Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (71)

Search Parameters:
Keywords = coal waste deposits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 28206 KB  
Article
Design and Development of Sustainable Geopolymers Based on Fly Ash, Slag, and Diatomaceous Earth: A Chemometric Approach
by Dušan V. Trajković, Natalija D. Milojković, Nevenka N. Mijatović, Aleksandra S. Popović, Đorđe N. Veljović, Aleksandra A. Perić Grujić and Dragana Z. Živojinović
Sustain. Chem. 2025, 6(4), 45; https://doi.org/10.3390/suschem6040045 - 18 Nov 2025
Viewed by 791
Abstract
The burning of coal in thermal power plants throughout Serbia produces significant amounts of industrial waste, primarily in the form of fly ash, boiler ash, and slag. Given their annual production, availability, and fine grain structure, it is necessary that sustainable strategies are [...] Read more.
The burning of coal in thermal power plants throughout Serbia produces significant amounts of industrial waste, primarily in the form of fly ash, boiler ash, and slag. Given their annual production, availability, and fine grain structure, it is necessary that sustainable strategies are developed for their reuse, instead of depositing them directly in landfills. In this research, the possibility of using fly ash, slag, and diatomaceous earth as raw materials for the synthesis of geopolymers at low temperatures was examined, in order to replace cement in construction materials, with the aim of reducing carbon dioxide emissions. Special emphasis was put on the effect of addition of organic macromolecules—polyvinyl alcohol (PVA), chitosan, and starch—upon the structure and mechanical properties of the obtained materials. In addition, the behavior of the materials with regard to the leaching of heavy metals in different environmental conditions was examined. Chemometric methods of multivariate analysis were used to examine the correlations between the obtained physical–chemical parameters, while the dependence of mechanical properties on the composition of the raw mixture was analyzed using the Mixture Design of Experiments method. The results obtained indicate that the examined waste materials have potential to be used as an environmentally friendly alternative to cement. The addition of PVA and chitosan had a positive effect on the mechanical properties of the geopolymers, with the highest strength achieved in formulations based solely on fly ash, containing 2.5% PVA, which reached 12.6 MPa. It was also shown that the addition of 30% diatomaceous earth increases the density and compressive strength of the material, while reducing the number of microcracks present in its structure, with a compressive strength of 13 MPa. Full article
Show Figures

Graphical abstract

17 pages, 2720 KB  
Article
Studying Natural Radioactivity of Coals and Ash and Slag Waste as Potential Raw Materials for Quality Assessment and Extraction of Rare Earth Elements
by Yuriy Pak, Dmitriy Pak, Pyotr Kropachev, Vladimir Matonin, Diana Ibragimova, Anar Tebayeva, Pavel Timoshenko, Natalya Tsoy and Yelena Tseshkovskaya
Geosciences 2025, 15(11), 420; https://doi.org/10.3390/geosciences15110420 - 4 Nov 2025
Viewed by 789
Abstract
A significant portion of coal mined in Kazakhstan is mainly used for fuel energy and metallurgy. Approximately 60% of electricity is generated by coal-fired power engineering. About 19 million tons of ash and slag waste (ASW) are annually sent to dumps. After coal [...] Read more.
A significant portion of coal mined in Kazakhstan is mainly used for fuel energy and metallurgy. Approximately 60% of electricity is generated by coal-fired power engineering. About 19 million tons of ash and slag waste (ASW) are annually sent to dumps. After coal combustion, in ASW not only are natural radioactive nuclides NRN (U238, Th232, K40) concentrated, but also rare and rare earth elements (REE). In this regard, ASW that essentially turns into quasi-technogenic deposits of NRN and REE, requires systemic measures for their utilization. The possibilities of extracting REE from coal power-industry waste are estimated based on the analysis of the concentration of REE (Ce, La, Nd, Sm, etc.), NRN (U238, Th232 and their decay products, K40) and the established significant correlations between rare earth and radioactive elements. The purpose of this paper is to study the natural radioactivity of coals and ash and slag waste as potential raw materials for assessing the quality and extracting rare earth metals. The stated purpose involves solving the following problems: studying the features of the NRN and REE distribution in coals and ash and slag waste; assessing the possibility of using ash and slag waste as a promising source of REE extraction based on nuclear radiometric studies; and studying the spectrometry of natural gamma radiation for assessing the quality of coals. Full article
Show Figures

