Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (254)

Search Parameters:
Keywords = coal roadway roof

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5958 KB  
Article
A Material–Structure Integrated Approach for Soft Rock Roadway Support: From Microscopic Modification to Macroscopic Stability
by Sen Yang, Yang Xu, Feng Guo, Zhe Xiang and Hui Zhao
Processes 2026, 14(3), 414; https://doi.org/10.3390/pr14030414 - 24 Jan 2026
Viewed by 55
Abstract
As a cornerstone of China’s energy infrastructure, the coal mining industry relies heavily on the stability of its underground roadways, where the support of soft rock formations presents a critical and persistent technological challenge. This challenge arises primarily from the high content of [...] Read more.
As a cornerstone of China’s energy infrastructure, the coal mining industry relies heavily on the stability of its underground roadways, where the support of soft rock formations presents a critical and persistent technological challenge. This challenge arises primarily from the high content of expansive clay minerals and well-developed micro-fractures within soft rock, which collectively undermine the effectiveness of conventional support methods. To address the soft rock control problem in China’s Longdong Mining Area, an integrated material–structure control approach is developed and validated in this study. Based on the engineering context of the 3205 material gateway in Xin’an Coal Mine, the research employs a combined methodology of micro-mesoscopic characterization (SEM, XRD), theoretical analysis, and field testing. The results identify the intrinsic instability mechanism, which stems from micron-scale fractures (0.89–20.41 μm) and a high clay mineral content (kaolinite and illite totaling 58.1%) that promote water infiltration, swelling, and strength degradation. In response, a novel synergistic technology was developed, featuring a high-performance grouting material modified with redispersible latex powder and a tiered thick anchoring system. This technology achieves microscale fracture sealing and self-stress cementation while constructing a continuous macroscopic load-bearing structure. Field verification confirms its superior performance: roof subsidence and rib convergence in the test section were reduced to approximately 10 mm and 52 mm, respectively, with grouting effectively sealing fractures to depths of 1.71–3.92 m, as validated by multi-parameter monitoring. By integrating microscale material modification with macroscale structural optimization, this study provides a systematic and replicable solution for enhancing the stability of soft rock roadways under demanding geo-environmental conditions. Soft rock roadways, due to their characteristics of being rich in expansive clay minerals and having well-developed microfractures, make traditional support difficult to ensure roadway stability, so there is an urgent need to develop new active control technologies. This paper takes the 3205 Material Drift in Xin’an Coal Mine as the engineering background and adopts an integrated method combining micro-mesoscopic experiments, theoretical analysis, and field tests. The soft rock instability mechanism is revealed through micro-mesoscopic experiments; a high-performance grouting material added with redispersible latex powder is developed, and a “material–structure” synergistic tiered thick anchoring reinforced load-bearing technology is proposed; the technical effectiveness is verified through roadway surface displacement monitoring, anchor cable axial force monitoring, and borehole televiewer. The study found that micron-scale fractures of 0.89–20.41 μm develop inside the soft rock, and the total content of kaolinite and illite reaches 58.1%, which is the intrinsic root cause of macroscopic instability. In the test area of the new support scheme, the roof subsidence is about 10 mm and the rib convergence is about 52 mm, which are significantly reduced compared with traditional support; grouting effectively seals rock mass fractures in the range of 1.71–3.92 m. This synergistic control technology achieves systematic control from micro-mesoscopic improvement to macroscopic stability by actively modifying the surrounding rock and optimizing the support structure, significantly improving the stability of soft rock roadways. Full article
(This article belongs to the Section Petroleum and Low-Carbon Energy Process Engineering)
Show Figures

