for coastal erosion defense and [...] Read more.
Understanding lagoon behavior is crucial for both scientific research and engineering decisions, especially in delicate Arctic environments. Lagoons are vital to coastal areas, often bolstering infrastructure resilience. Since spring 2019, we have monitored the Longyearbyen lagoon (Spitsbergen), vital for coastal erosion defense and serving as a natural laboratory. The location’s well-developed infrastructure and accessible logistics make it an ideal testing site available at any time. It can be used for many natural scientific studies. The lagoon continually changes due to the primary action of waves and tides. This article focuses on gravel spit movement, accelerating in recent years to several meters monthly. Using methods of aerial and satellite images, laser scanning, and hydrodynamic measurements, we have delineated processes, rates, and mechanisms behind this movement. The measurements revealed an accelerating eastward movement of the lagoon spit, from 8 m in the first year to 86 m in the fourth year of observation. This can be explained by a combination of the reconstruction of the Longyearbyen riverbed and increased flow because of climate change. Notably, the expansion does not only occur in the summer months: from September 2022 to February 2023, the spit moved by 40 m, and then, by 19 m from February to June 2023. We found that the bed-load transport along the spit coupled with gravel slides are the primary drives of lagoon expansion and growth. We also investigated movements of groundwater in the spit and changes in gravel contents along the spit, influencing the water saturation of the gravel. Modelling these processes aids in forecasting lagoon system development, crucial for informed management and engineering decisions in Arctic coastal regions. Full article
Show Figures

Figure 1

29 pages, 6861 KB  
Article
Inventory and Quantitative Assessment of Coastal Geoheritage: Contribution to the Proposal of an Active Geomorphosite
by Roberta Somma, Ivan Angelo Gatì and Salvatore Giacobbe
Geosciences 2025, 15(4), 125; https://doi.org/10.3390/geosciences15040125 - 1 Apr 2025
Cited by 1 | Viewed by 1030
Abstract
The geoheritage present on the “Tindari Cape and Marinello Lakes” site (TCML, Messina Province, NE Sicily, Italy) drew our attention due to the acquired contrasting information. Indeed, the TCML geoheritage was classified in the geosite national catalogue as a geosite (albeit under a [...] Read more.
The geoheritage present on the “Tindari Cape and Marinello Lakes” site (TCML, Messina Province, NE Sicily, Italy) drew our attention due to the acquired contrasting information. Indeed, the TCML geoheritage was classified in the geosite national catalogue as a geosite (albeit under a non-evaluated status and with regional scientific interest), whereas it was classified in the geosite regional catalogue as a site of attention. The coastal geoheritage included in this site was analyzed by means of a literature review, field work, and a sedimentological and petrographic investigation. Moreover, the reconstruction of the historical to modern evolution of the lagoon and spit’s shapes was carried out across a time span of 85 years. The investigation results were used for the inventorying and quantitative assessment of the TCML geoheritage with the Brilha method. The primary and preeminent scientific interest was geomorphological, the lagoon and spit being an active geomorphosite. This system showed elements of rarity, representativeness, and exemplariness. Secondary-type geomorphological, structural, and palaeontological aspects were also evidenced in geological elements found on the cliffs of the Tindari Cape. For the quantitative assessment of the geodiversity, the scientific value (SV), potential educational use (PEU), potential touristic use (PTU), and degradation risk (DR) were evaluated. The obtained weighted scores were 320 (SV), 250 (PEU), 290 (PTU), and 285 (DR). The high SV suggested that the TCML, due to its geodiversity, could be classified as a geosite. Notwithstanding, the moderate PEU, PTU, and DR (fragility and vulnerability depending on natural climate and anthropogenic factors) values indicated that it was not fully compatible with educational and touristic purposes. The results of the inventorying and quantitative assessment of the TCML site provide scientific data that are useful in establishing the TCML as a global geosite, placing it in the national catalog of geosites. Full article
(This article belongs to the Topic Advances in Geodiversity Research)
Show Figures

Figure 1

41 pages, 8225 KB  
Article
Spatial and Temporal Scales of Variability of Mollusks in a Strongly Threatened Mediterranean Coastal Lagoon (Mar Menor, Murcia, Spain)
by Olga Sánchez-Fernández, Concepción Marcos, Patricia Puerta, Antonio Sala-Mirete and Angel Pérez-Ruzafa
Water 2025, 17(5), 657; https://doi.org/10.3390/w17050657 - 24 Feb 2025
Cited by 2 | Viewed by 1504
Abstract
Coastal lagoons are dynamic and highly productive systems that offer a remarkable number of ecological services and benefits for humans. However, our understanding of them is still far from adequate. The Mar Menor lagoon is an ecosystem subject to anthropogenic pressures that have [...] Read more.
Coastal lagoons are dynamic and highly productive systems that offer a remarkable number of ecological services and benefits for humans. However, our understanding of them is still far from adequate. The Mar Menor lagoon is an ecosystem subject to anthropogenic pressures that have worsened in recent years. These pressures include coastal works, such as dredging and sand dumping, as well as changes in agricultural regimes that have induced a process of eutrophication that set off alarms after the eutrophic crisis that occurred in 2016. Benthic organisms, and in particular mollusks, are very sensitive to environmental variations, often serving as indicators of these changes. This work analyzes the malacofauna of the Mar Menor from 1981 to 2019 in the context of the environmental changes that have occurred in it during these years. Eighty-six species have been recorded throughout our study period, and species richness, abundances, local assemblage structures, along with changes in the main environmental parameters of the water column (salinity, temperature, and chlorophyll a concentration) have been used to explain the composition of the communities of the main lagoon habitats and to detect their spatial and temporal variations. With the information provided, the complete inventory of mollusks reported in the lagoon has been updated to 126 species. The results indicate that, during these almost 40 years, the total number of species has remained relatively constant, but with a high percentage of occasional and very rare species, along with a high rate of change from one species to another over time, accompanied by variations in the abundance and dominance of some species compared to others depending on the environmental conditions and pressures that the lagoon has undergone. The high spatial and temporal heterogeneity detected is determined by the restricted connectivity with the open sea, the diversity of environments and habitats, and the changes in environmental conditions due to human actions. Full article
Show Figures

Figure 1

Back to TopTop