Figure 1

19 pages, 3575 KB  
Article
Attenuation of Acid Mine Drainage in a Coal Waste Deposit in Southern Brazil and the Prospect of Transitioning from Active to Passive Treatment
by Felipe Santin Keller, Cláudio Boff, Daniela Silva, Alexandre Grigorieff, Cristiano Corrêa Weber, Jéssica Weiler and Ivo André Homrich Schneider
Minerals 2025, 15(10), 1068; https://doi.org/10.3390/min15101068 - 11 Oct 2025
Viewed by 637
Abstract
Capão da Roça, located in the municipality of Charqueadas, is one of the few areas of coal tailing deposits at the surface within the State of Rio Grande do Sul, Brazil that generates acid mine drainage (AMD). Over the course of 2007, the [...] Read more.
Capão da Roça, located in the municipality of Charqueadas, is one of the few areas of coal tailing deposits at the surface within the State of Rio Grande do Sul, Brazil that generates acid mine drainage (AMD). Over the course of 2007, the landfill was characterised in detail, and an active treatment plant involving pH neutralisation and metal precipitation operations was implemented to meet emission standards for mine water. In that year, based on the sulphur mass balance, it was estimated that the process of AMD generation would last for approximately two decades. The objective of this work was to study the temporal evolution of the parameters of the raw AMD. The effluent was analysed for 17 years on a monthly basis in regard to pH, acidity, metals (Fe, Al, and Mn), and sulphates. The results indicated an increase in pH (from 2.1 to 4.7), a decay in the concentration of metals (from 177.8 to 0.1 mg L−1 for iron, 29.0 to 0.1 mg L−1 for aluminium, and 3.1 to 0.6 mg L−1 for manganese), sulphates (from 2023 to 307 mg L−1), and acidity (from 539.5 mg CaCO3 L−1 to 3.96 mg CaCO3 L−1), which were adjusted to a first-order kinetic model in agreement with observations at some other mining sites. Over the years, the active lime neutralisation–precipitation treatment system has been efficient in treating the effluent. Today, most water quality parameters already meet emissions standards; however, the AMD treatment plant is still necessary to prevent pH fluctuations and to reduce the concentrations of manganese. For this reason, a transition from an active to a passive treatment system was considered. Pilot scale studies confirmed that channels filled with gravel-size limestone or slag enable the neutralisation/increase in the pH of the effluent and remove residual amounts of some metals, resulting in an effluent with no level of toxicity to the microcrustacean Daphnia magna. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Graphical abstract

21 pages, 641 KB  
Review
Towards Sustainable Concrete: Current Trends and Future Projections of Supplementary Cementitious Materials in South Africa
by Ichebadu George Amadi and Jeffrey Mahachi
Constr. Mater. 2025, 5(3), 70; https://doi.org/10.3390/constrmater5030070 - 20 Sep 2025
Cited by 2 | Viewed by 2180
Abstract
Supplementary cementitious materials (SCMs) provide a practical solution for reducing greenhouse gas emissions associated with Portland cement production while enhancing the economy, performance, and service life of concrete and mortar. Currently, there is a significant disparity in the availability, supply, and utilisation levels [...] Read more.
Supplementary cementitious materials (SCMs) provide a practical solution for reducing greenhouse gas emissions associated with Portland cement production while enhancing the economy, performance, and service life of concrete and mortar. Currently, there is a significant disparity in the availability, supply, and utilisation levels of SCMs worldwide, particularly in South Africa. This paper presents an in-depth analysis of the characteristics and performance of various SCMs, including local availability, factors driving demand, production, and utilisation. The findings indicate that fly ash and limestone calcined clay are the most widely available SCM resources in South Africa, with deposits exceeding 1 billion tonnes each. Fly ash stockpiles continuously increase due to the reliance on coal-fired power plants for 85% of generated electricity and a low fly ash utilisation rate of 7%, significantly below international utilisation levels of 10–98%. Conversely, slag resources are depleting due to the steady decline of local steel production caused by energy and input costs, alongside the growing importation of steel products. Combined, the estimated production of slag and silica fume is about 1.4 million tonnes per annum, leading to their limited availability and utilisation in niche applications such as high-performance concrete and marine environments. Furthermore, 216,450 tonnes of SCM could potentially be processed annually from agricultural waste. In addition to quality, logistics, costs, and other challenges, this quantity can only replace 1.5% of clinker in South Africa, raising concerns about the viability of SCMs from agricultural waste. Based on its findings, this study recommends future research areas to enhance the performance, future availability, and sustainability of SCMs. Full article
Show Figures