Figure 1

25 pages, 16827 KB  
Review
Development Status and Prospect of Roof-Cutting and Pressure Relief Gob-Side Entry Retaining Technology in China
by Dong Duan, Xin Wang, Jie Li, Baisheng Zhang, Xiaojing Feng, Yongkang Chang, Shibin Tang and Hewen Shi
Appl. Sci. 2026, 16(3), 1182; https://doi.org/10.3390/app16031182 - 23 Jan 2026
Viewed by 67
Abstract
China’s roof-cutting and pressure relief gob-side entry retaining (RCPR-GER) technology provides an efficient non-pillar mining solution that significantly enhances coal recovery. This paper presents a systematic review of the technological progress in Chinese coal mines from 2011 to 2023, based on an analysis [...] Read more.
China’s roof-cutting and pressure relief gob-side entry retaining (RCPR-GER) technology provides an efficient non-pillar mining solution that significantly enhances coal recovery. This paper presents a systematic review of the technological progress in Chinese coal mines from 2011 to 2023, based on an analysis of 1038 publications from CNKI, EI, and Web of Science using VOS viewer and Origin software. Four main technical approaches are examined: gob-side entry retaining without roadside filling, with roadside filling, with roof-cutting and pressure relief, and hybrid methods. Five key roof-cutting techniques are evaluated: dense drilling, high-pressure water-jet slotting, hydraulic fracturing, blasting, presplitting, and roof water injection softening. Successful applications have been documented in coal seams with thicknesses of 1.6–6.15 m and burial depths of 92–1037 m, demonstrating wide adaptability. The roof-cutting short-beam theory underpins the mechanism, which reduces roadway deformation, shortens the cantilever beam length, and alters stress transfer paths. Compared to previous reviews on general gob-side entry retaining, this study offers a dedicated synthesis and comparative analysis of RCPR-GER technologies, establishing a selection framework grounded in geological compatibility and engineering practice. Future research should focus on adaptive parameter design for deep hard composite roofs, quantitative modeling of passive roof-cutting effects, optimization of cutting timing and orientation, and floor-heave control technologies to extend applications under complex geological conditions. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

18 pages, 7903 KB  
Article
Lateral Structure of Multi-Layer Thick Hard Roofs and Hydraulic Roof-Cutting Pressure Relief in Xiao Jihan Mine
by Hui Liu, Lichuang Chen, Xufeng Wang, Hui Gao, Chenlong Qian and Xuyang Chen
Appl. Sci. 2026, 16(2), 1127; https://doi.org/10.3390/app16021127 - 22 Jan 2026
Viewed by 8
Abstract
This study aims to address the pronounced stress concentration in roadway-surrounding rock under conditions of multiple thick and hard roof strata at Xiao jihan coal mine, China. The work was carried out on the 13216 working mining face as the engineering background. A [...] Read more.
This study aims to address the pronounced stress concentration in roadway-surrounding rock under conditions of multiple thick and hard roof strata at Xiao jihan coal mine, China. The work was carried out on the 13216 working mining face as the engineering background. A systematic investigation was conducted using a combination of theoretical analysis, numerical simulation, and field experiments. Under double mining disturbance, the lower thick hard roof behaves as a cantilever beam and the upper hard roof strata form a masonry beam structure, producing strong stress transfer to the roadway. The mechanical model indicates a peak stress of 28.90 MPa, 18.34 MPa higher than the in situ stress. Hydraulic roof cutting was designed at the upper thick hard roof horizon. UDEC simulations show that the vertical stress decreases from 26.10 MPa to 13.20 MPa. Field monitoring confirms pressure relief: the non-cutting zone shows a peak of 30.75 MPa, while the roof-cutting zone drops to 22.51 MPa, a 24.62% reduction. The findings of this study provide practical guidance for lateral structure regulation under similar geological and mining conditions. Full article
Show Figures

Figure 1

17 pages, 4913 KB  
Article
Mechanisms of Deformation and Failure of Single-Sided Unloading Surrounding Rock and Stability Control of Roadways
by Zenghui Liu and Minjun Chen
Appl. Sci. 2026, 16(2), 1119; https://doi.org/10.3390/app16021119 - 22 Jan 2026
Viewed by 11
Abstract
To support intelligent and sustainable mine engineering, this geotechnics-based study integrates laboratory testing, three-dimensional numerical simulation, and field monitoring to optimize roadway support and improve resource efficiency. This study investigates the geotechnical behavior of the surrounding rock in coalmine roadways under single-face unloading [...] Read more.
To support intelligent and sustainable mine engineering, this geotechnics-based study integrates laboratory testing, three-dimensional numerical simulation, and field monitoring to optimize roadway support and improve resource efficiency. This study investigates the geotechnical behavior of the surrounding rock in coalmine roadways under single-face unloading conditions, aiming to provide theoretical and practical support for surrounding rock control in underground coal mining. Excavation of the roadway creates a free surface, leading to unloading, which makes timely support crucial for preventing instability. True-triaxial single-face unloading tests and mechanical tests on hole-containing coal specimens show that the coal exhibits four characteristic stages, namely fissure compaction (closure), elastic deformation, yielding, and residual strength. Under a confining stress of 4 MPa, the peak strength of Coal Seam No. 3 in the true-triaxial single-face unloading test reached 32.4 MPa, whereas the peak strength of the hole-containing coal specimen was only 17.1 MPa, and failure occurred as instantaneous global instability with an “X”-shaped conjugate shear pattern. Numerical simulations were conducted to optimize the roadway’s surrounding rock control scheme, indicating that increasing the bolt length increases the proportion of the load carried by the rock bolts while reducing the load borne by the cable bolts. In addition, advance abutment pressure increases the forces in the support system and amplifies deformation of the solid rib, coal-pillar rib, and roof; roadway surface convergence is dominated by floor heave. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

