Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (145)

Search Parameters:
Keywords = coal mine water hazard

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 1182 KiB  
Comment
Comment on Tzampoglou, P.; Loupasakis, C. Hydrogeological Hazards in Open Pit Coal Mines–Investigating Triggering Mechanisms by Validating the European Ground Motion Service Product with Ground Truth Data. Water 2023, 15, 1474
by Georgios Louloudis, Christos Roumpos, Eleni Mertiri and Petros Kostaridis
Water 2025, 17(15), 2343; https://doi.org/10.3390/w17152343 - 7 Aug 2025
Abstract
The commented paper uses arbitrary and unsubstantiated hypotheses to attribute land subsidence phenomena in the Amyntaion basin to the operations of the Public Power Corporation (PPC) surface coal mine, disregarding, or at least grossly underestimating, the effect of about 600 pumped deep wells [...] Read more.
The commented paper uses arbitrary and unsubstantiated hypotheses to attribute land subsidence phenomena in the Amyntaion basin to the operations of the Public Power Corporation (PPC) surface coal mine, disregarding, or at least grossly underestimating, the effect of about 600 pumped deep wells for irrigation purposes all over the basin. In addition to the huge difference in the pumped quantities of water from the aquifer, ground water table lowering due to the PPC mine has negligible influence at distances over 500 m from the edge of the mine, while the areas examined in the paper are at distances of several kilometers from the edge of the mine. Furthermore, the authors attribute the landslide that occurred in the mine in 2017 to the steep excavation slopes of the mine and the increased groundwater pore pressure due to reduced peripheral pumping, which is completely inaccurate. To build their case, the authors of the commented paper disregard multiple references in research publications on the above issues, as explained in the main text of this discussion. Full article
Show Figures

Figure 1

21 pages, 6310 KiB  
Article
Geological Evaluation of In-Situ Pyrolysis Development of Oil-Rich Coal in Tiaohu Mining Area, Santanghu Basin, Xinjiang, China
by Guangxiu Jing, Xiangquan Gao, Shuo Feng, Xin Li, Wenfeng Wang, Tianyin Zhang and Chenchen Li
Energies 2025, 18(15), 4034; https://doi.org/10.3390/en18154034 - 29 Jul 2025
Viewed by 200
Abstract
The applicability of the in-situ pyrolysis of oil-rich coal is highly dependent on regional geological conditions. In this study, six major geological factors and 19 key parameters influencing the in-situ pyrolysis of oil-rich coal were systematically identified. An analytic hierarchy process incorporating index [...] Read more.
The applicability of the in-situ pyrolysis of oil-rich coal is highly dependent on regional geological conditions. In this study, six major geological factors and 19 key parameters influencing the in-situ pyrolysis of oil-rich coal were systematically identified. An analytic hierarchy process incorporating index classification and quantification was employed in combination with the geological features of the Tiaohu mining area to establish a feasibility evaluation index system suitable for in-situ development in the study region. Among these factors, coal quality parameters (e.g., coal type, moisture content, volatile matter, ash yield), coal seam occurrence characteristics (e.g., seam thickness, burial depth, interburden frequency), and hydrogeological conditions (e.g., relative water inflow) primarily govern pyrolysis process stability. Surrounding rock properties (e.g., roof/floor lithology) and structural features (e.g., fault proximity) directly impact pyrolysis furnace sealing integrity, while environmental geological factors (e.g., hazardous element content in coal) determine environmental risk control effectiveness. Based on actual geological data from the Tiaohu mining area, the comprehensive weight of each index was determined. After calculation, the southwestern, central, and southeastern subregions of the mining area were identified as favorable zones for pyrolysis development. A constraint condition analysis was then conducted, accompanied by a one-vote veto index system, in which the thresholds were defined for coal seam thickness (≥1.5 m), burial depth (≥500 m), thickness variation coefficient (≤15%), fault proximity (≥200 m), tar yield (≥7%), high-pressure permeability (≥10 mD), and high-pressure porosity (≥15%). Following the exclusion of unqualified boreholes, three target zones for pyrolysis furnace deployment were ultimately selected. Full article
Show Figures