Figure 1

30 pages, 2882 KB  
Article
Fatty Acids in Lumbricidae as Biomarkers of In Situ Metals Exposure
by Aleksandra Garbacz, Danuta Kowalczyk-Pecka and Weronika Kursa
Sustainability 2025, 17(17), 8076; https://doi.org/10.3390/su17178076 - 8 Sep 2025
Viewed by 1109
Abstract
Hard coal mining activity generates post-mining waste (waste rock). Waste rock is deposited in the environment in large quantities for reclamation of agricultural land. In this study, waste rock was treated as a potential source of metal pollutants. The research material (waste rock, [...] Read more.
Hard coal mining activity generates post-mining waste (waste rock). Waste rock is deposited in the environment in large quantities for reclamation of agricultural land. In this study, waste rock was treated as a potential source of metal pollutants. The research material (waste rock, soil, plant roots, and Lumbricidae earthworms) was obtained from sites that had been reclaimed using waste rock as well as sites without waste rock. From each site, 30 individuals (n = 30) were collected, divided into five groups, 6 individuals each. Within the group, individuals were analyzed collectively. The study tested whether selected metals (Cr, Ni, Cd, Ba, Pb, Zn, and Cu) are present in waste rock and whether they can be transferred to the soil, plant root systems, and representatives of Lumbricidae, which are important bioindicators and a source of biomarkers. Particular attention was focused on the assessment of the effects of metals deposited in situ on fatty acids in representatives of Lumbricidae and on selecting a set of fatty acids that can be used as biomarkers of physiological effects, including oxidative stress. A panel of biomarker fatty acids was used, which included a panel of 17 biomarker fatty acids from 35 fatty acids analyzed. To confirm or disprove the usefulness of the biomarker fatty acid panel in earthworms, superoxide dismutase (SOD), catalase (CAT), and thiobarbituric acid reactive substances (TBARS) were determined. The study enabled an effective comparison of reference locations with locations potentially burdened with anthropogenic sediment. The results indicate that selected metals present in the waste rock are transferred to the soil, plant root systems, and soil organisms such as Lumbricidae. Selected metals affected the lipid metabolism of Lumbricidae as stressors, leading to changes in the composition and oxidation of fatty acids. The effect on the physiological state of Lumbricidae depended on the duration of the deposit and the type of use (field, meadow, wasteland) of the land with the waste rock deposit. In earthworms obtained from sites with waste rock deposits, higher contents of biomarker saturated fatty acids and biomarker monounsaturated fatty acids and lower contents of biomarker polyunsaturated fatty acids were found compared to earthworms obtained from sites without waste rock deposits. Only Pb (lead) showed a statistically significant correlation with all analyzed parameters in earthworms obtained from sites with waste rock deposits. The results have significant practical implications for environmental protection management. The proposed set of biomarker fatty acids in Lumbricidae can be used to assess the impact of pollutants and environmental monitoring. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