26 pages, 8018 KB  
Article
Failure Mechanism and Rib-Roof Synergistic Support Technology for Bottom-Driven Roadways in Deep Thick Coal Seams
by Yanghao Peng, Hanze Jiang, Zhenjie Peng, Qiang Fu, Changjiang Li and Jianlin Zhou
Appl. Sci. 2026, 16(2), 970; https://doi.org/10.3390/app16020970 - 17 Jan 2026
Viewed by 123
Abstract
Roadways driven along the floor of thick coal seams, while retaining the top coal, form “thick coal seam floor roadways.” These large-section roadways feature a composite coal-rock roof and weak coal ribs, leading to low overall strength and poor stability of the surrounding [...] Read more.
Roadways driven along the floor of thick coal seams, while retaining the top coal, form “thick coal seam floor roadways.” These large-section roadways feature a composite coal-rock roof and weak coal ribs, leading to low overall strength and poor stability of the surrounding rock. Significant deformation and “necking” often occur, accompanied by roof falls and rib spalling, which are exacerbated under high stress or adverse geology, threatening mine safety and production. In this study, the 2201 haulage gateway in Yingpanhao Coal Mine is investigated to address surrounding rock control in such deep roadways. Using field investigation, theoretical analysis, numerical simulation, and similar simulation tests, the failure mechanisms of ribs and roofs are analyzed. Rib failure is characterized by tensile fracture in the shallow zone, splitting failure in the medium-depth zone, and incomplete conjugate shear in the deep zone. Corresponding mechanical models are established, and a method for calculating total rib failure depth—combining tensile/splitting and shear failure depths—is proposed, along with a bolt length design formula. Based on this, a synergistic roof-and-rib support technology is developed. The failure mechanism and optimal support scheme are validated through simulation tests and successfully applied in the field, demonstrating satisfactory performance. The findings provide a valuable reference for support design in similar mining roadways. Full article
Show Figures

Figure 1

23 pages, 8309 KB  
Article
Study on the Mechanism of Intense Strata Behavior and Control Technology for Goaf-Side Roadway in Extra-Thick Coal Seam
by Shuai Yan, Yongjie Wang, Jianbiao Bai, Xiaolin Li and Qundi Qu
Appl. Sci. 2026, 16(1), 378; https://doi.org/10.3390/app16010378 - 29 Dec 2025
Viewed by 263
Abstract
With the depletion of shallow coal resources, deep extra-thick coal seam mining has become vital for energy security, yet fully mechanized top-coal caving (FMTC) goaf-side roadways face severe challenges of excessive advanced deformation and intense strata behavior. To address this gap, this study [...] Read more.
With the depletion of shallow coal resources, deep extra-thick coal seam mining has become vital for energy security, yet fully mechanized top-coal caving (FMTC) goaf-side roadways face severe challenges of excessive advanced deformation and intense strata behavior. To address this gap, this study took the 4301 tailgate of a coal mine in Shaanxi province as the engineering background, integrating field investigation, theoretical analysis, FLAC3D numerical simulation, and industrial tests. Guided by the key stratum theory, we systematically analyzed the influence of overlying key strata fracture on strata pressure. The results show three key strata: near-field secondary key strata (KS1, KS2) with “vertical O-X” fracturing and far-field main key stratum (MKS) with “horizontal O-X” fracturing. The radial extrusion force from MKS rotational blocks is the core cause of 200 m range advanced deformation. A collaborative control scheme of near-field key strata directional fracturing roof-cutting pressure relief and high-strength bolt-cable support was proposed. Industrial verification indicates roadway deformation was significantly reduced, with roof subsidence, floor heave, and rib convergence controlled within safe engineering limits. This study fills the gap of insufficient research on far-field key strata’s impact, providing a reliable technical solution for similar extra-thick coal seam FMTC goaf-side roadway surrounding rock control. Full article
Show Figures