Figure 1

21 pages, 2430 KiB  
Article
Mechanisms and Genesis of Acidic Goaf Water in Abandoned Coal Mines: Insights from Mine Water–Surrounding Rock Interaction
by Zhanhui Wu, Xubo Gao, Chengcheng Li, Hucheng Huang, Xuefeng Bai, Lihong Zheng, Wanpeng Shi, Jiaxin Han, Ting Tan, Siyuan Chen, Siyuan Ma, Siyu Li, Mengyun Zhu and Jiale Li
Minerals 2025, 15(7), 753; https://doi.org/10.3390/min15070753 - 18 Jul 2025
Viewed by 233
Abstract
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column [...] Read more.
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column leaching experiments using coal mine surrounding rocks (CMSR) from Yangquan, China. The coal-bearing strata, primarily composed of sandstone, mudstone, shale, and limestone, contain high concentrations of pyrite (up to 12.26 wt%), which oxidizes to produce sulfuric acid, leading to a drastic reduction in pH (approximately 2.5) and the mobilization of toxic elements. The CMSR samples exhibit elevated levels of arsenic (11.0 mg/kg to 18.1 mg/kg), lead (69.5 mg/kg to 113.5 mg/kg), and cadmium (0.6 mg/kg to 2.6 mg/kg), all of which exceed natural crustal averages and present significant contamination risks. The fluorine content varies widely (106.1 mg/kg to 1885 mg/kg), with the highest concentrations found in sandstone. Sequential extraction analyses indicate that over 80% of fluorine is bound in residual phases, which limits its immediate release but poses long-term leaching hazards. The leaching experiments reveal a three-stage release mechanism: first, the initial oxidation of sulfides rapidly lowers the pH (to between 2.35 and 2.80), dissolving heavy metals and fluorides; second, slower weathering of aluminosilicates and adsorption by iron and aluminum hydroxides reduce the concentrations of dissolved elements; and third, concentrations stabilize as adsorption and slow silicate weathering regulate the long-term release of contaminants. The resulting acidic goaf water contains extremely high levels of metals (with aluminum at 191.4 mg/L and iron at 412.0 mg/L), which severely threaten groundwater, particularly in karst areas where rapid cross-layer contamination can occur. These findings provide crucial insights into the processes that drive the acidity of goaf water and the release of contaminants, which can aid in the development of effective mitigation strategies for abandoned mines. Targeted management is essential to safeguard water resources and ecological health in regions affected by mining activities. Full article
Show Figures

Graphical abstract

26 pages, 4626 KiB  
Article
Analysis and Application of Dual-Control Single-Exponential Water Inrush Prediction Mechanism for Excavation Roadways Based on Peridynamics
by Xiaoning Liu, Xinqiu Fang, Minfu Liang, Gang Wu, Ningning Chen and Yang Song
Appl. Sci. 2025, 15(13), 7621; https://doi.org/10.3390/app15137621 - 7 Jul 2025
Viewed by 293
Abstract
Roof water inrush accidents in coal mine driving roadways occur frequently in China, accounting for a high proportion of major coal mine water hazard accidents and causing serious losses. Aiming at the lack of research on the mechanism of roof water inrush in [...] Read more.
Roof water inrush accidents in coal mine driving roadways occur frequently in China, accounting for a high proportion of major coal mine water hazard accidents and causing serious losses. Aiming at the lack of research on the mechanism of roof water inrush in driving roadways and the difficulty of predicting water inrush accidents, this paper constructs a local damage criterion for coal–rock mass and a seepage–fracture coupling model based on peridynamics (PD) bond theory. It identifies three zones of water-conducting channels in roadway surrounding rock, the water fracture zone, the driving fracture zone, and the water-resisting zone, revealing that the damage degree of the water-resisting zone dominates the transformation mechanism between delayed and instantaneous water inrush. A discriminant function for the effectiveness of water-conducting channels is established, and a single-index prediction and evaluation system based on damage critical values is proposed. A “geometry damage” dual-control water inrush prediction model within the PD framework is constructed, along with a non-local action mechanism model and quantitative prediction method for water inrush. Case studies verify the threshold for delayed water inrush and criteria for instantaneous water inrush. The research results provide theoretical tools for roadway water exploration design and water hazard prevention and control. Full article
Show Figures

Figure 1

18 pages, 3754 KiB  
Article
Challenges of Sustainable Water Management in a Heavily Industrialized Urban Basin, Case of Bytomka River, Poland
by Ewa Katarzyn Janson and Adam Hamerla
Sustainability 2025, 17(13), 5707; https://doi.org/10.3390/su17135707 - 20 Jun 2025
Viewed by 444
Abstract
Industrial and urban activity has inevitably changed the water environment and caused significant impacts on water resources’ quality and quantity. The identification of related impacts is particularly important in the context of increasing water shortages due to climate change. Overlapping industrial impacts and [...] Read more.
Industrial and urban activity has inevitably changed the water environment and caused significant impacts on water resources’ quality and quantity. The identification of related impacts is particularly important in the context of increasing water shortages due to climate change. Overlapping industrial impacts and drought occurrence have resulted in the long-lasting deterioration of surface water status. Therefore, the mitigation of negative impacts is crucial for relevant and sustainable water management in river basins. One of the most impactful branches of industry is underground coal mining, which requires dewatering deposits and excavations. Mine waters discharged into rivers have induced significant increases of salinity, while urban wastewaters have increased biogenic contamination in surface waters. Sustainable development goals require water protection, energy transition, and circularity; therefore, coal will be repurposed in favor of alternative sources of energy. The phasing out of coal and cessation of dewatering of mines would rapidly reduce mine waters’ impact on the environment. However, in heavily industrialized urban basins, the share of natural waters in river flows is exceptionally low—due to significant and long-lasting transformations, industrial and urban wastewaters are the main constitutive components in certain river hydrological regimes. The case study of Bytomka in the Upper Silesian Coal Basin, Southern Poland is a vivid example of a river basin significantly impacted by urban and industrial activity over a long-term period. The Bytomka River’s water status and the development of its watershed area is an example of complex and overlapping impacts, wherein sustainable water management requires proper recognition of prevailing factors such as mine water discharges, climate change and drought periods, wastewater impacts, and urbanization of the water basin area. The presented study reveals key findings showing that future coal mine closures would result in significant water resource shortages due to a reduction of mine water discharges, significant biogenic (N and P) pollution increases, and hazards of harmful algal blooms. Therefore, there is an urgent need to increase the retention potential of the watershed, use nature-based solutions, and mitigate negative impacts of the coal mining transition. The increase in treatment capability of industrial wastewater and sewage discharge would help to cope with the natural water vulnerability induced by the impacts of climate change. Full article
(This article belongs to the Special Issue Sustainable Use of Water Resources in Climate Change Impacts)
Show Figures