26 pages, 7962 KB  
Article
Preparation of Ni-P Composite Coatings and Study on the Corrosion Resistance and Antifouling Properties in Low-Temperature Flue Gas Environment
by Changqi Lv, Shengxian Cao, Bo Zhao and Xingdong Yu
Materials 2025, 18(17), 3939; https://doi.org/10.3390/ma18173939 - 22 Aug 2025
Viewed by 957
Abstract
In industrial production, flue gas heat exchangers are often affected by the low-temperature condensation of industrial flue gas due to the influence of the working environment, resulting in serious ash deposition and corrosion. In order to solve this problem, in this study, we [...] Read more.
In industrial production, flue gas heat exchangers are often affected by the low-temperature condensation of industrial flue gas due to the influence of the working environment, resulting in serious ash deposition and corrosion. In order to solve this problem, in this study, we developed an ash deposition and corrosion monitoring system to compare the ash deposition prevention performance and corrosion resistance of different materials, as well as its influence on the heat transfer performance of different materials in the same environment. The following coatings were selected for the experiment (values in parentheses are the concentrations of the added compounds): ND, Q235, 316L, Ni-Cu (0.4 g/L)-P, Ni-P-SiO2 (40 g/L), Ni-Cu (0.4 g/L)-P-SiO2 (20 g/L), Ni-Cu (0.4 g/L)-P-SiO2 (40 g/L), and Ni-Cu (0.4 g/L)-P-SiO2 (60 g/L). The results show that the Ni-Cu (0.4 g/L)-P-SiO2 (40 g/L) coating has excellent corrosion resistance, while the Ni-Cu (0.4 g/L)-P-SiO2 (60 g/L) coating shows excellent antifouling performance. Through the comparative analysis of polarization curves, impedance spectra, and coupled corrosion experiments, the test materials were ranked as follows based on their corrosion resistance: 316L > Ni-Cu-P-SiO2 (40 g/L) > Ni-Cu-P-SiO2 (20 g/L) > Ni-P-SiO2 > Ni-Cu-P-SiO2 (60 g/L) > Ni-Cu-P > ND > Q235. It was also demonstrated that the new coated pipes were able to reduce the exhaust temperature below the dew point and maximize the recovery of energy from the exhaust gas. The acid–ash coupling mechanism of the coating in the flue gas environment was further analyzed, and an acid–ash coupling model based on Cu and SiO2 is proposed. This model analyzes the effect of the coating under the acid–ash coupling mechanism. Using coated tubes in heat exchangers helps to recover waste heat from coal-fired boilers, enhance heat exchange efficiency, extend the service life of heat exchangers, and reduce costs. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

42 pages, 15591 KB  
Article
Physical Modelling of the Top Coal Caving Mining Method (TCC) with Hydraulic Powered Roof Support
by Dusan Terpak, Waldemar Korzeniowski and Krzysztof Skrzypkowski
Energies 2025, 18(16), 4239; https://doi.org/10.3390/en18164239 - 9 Aug 2025
Viewed by 673
Abstract
The efficiency of coal deposit mining using the TPC (Top Coal Caving) method strongly depends on the detailed solutions of the mining method design, which significantly affect the degree of deposit utilization, the size of losses and dilution. In order to examine the [...] Read more.
The efficiency of coal deposit mining using the TPC (Top Coal Caving) method strongly depends on the detailed solutions of the mining method design, which significantly affect the degree of deposit utilization, the size of losses and dilution. In order to examine the most important factors of this technology, a physical model was built that reflects the conditions of the selected lignite mine, including models of the mechanized hydraulic support walking support used in this case. Based on the research, the relationships between the thickness of the rock shelf (lignite) in the range of 4 m, 6 m and 8 m and the formation of dilution and deposit waste during the exploitation of the deposit were determined. It was shown that the most effective method of releasing lignite from under the caving is the serial-regular method with a 1.2 m advance round. Detailed relationships between individual parameters, rock material granulation, round advance and the thickness of the deposit and the layer subject to caving were given. The developed physical model of the support allows for variant analyses of various combinations of deposit parameters for any deposits in order to achieve the best efficiency of the mining method. Full article
Show Figures