Figure 1

19 pages, 5167 KB  
Article
Safety Support Design and Sustainable Guarantee Method for Gob-Side Roadway Along Thick Coal Seams
by Peng Huang, Bo Wu, Erkan Topal, Hu Shao, Zhenjiang You, Shuxuan Ma and Ruirui Chen
Sustainability 2026, 18(1), 346; https://doi.org/10.3390/su18010346 - 29 Dec 2025
Viewed by 269
Abstract
Maintaining the stability of the mine roadway is of paramount importance, as it is critical in ensuring the daily operational continuity, personnel safety, long-term economic viability, and sustainability of the entire mining operation. Significant instability can trigger serious disruptions—such as production stoppages, equipment [...] Read more.
Maintaining the stability of the mine roadway is of paramount importance, as it is critical in ensuring the daily operational continuity, personnel safety, long-term economic viability, and sustainability of the entire mining operation. Significant instability can trigger serious disruptions—such as production stoppages, equipment damage, and severe safety incidents—which ultimately compromise the project’s financial returns and future prospects. Therefore, the proactive assessment and rigorous control of roadway stability constitute a foundational element of successful and sustainable resource extraction. In China, thick and extra-thick coal seams constitute over 44% of the total recoverable coal reserves. Consequently, their safe and efficient extraction is considered vital in guaranteeing energy security and enhancing the efficiency of resource utilization. The surrounding rock of gob-side roadways in typical coal seams is often fractured due to high ground stress, intensive mining disturbances, and overhanging goaf roofs. Consequently, asymmetric failure patterns such as bolt failure, steel belt tearing, anchor cable fracture, and shoulder corner convergence are common in these entries, which pose a serious threat to mine safety and sustainable mining operations. This deformation and failure process is associated with several parameters, including the coal seam thickness, mining technology, and surrounding rock properties, and can lead to engineering hazards such as roof subsidence, rib spalling, and floor heave. This study proposes countermeasures against asymmetric deformation affecting gob-side entries under intensive mining pressure during the fully mechanized caving of extra-thick coal seams. This research selects the 8110 working face of a representative coal mine as the case study. Through integrated field investigation and engineering analysis, the principal factors governing entry stability are identified, and effective control strategies are subsequently proposed. An elastic foundation beam model is developed, and the corresponding deflection differential equation is formulated. The deflection and stress distributions of the immediate roof beam are thereby determined. A systematic analysis of the asymmetric deformation mechanism and its principal influencing factors is conducted using the control variable method. A support approach employing a mechanical constant-resistance single prop (MCRSP) has been developed and validated through practical application. The findings demonstrate that the frequently observed asymmetric deformation in gob-side entries is primarily induced by the combined effect of the working face’s front abutment pressure and the lateral pressure originating from the neighboring goaf area. It is found that parameters including the immediate roof thickness, roadway span, and its peak stress have a significant influence on entry convergence. Under both primary and secondary mining conditions, the maximum subsidence shows an inverse relationship with the immediate roof thickness, while exhibiting a positive correlation with both the roadway span and the peak stress. Based on the theoretical analysis, an advanced support scheme, which centers on the application of an MCRSP, is designed. Field monitoring data confirm that the peak roof subsidence and two-side closure are successfully limited to 663 mm and 428 mm, respectively. This support method leads to a notable reduction in roof separation and surrounding rock deformation, thereby establishing a theoretical and technical foundation for the green and safe mining of deep extra-thick coal seams. Full article
(This article belongs to the Special Issue Scientific Disposal and Utilization of Coal-Based Solid Waste)
Show Figures