Figure 1

21 pages, 3452 KB  
Article
Features of Ash and Slag Formation During Incomplete Combustion of Coal from the Karazhyra Deposit in Small- and Medium-Scale Power Plants
by Natalya Seraya, Vadim Litvinov, Gulzhan Daumova, Maksat Shaikhov, Raigul Ramazanova and Roza Aubakirova
Processes 2025, 13(8), 2467; https://doi.org/10.3390/pr13082467 - 4 Aug 2025
Viewed by 1150
Abstract
The study presents a comprehensive assessment of the combustion efficiency of low-grade coal from the Karazhyra deposit in small- and medium-capacity boiler units of the energy workshops operated by Vostokenergo LLP (East Kazakhstan Region, Kazakhstan). It was found that the average annual thermal [...] Read more.
The study presents a comprehensive assessment of the combustion efficiency of low-grade coal from the Karazhyra deposit in small- and medium-capacity boiler units of the energy workshops operated by Vostokenergo LLP (East Kazakhstan Region, Kazakhstan). It was found that the average annual thermal energy output amounts to 2,387,348.85 GJ with a coal consumption of 164,328.5 tons. Based on operational data from 2016 to 2017, the average thermal efficiency (boiler efficiency) was 66.03%, with a maximum value of 75% recorded at the Zhezkent energy workshop. The average lower heating value (LHV) of the coal was 19.41 MJ/kg, which is below the design value of 20.52 MJ/kg, indicating the use of coal with reduced energy characteristics and elevated ash content (21.4%). The unburned carbon content in the ash and slag waste (ASW) was determined to be between 14 and 35%, indicating incomplete combustion. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed the presence of microspheres, porous granules, and coal residues, with silicon and aluminum oxides dominating the composition (up to 70.49%). Differences in the pollutant potential of ash from different boiler units were identified. Recommendations were substantiated regarding the adjustment of the air–fuel regime, modernization of combustion control systems, and utilization of ASW. The results may be used to develop measures aimed at improving the energy efficiency and environmental safety of coal-fired boiler plants. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

21 pages, 5917 KB  
Article
Cyanobacterial Assemblages Inhabiting the Apatity Thermal Power Plant Fly Ash Dumps in the Russian Arctic
by Denis Davydov and Anna Vilnet
Microorganisms 2025, 13(8), 1762; https://doi.org/10.3390/microorganisms13081762 - 28 Jul 2025
Cited by 1 | Viewed by 649
Abstract
In the process of the work of a coal power station is formed ash and slag, which, along with process water, are deposited in the dumps. Coal ash waste dumps significantly degrade the surrounding environment due to their unprotected surfaces, which are highly [...] Read more.
In the process of the work of a coal power station is formed ash and slag, which, along with process water, are deposited in the dumps. Coal ash waste dumps significantly degrade the surrounding environment due to their unprotected surfaces, which are highly susceptible to wind and water erosion. This results in the dispersion of contaminants into adjacent ecosystems. Pollutants migrate into terrestrial and aquatic systems, compromising soil quality and water resources, and posing documented risks to the environment and human health. Primary succession on the coal ash dumps of the Apatity thermal power plant (Murmansk Region, NW Russia) was initiated by cyanobacterial colonization. We studied cyanobacterial communities inhabiting three spoil sites that varied in time since decommissioning. These sites are characterized by exceptionally high concentrations of calcium and magnesium oxides—levels approximately double those found in the region’s natural soils. A total of 18 cyanobacterial taxa were identified in disposal sites. Morphological analysis of visible surface crusts revealed 16 distinct species. Furthermore, 24 cyanobacterial strains representing 11 species were successfully isolated into unialgal culture and tested with a molecular genetic approach to confirm their identification from 16S rRNA. Three species were determined with molecular evidence. Cyanobacterial colonization of coal fly ash disposal sites begins immediately after deposition. Primary communities initially exhibit low species diversity (four taxa) and do not form a continuous ground cover in the early years. However, as succession progresses—illustrated by observations from a 30-year-old deposit—spontaneous surface revegetation occurs, accompanied by a marked increase in cyanobacterial diversity, reaching 12 species. Full article
(This article belongs to the Special Issue Microbial Diversity Research in Different Environments)
Show Figures