Figure 1

18 pages, 13431 KB  
Article
Research on Synergistic Fracturing Technology for Lateral Multi-Layer Thick Hard Rock Stratum in Fully Mechanized Faces with Large Mining Height Based on the Triangular Slip Zone Theory
by Hui Gao, Chenlong Qian, Xufeng Wang, Chongpeng Ren and Yuanman Xie
Appl. Sci. 2026, 16(1), 130; https://doi.org/10.3390/app16010130 - 22 Dec 2025
Viewed by 195
Abstract
In response to ground pressure problems such as an abnormal increase in working face support resistance and severe roadway floor heave induced by the lateral composite structure of the multi-layer thick and hard roof in the 11,223 working face of Xiaojihan Coal Mine, [...] Read more.
In response to ground pressure problems such as an abnormal increase in working face support resistance and severe roadway floor heave induced by the lateral composite structure of the multi-layer thick and hard roof in the 11,223 working face of Xiaojihan Coal Mine, based on the triangle area slip theory, this study reveals that the lateral triangle area forms a composite structure of “cantilever beam + masonry beam”. The stress transfer and unloading mechanism of the high- and low-position thick and hard rock stratum fracturing was clarified. A technical scheme is proposed and implemented to weaken the high- and low-position thick and hard rock strata through horizontal Long Directional Borehole synergistic fracturing and optimize stress transfer. The results show that (1) the lateral overlying rock forms a triangular slip area under the clamping of the cantilever and masonry beam structures. This composite structure is the main reason for the increase in the support resistance at the end of the working face and the stress concentration of the roadway surrounding rock. (2) The influence law that the load of the triangular slip area is mainly influenced by the length of the broken block, and the breaking angle was clarified. The distribution characteristics of the load in the lateral triangle area under the fracturing of thick and hard rock strata at different horizons are mastered. When the length of the key block is reduced by 40%, the supporting force F1 of the rock mass below the broken block on it is reduced by 62.5%, and the supporting force F2 and the frictional force F3 of the end part on the broken area of the triangle area are reduced by 34.6%. (3) The fracturing of high- and low-position thick and hard rock strata can collaboratively weaken the stress accumulation at high and low positions. Fracturing the low-position thick and hard rock strata can cut off the low-position “cantilever beam” structure, and fracturing the high-position thick and hard rock strata at the same time can transfer the load of the “masonry beam”. Through simulation, it is seen that the stress peaks at the end of the working face and the roadway surrounding rock during synergistic fracturing are, respectively, reduced by 12.2% and 28.9%. (4) An industrial test of directional drilling hydraulic fracturing of lateral thick and hard rock strata is carried out, achieving the regulation effect that the average value of the support resistance at the end of the cycle is reduced from 27.2 MPa to 22.7 MPa, and the floor heave amount of the reused roadway is reduced by 62.3%. The research results can provide a reference for the advanced treatment of the strong ground pressure area of the multi-layer thick and hard roof. Full article
Show Figures

Figure 1

17 pages, 3651 KB  
Article
Deformation Patterns of Deep Coal Mine Roadways Revealed by 3D Laser Scanning
by Lixin Wang, Yang Song, Chengjun Hu, Xinqiu Fang, Baofu Zhao, Hao Shi and Yulong Feng
Appl. Sci. 2025, 15(22), 12255; https://doi.org/10.3390/app152212255 - 18 Nov 2025
Viewed by 528
Abstract
Monitoring the deformation of rock surrounding deep coal mine roadways is critical for operational safety, yet conventional methods are often inefficient and lack the precision to capture complex geomechanical behavior. To address this challenge, we developed and validated a high-precision analysis workflow utilizing [...] Read more.
Monitoring the deformation of rock surrounding deep coal mine roadways is critical for operational safety, yet conventional methods are often inefficient and lack the precision to capture complex geomechanical behavior. To address this challenge, we developed and validated a high-precision analysis workflow utilizing 3D laser scanning. This methodology integrates a multi-stage point cloud filtering process with a hybrid Principal Component Analysis and Iterative Closest Point (PCA-ICP) algorithm for high-fidelity registration of multi-temporal datasets, enabling deformation analysis via cloud-to-cloud (C2C) distance calculations. Applied to the No. 20105 belt conveyor roadway in the Dahaize coal mine, our method achieved a registration root mean square error (RMSE) of only 0.0136 m. The analysis revealed a distinct pattern of asymmetric deformation; while the roof and floor remained stable, the right wall exhibited significant convergence, with displacement in the lower section being substantially greater than in the upper section. This study establishes a robust methodology capable of rapidly generating comprehensive, centimeter-scale 3D deformation maps for entire roadway sections, providing a timely and quantitative basis for evaluating support performance, forecasting geohazard risks, and optimizing stability control in deep mining operations. Full article
(This article belongs to the Special Issue Disaster Prevention and Control of Underground and Tunnel Engineering)
Show Figures

Figure 1

18 pages, 6710 KB  
Article
FLAC3D Modeling of Shear Failure and Fracture of Anchor Bolts in Surrounding Rock: A Study on Stress-Bearing Ring Reinforcement
by Rui Wang, Weiguang Zhang, Jianbiao Bai, Haosen Wang and Qiang Zhang
Symmetry 2025, 17(11), 1885; https://doi.org/10.3390/sym17111885 - 6 Nov 2025
Viewed by 630
Abstract
To address the challenge of simulating shear failure in anchor bolts within FLAC3D, a shear failure criterion, Fs(i)Fsmax(i), is proposed based on the PILE structural element. Through secondary development using the FISH programming language, a modified mechanical model [...] Read more.
To address the challenge of simulating shear failure in anchor bolts within FLAC3D, a shear failure criterion, Fs(i)Fsmax(i), is proposed based on the PILE structural element. Through secondary development using the FISH programming language, a modified mechanical model of the PILE element is established and integrated into the FLAC3D-FISH framework. Comparative analyses are conducted on shear tests of bolt shafts and on anchor bolt support performance under coal–rock interface slip conditions, using both the original PILE model and the modified mechanical model. The results demonstrate that the shear load–displacement curve of the modified PILE model clearly reflects shear failure characteristics, satisfying a quantitative shear failure criterion. Upon failure, both the shear force and axial force of the structural element at the failure point drop abruptly to zero, enabling effective simulation of shear failure in anchor bolts within the FLAC3D environment. Using the modified model, the distribution of principal stress differences in the surrounding rock after roadway excavation is analyzed. Based on this, the concept of a stress-bearing ring in the surrounding rock is introduced. The reinforcing effects of bolt length, spacing, and ultimate load capacity on the stress-bearing ring in weak and fractured surrounding rock are investigated. The findings reveal that: (1) shear failure initiates in bolt shafts near the coal–rock interfaces, occurring earlier near the coal–floor interface than near the coal–roof interface; (2) the stress-bearing ring in weak and fractured surrounding rock shows a discontinuous and uneven distribution. However, with support improvements—such as increasing bolt length, reducing spacing, and enhancing failure load—the surrounding rock gradually forms a continuous stress-bearing ring with more uniform thickness and stress distribution, migrating inward toward the roadway surface. Full article
(This article belongs to the Special Issue Symmetry and Geotechnical Engineering)
Show Figures

Figure 1

23 pages, 8599 KB  
Article
Structural Design Method for Narrow Coal Pillars in Gateway Protection: Framework and Field Case Study
by Yinghu Li, Ze Xia, Qiangling Yao, Qiang Xu, Chuangkai Zheng, Haodong Hu and Haitao Li
Buildings 2025, 15(20), 3682; https://doi.org/10.3390/buildings15203682 - 13 Oct 2025
Viewed by 355
Abstract
Coal pillars are important safety structures for maintaining the stability of underground coal mine roadways. To address both coal resource loss from wide pillars and the need for safer, more sustainable underground building structures, this study proposes a framework for controlling the surrounding [...] Read more.
Coal pillars are important safety structures for maintaining the stability of underground coal mine roadways. To address both coal resource loss from wide pillars and the need for safer, more sustainable underground building structures, this study proposes a framework for controlling the surrounding rock based on the narrow pillar. By establishing a load-bearing mechanical model for narrow coal pillars and a mechanical model for roof instability, the design principles of key parameters were clarified, including the optimal width, the required support strength for the pillar–roof system, and the height and angle of roof pre-splitting. In addition, zoning control measures and corresponding technical procedures for adjacent mining roadways were proposed. This technology was applied in Tashan Mine and, during the extraction of panel 8311, the surrounding rock stability of roadway 2312 was well maintained, with the maximum deformation of the solid coal rib measured at 135 mm, while that of the narrow pillar reached 386 mm. The proposed design method can effectively improve coal recovery in underground mining and provide theoretical and technical guidance for coal pillar stability control and wide pillar optimization under complex mining conditions. Full article
Show Figures