Figure 1

19 pages, 6727 KB  
Article
Soil Contamination and Related Ecological Risks: Complex Analysis of the Defor Petrila Tailings Dump, Romania
by Emilia-Cornelia Dunca, Mădălina-Flavia Ioniță and Sorin Mihai Radu
Land 2025, 14(7), 1492; https://doi.org/10.3390/land14071492 - 18 Jul 2025
Viewed by 697
Abstract
Assessing the risks associated with waste disposal is essential for environmental protection and sustainable development, especially given concerns about the impact of industrial activities on the environment. This study analyses soil contamination in the Defor Petrila tailings-dump area caused by the deposition of [...] Read more.
Assessing the risks associated with waste disposal is essential for environmental protection and sustainable development, especially given concerns about the impact of industrial activities on the environment. This study analyses soil contamination in the Defor Petrila tailings-dump area caused by the deposition of waste material resulting from coal exploitation. To characterise the heavy-metal contamination in detail, we applied a comprehensive methodology that includes the calculation of the geo-accumulation index (Igeo), contamination factor (Cf), and potential ecological risk index (PERI), along with an analysis of the heavy-metal concentration isolines and a statistical analysis using the Pearson correlation coefficient. The results reveal varying levels of heavy-metal concentrations, as indicated by the calculated indices. The findings underscore the need for remediation and ongoing monitoring to mitigate the environmental impacts. This study provides a scientific basis for decision making in environmental management and highlights the importance of assessing mining-waste disposal near human settlements using various contamination-assessment methods. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

26 pages, 2032 KB  
Review
A Cross-Disciplinary Review of Rare Earth Elements: Deposit Types, Mineralogy, Machine Learning, Environmental Impact, and Recycling
by Mustafa Rezaei, Gabriela Sanchez-Lecuona and Omid Abdolazimi
Minerals 2025, 15(7), 720; https://doi.org/10.3390/min15070720 - 9 Jul 2025
Cited by 8 | Viewed by 7996
Abstract
Rare-earth elements (REEs), including lanthanides, scandium, and yttrium, are important for advanced technologies such as renewable energy systems, electronics, medical diagnostics, and precision agriculture. Despite their relative crustal abundance, REE extraction is impeded by complex geochemical behavior, dispersed distribution, and environmental challenges. This [...] Read more.
Rare-earth elements (REEs), including lanthanides, scandium, and yttrium, are important for advanced technologies such as renewable energy systems, electronics, medical diagnostics, and precision agriculture. Despite their relative crustal abundance, REE extraction is impeded by complex geochemical behavior, dispersed distribution, and environmental challenges. This review presents a comprehensive overview of REE geochemistry, mineralogy, and major deposit types including carbonatites, alkaline igneous rocks, laterites, placer deposits, coal byproducts, and marine sediments. It also highlights the global distribution and economic potential of key REE projects. The integration of machine learning has further enhanced exploration by enabling deposit classification and geochemical modeling, especially in data-limited regions. Environmental and health challenges associated with REE mining, processing, and electronic waste (e-waste) recycling are studied, along with the expanding use of REEs in agriculture and medicine. Some recycling efforts offer promise for supply diversification, but significant technological and economic barriers remain. Ensuring a secure and sustainable REE supply will require integrated approaches combining advanced analytics, machine learning, responsible extraction, and coordinated policy efforts. The present review offers a general overview that can be useful for informing future studies and resource-related discussions. Full article
Show Figures

Figure 1

16 pages, 3399 KB  
Article
Separation of Iron Oxide from Harbor Waste Using Selective Flocculation
by Alexandru-Florin Mihai, Ljiljana Tankosić, Svjetlana Sredić, Alena Zdravković, Camelia Traista, Maria Lazar and Eugen Traista
Appl. Sci. 2025, 15(10), 5678; https://doi.org/10.3390/app15105678 - 19 May 2025
Viewed by 876
Abstract
Constanta port operations involving the handling of bulk minerals often lead to material losses, resulting in mineral waste, containing a mixture of iron ore, bauxite, and coal, amongst others. In order to recover these minerals, a processing plant was built, which successfully separates [...] Read more.
Constanta port operations involving the handling of bulk minerals often lead to material losses, resulting in mineral waste, containing a mixture of iron ore, bauxite, and coal, amongst others. In order to recover these minerals, a processing plant was built, which successfully separates most of this waste into its constituents. However, a byproduct obtained from this process is a sludge containing fine particles below 0.5 mm, which are deposited in a reservoir that represents definitive tailings. Since this is a “rich” tailing material, which is difficult to be extracted by using conventional methods due to its small size, the selective flocculation procedure was tested as an alternative method. This paper presents the results obtained for standard methods of selective flocculation tests using polyacrylamide A 100 at a pH value of 10.5. SEM-EDS and XRD analyses were performed, and the chemical composition of the sample components was given. According to preliminary tests, using the selective flocculation procedure, the expected results were obtained in terms of separating the overflow between the content of impurities (with a reduced share of Fe in relation to the input) and sediment with an increased content of Fe (with a reduced share of impurities in relation to the entrance). Full article
Show Figures

Figure 1

25 pages, 10312 KB  
Article
Turning Trash into Treasure: Silicon Carbide Nanoparticles from Coal Gangue and High-Carbon Waste Materials
by Kaixing Gao, Yao Zhang, Binghan Wang, Zhuangzhuang Zhang, Sen Luo, Qian Wang, Yanzhong Zhen, Feng Fu and Yucang Liang
Molecules 2025, 30(7), 1562; https://doi.org/10.3390/molecules30071562 - 31 Mar 2025
Cited by 2 | Viewed by 1596
Abstract
To reduce solid waste production and enable the synergistic conversion of solid waste into high-value-added products, we introduce a novel, sustainable, and ecofriendly method. We fabricate nanofiber and nanosheet silicon carbides (SiC) through a carbothermal reduction process. Here, the calcined coal gangue, converted [...] Read more.
To reduce solid waste production and enable the synergistic conversion of solid waste into high-value-added products, we introduce a novel, sustainable, and ecofriendly method. We fabricate nanofiber and nanosheet silicon carbides (SiC) through a carbothermal reduction process. Here, the calcined coal gangue, converted from coal gangue, serves as the silicon source. The carbon sources are the carbonized waste tire residue from waste tires and the pre-treated kerosene co-refining residue. The difference in carbon source results in the alteration of the morphology of the SiC obtained. By optimizing the reaction temperature, time, and mass ratio, the purity of the as-made SiC products with nanofiber-like and nanosheet-like shapes can reach 98%. Based on the influence of synthetic conditions and the results calculated from the change in the Gibbs free energy of the reactions, two mechanisms for SiC formation are proposed, namely the reaction of intermediate SiO with CO to form SiC-nuclei-driven nanofibrous SiC and the SiO-deposited carbon surface to fabricate nuclei-induced polymorphic SiC (dominant nanosheets). This work provides a constructive strategy for preparing nanostructured SiC, thereby achieving “turning trash into treasure” and broadening the sustainable utilization and development of solid wastes. Full article
Show Figures