Figure 1

17 pages, 5296 KB  
Article
Strong Mining Pressure Control in a Deep High-Gas Coal Seam with a Hard Roof Using Hydraulic Fracturing Technology
by Qiang Sun, Hui Yuan, Yong Han, Xiaoming Cheng and Weiguang Ren
Appl. Sci. 2025, 15(20), 10940; https://doi.org/10.3390/app152010940 - 11 Oct 2025
Viewed by 632
Abstract
The prevention and control of coupled disasters caused by strong mining pressure and high gas is currently the main challenge during coal seam deep mining in the southeastern mining areas of Shanxi Province. This paper takes the 1310 working face of Hudi Coal [...] Read more.
The prevention and control of coupled disasters caused by strong mining pressure and high gas is currently the main challenge during coal seam deep mining in the southeastern mining areas of Shanxi Province. This paper takes the 1310 working face of Hudi Coal Mine as the engineering background, analyzing its on-site strong mining pressure event and triggering factors. A reasonable hydraulic fracturing scheme (including layer selection, drilling parameter design, etc.) is proposed based on theoretical analysis of the principles and advantages of hydraulic fracturing technology. Then, the physical analog modeling (PAM) method was used to study the movement law and fracture development of the overlying strata during coal seam mining after hydraulic fracturing. The weakening effect of mining pressure was analyzed through the evolution law of roof stress. The deformation of the surrounding rock in the roadway, coal drilling cuttings, support working resistance, and roof fracture development of the in situ measurement results show that hydraulic fracturing has a good effect on weakening mining pressure. It has achieved safe and efficient mining of coal seams while providing a reference for coal mines with similar conditions. Full article
Show Figures

Figure 1

22 pages, 21294 KB  
Article
Stress Bias Load Response of Different Roadway Layers in 20 m Extra-Thick Coal Seams
by Dongdong Chen, Changxiang Gao, Jiachen Tang, Shengrong Xie, Chenjie Wang, Hao Pan and Hao Sun
Appl. Sci. 2025, 15(19), 10456; https://doi.org/10.3390/app151910456 - 26 Sep 2025
Viewed by 472
Abstract
To address the challenge of asymmetric deformation and failure in the surrounding rock of main roadways within extra-thick coal seams caused by level differences under intense mining disturbance, this study systematically analyzed the evolution laws of principal stress fields, deviatoric stress fields, and [...] Read more.
To address the challenge of asymmetric deformation and failure in the surrounding rock of main roadways within extra-thick coal seams caused by level differences under intense mining disturbance, this study systematically analyzed the evolution laws of principal stress fields, deviatoric stress fields, and their impact on surrounding rock stability in upper-, middle-, and lower-level roadways within a 20 m extra-thick coal seam during mining retreat. The analysis employed numerical simulation, similarity simulation, and field monitoring. Key findings include the following: ① As the working face advances, the principal stress vector lines deflect following a bias-unloading pattern, while the peak value of the deviatoric stress field (PVDSF) exhibits asymmetric bias-loading characteristics. The lower-layer roadway emerges as the primary load-bearing layer controlling surrounding rock stability. ② The evolution trend of the maximum principal stress vector orientation is consistent across different layers. The deflection trajectory manifests as “the deflection of the goaf side → the near layer orientation → the deflection of the solid coal side”. ③ The deviatoric stress peak zones (DSPZs) at all layers exhibit a characteristic “three-stage” evolution. The deviatoric loading pattern for the lower-layer roadway surrounding rock is the following: initial state double peak region crescent-shaped non-layer distribution type → the range of the bimodal region and the extreme value increased simultaneously, distributed in a non-layer manner → the asymmetrical distribution type of steep drop in the peak area of non-mining deviator stress. ④ The junctions between the mining-side rib and floor and the non-mining-side rib and roof were identified as critical control zones. An innovative zonal asymmetric directional anchoring control technology, “anchor cable foundation support + concrete floor + asymmetric reinforcing anchor cable support”, along with a “One Directional Penetration and Three Synergies” control methodology, was proposed. Field monitoring confirmed the significant effectiveness of the optimized support system. Full article
Show Figures

Figure 1

19 pages, 3623 KB  
Article
Off-Site Geological Surveying of Longwall Face Based on the Fusion of Multi-Source Monitoring Data
by Mengbo Zhu, Ruoyu Rong, Zhizhen Liu, Xuebin Qin, Haonan Zhang and Shuaihong Kang
Mathematics 2025, 13(18), 3008; https://doi.org/10.3390/math13183008 - 17 Sep 2025
Viewed by 481
Abstract
A high-precision coal seam model is crucial to improving the adaptability of unmanned mining technology to geological conditions. However, the accuracy of a coal seam model constructed with boreholes and geophysical data is far from the required accuracy of unmanned mining (sub-decimeter level). [...] Read more.
A high-precision coal seam model is crucial to improving the adaptability of unmanned mining technology to geological conditions. However, the accuracy of a coal seam model constructed with boreholes and geophysical data is far from the required accuracy of unmanned mining (sub-decimeter level). Therefore, it is necessary to collect geological data revealed by mining and to update the coal seam model dynamically. As a solution to this problem, this paper proposes a new method for conducting off-site geological surveying of longwall faces by integrating multi-source monitoring data. The spatial attitudes of hydraulic supports are monitored to estimate the local dip angles of longwall face. A roof line calculation model was established, which integrates the local inclination angle of the longwall face, the number of hydraulic supports, and the roof elevation of the two roadways. Meanwhile, the local coal–rock columns at the camera observation point are extracted automatically using image segmentation and a proportional relationship between the picture and the actual scene. Coal and rock walls and a support guarding plate in the longwall face image are identified accurately using the coal-rock support segmentation model trained with U-net. Then, the height of the coal (or rock) wall above the coal–rock interface is estimated automatically according to the image segmentation and the similar proportion equation of actual longwall face and longwall face image. Combined with mining height information, the local coal–rock column can be extracted. Finally, the geological surveying profile of longwall face can be obtained by integrating the estimated roof line and local coal–rock columns. The field test demonstrated the efficacy of the method. This study helps to address a long-standing limitation of insufficient geological adaptability of intelligent mining technology. Full article
(This article belongs to the Special Issue Mathematical Modeling and Analysis in Mining Engineering)
Show Figures

Figure 1

24 pages, 6430 KB  
Article
Study on Deep Hole Blasting for Roof Cutting, Pressure Relief and Roadway Protection in Deep Multi-Coal Seam Mining
by Zhongyuan Ren and Mengxiang Wang
Appl. Sci. 2025, 15(18), 10138; https://doi.org/10.3390/app151810138 - 17 Sep 2025
Cited by 2 | Viewed by 571
Abstract
Deep multi-coal seam mining is plagued by intense mining pressure, significant impacts of multi-working face mining on system roadways, and difficult surrounding rock deformation control—these issues severely threaten the safe and normal operation of roadways, creating an urgent need for effective dynamic disaster [...] Read more.
Deep multi-coal seam mining is plagued by intense mining pressure, significant impacts of multi-working face mining on system roadways, and difficult surrounding rock deformation control—these issues severely threaten the safe and normal operation of roadways, creating an urgent need for effective dynamic disaster control technologies. Taking the 131,105 working face of Liuzhuang Mine (burial depth up to 740 m) as an example, this study addresses a critical research gap; existing roof cutting pressure relief technologies mostly focus on shallow/thin-coal-seam mining and fail to tackle secondary dynamic pressure induced by repeated mining in deep multi-coal seams—where the superposition of mining stress, ground stress, and goaf stress severely threatens system roadways. To fill this gap, three novel contributions are made. (1) A hierarchical “upper break and middle cut” deep-hole blasting design is proposed, distinct from single-mode roof cutting in existing studies. It achieves directional roof failure by “upper break” (damaging overlying hard rock) and “middle cut” (creating fissures between goaf and protective coal pillars), blocking stress transmission to roadways. (2) Numerical simulations specifically for deep strata (740 m) optimize key parameters: 25 m as the optimal cutting height and 35° as the optimal cutting angle, quantifying their effects on pressure relief (a gap in existing parameter optimization for deep mining). (3) A rapid sealing scheme combining AB material grouting with high-strength detonator pins is developed, solving the problem of slow hardening and poor sealing in traditional deep-hole processes (e.g., cement-only sealing), enabling blasting within 10 min after sealing. This cut off the integrity of the roof, blocked the pressure transmission of the roof stress to the existing system roadway, and achieved a 43.7% reduction in roadway surrounding rock stress (from 32 MPa to 18 MPa) and a 46.7% reduction in maximum roadway deformation (from the pre-blasting 15 cm to 8 cm). This study provides a reference for similar deep multi-coal seam projects. Field monitoring and numerical simulation results show the following. (1) The maximum deformation of the protected East Third Concentrated main roadway is only 8 cm, fully meeting normal operation requirements. (2) The “upper break and middle cut” technology effectively reduces the mining influence range (from 156 m without roof cutting to 125 m with 25 m roof cutting) and weakens roof stress transfer to roadways. This study verifies the feasibility and effectiveness of deep hole blasting for roof cutting, pressure relief, and roadway protection in deep multi-coal seam mining. It provides direct technical references and engineering application templates for similar projects facing roadway protection and dynamic disaster control challenges, contributing to the safe and efficient mining of deep coal resources. Full article
Show Figures

Figure 1

Back to TopTop