Figure 1

22 pages, 10940 KB  
Article
Assessment of the Influence of Aluminum, Iron, and Manganese Forms on the Phytocenoses of Post-Mining Lands in the Lengerskoye Brown Coal Mine
by Akmaral Issayeva, Waldemar Spychalski, Elźbieta Wilk-Woźniak, Dariusz Kayzer, Radosław Pankiewicz, Wojciech Antkowiak, Bogusława Łeska, Akmaral Alikhan, Assel Tleukeyeva and Zbigniew Rozwadowski
Sustainability 2025, 17(4), 1642; https://doi.org/10.3390/su17041642 - 17 Feb 2025
Cited by 1 | Viewed by 1685
Abstract
Post-mining land in areas where mineral extraction has occurred may constitute a significant portion of the land used for various purposes. Such land serves as soil-forming parent material for developing anthropogenic soils, which sometimes exhibit unfavorable physicochemical properties. The toxicity of the waste [...] Read more.
Post-mining land in areas where mineral extraction has occurred may constitute a significant portion of the land used for various purposes. Such land serves as soil-forming parent material for developing anthropogenic soils, which sometimes exhibit unfavorable physicochemical properties. The toxicity of the waste generated during lignite mining is due to a number of factors, whose determination permits the identification of its origin for the subsequent design of technologies for the waste reclamation. The purpose of the study, in consistence with sustainable development, is to identify the causes of the toxicity of brown coal waste from the Lengerskoye deposit, in southern Kazakhstan. These studies have provided the results essential for planning remedial actions necessary to improve the well-being of the local population, in accordance with the principles of sustainable development. The studies were performed using single extraction; forms of Al, Fe, and Mn; soil texture; elemental analysis; phytocoenosis analysis; and diffractometric, IR spectroscopic, SEM, route reconnaissance, and comparative statistical methods. A decrease in the biodiversity of plant species was noted, with a gradual increase with distance from the waste storage sites. The most resistant plant species in the vicinity of the waste dump were Cynodon dactylon (L.) Pers and Alhagi pseudalhagi (M. Bieb.) Desv. ex B. Keller & Shap., while Dodartia orientalis (L.) was the only plant species found at the edge of the waste dump. The high toxicity of lignite waste is determined by such factors as low pH values, about 3.0; high content of active forms of aluminum, iron, and manganese (344.0, 0.90, and 20 mg/kg); high electrical conductivity—2835 µS/cm; waste composition poor in nutrients; and climate aridity. It has been observed that a content of exchangeable aluminum above 100 mg/kg resulted in an almost complete lack of vegetation. Full article
Show Figures

Figure 1

15 pages, 2446 KB  
Review
Recovery and Recycling of Selected Waste Fractions with a Grain Size Below 10 mm
by Anna Gronba-Chyła, Agnieszka Generowicz, Paweł Kwaśnicki and Anna Kochanek
Sustainability 2025, 17(4), 1612; https://doi.org/10.3390/su17041612 - 15 Feb 2025
Cited by 6 | Viewed by 1639
Abstract
There are still no appropriate technologies for the disposal of waste below 10 mm in order to prevent it from being deposited in a landfill, while it constitutes a significant mass stream, with little studied composition, often varying in quantity and seasonally. There [...] Read more.
There are still no appropriate technologies for the disposal of waste below 10 mm in order to prevent it from being deposited in a landfill, while it constitutes a significant mass stream, with little studied composition, often varying in quantity and seasonally. There is also a lack of concise and clear literature outlining the issues surrounding this waste. These are wastes of both municipal and industrial origin, from various sources and varying in composition. The aim of this paper is to present the results of a literature analysis of the quantity, composition, and sources of waste in the fraction below 10 mm, with a view to defining the possibilities of its recovery, recycling, and disposal. The sources of generation included municipal waste recovered at the screens of the sorting plant for mixed and sorted municipal waste, waste from the recovery and reclamation of raw fractions, and brownfield, tailings, and ash from coal combustion and construction. Defining the sources of their generation and determining their quality will allow the targeting and development of recovery and recycling methods for these wastes. An analysis of the literature has shown that the most valid option for dealing with waste below 10 mm is to incorporate it into new products, for example, building materials. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

Back to TopTop