Figure 1

24 pages, 20179 KiB  
Article
Research on the Roof Failure Law of Downward Mining of Gently Inclined Coal Seams at Close Range
by Tao Yang, Jiarui Sun, Jie Zhang, Shoushi Gao, Yifeng He, Hui Liu, Dong Liu, Jiayue Deng and Yiming Zhang
Appl. Sci. 2025, 15(12), 6609; https://doi.org/10.3390/app15126609 - 12 Jun 2025
Viewed by 287
Abstract
With the increasing depth of coal mining operations, the repeated extraction of multiple coal seams has led to serious safety threats to mines, including secondary roof fracturing, interlayer separation-induced water hazards, and intense mine pressure. Due to the limited research available on the [...] Read more.
With the increasing depth of coal mining operations, the repeated extraction of multiple coal seams has led to serious safety threats to mines, including secondary roof fracturing, interlayer separation-induced water hazards, and intense mine pressure. Due to the limited research available on the roof failure laws of gently inclined coal seam groups, this study focuses on the Yindonggou Coal Mine and employs a comprehensive approach combining theoretical analysis, numerical simulation, and field measurement. Theoretical calculations indicate that after the mining of Seam 1, the caving zone height ranges from 6.69 to 11.09 m, and the height of the water-conducting fracture zone ranges from 29.59 to 40.79 m. After Coal Seam 2 is mined, the caving zone extends 24.05–33.47 m above the roof of Coal Seam 1, and the fracture zone develops for up to 74.10–94.94 m. Following the mining of Seam 4, the caving zone expands to 30.73–40.15 m above the roof of Coal Seam 1, and the fracture zone reaches 92.26–113.10 m. The numerical simulation results show that after mining Seam 1, the caving zone height is 8.4 m, and the fracture zone reaches 36 m. After Seam 2 is mined, the caving zone extends to 27 m above the roof of Coal Seam 1 and the fracture zone extends to 89 m. After Seam 4 is mined, the caving zone expands to 40 m above the roof of Coal Seam 1 and the fracture zone develops to 112.6 m. The field measurements validate the following findings: a loss of flushing fluid during drilling indicates that after Coal Seam 4 is mined, the fracture zone develops up to 110.5 m above the roof of Coal Seam 1, and the caving zone reaches 47.5 m. Optical imaging logging shows the fracture zone developing to 114.5 m and the caving zone extending to 48.1 m above the roof of Coal Seam 1. The results demonstrate good consistency among these theoretical calculations, numerical simulations, and field measurements. This study reveals a progressive development pattern of roof failure during the repeated mining of gently inclined coal seam groups, providing a theoretical foundation for water hazard prevention and mine pressure control in deep multi-seam mining operations. Full article
Show Figures

Figure 1

17 pages, 3950 KiB  
Article
Performance of Microbially Induced Carbonate Precipitation for Reinforcing Cohesive Soil in the Reservoir Area
by Xinfa Li, Dingxiang Zhuang and Ru Hu
Crystals 2025, 15(6), 540; https://doi.org/10.3390/cryst15060540 - 5 Jun 2025
Viewed by 656
Abstract
Cohesive soil in the reservoir area is vulnerable to natural disasters because of its poor erosion resistance and low strength. Therefore, it needs to be reinforced. Microbially induced calcium carbonate precipitation (MICP) is a sustaibable soil reinforcement technique with low energy consumption and [...] Read more.
Cohesive soil in the reservoir area is vulnerable to natural disasters because of its poor erosion resistance and low strength. Therefore, it needs to be reinforced. Microbially induced calcium carbonate precipitation (MICP) is a sustaibable soil reinforcement technique with low energy consumption and no pollution. Different combinations of Bacillus subtilis bacterial solution (BS) concentrations and cementing solution (CS) concentrations were set to perform MICP solidification treatment. The characterization of cohesive soil before MICP was carried out by means of Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), and Laser Particle Size Analyzer (LPSA). The results showed that the unreinforced soil showed an amorphous state with low strength and the particle size distribution was dominated by powder particles. However, with the addition of BS concentrations and CS concentrations, SEM results showed that spherical and rhombohedral minerals filled the pores of the cohesive soil, which increased the content of precipitations and enhanced the cementitious characteristics. When the concentrations of CS or BS were fixed, CaCO3 content, deviatoric stress, shear strength, cohesive force, and internal friction angle all showed a trend of first increasing and then decreasing with the increase in CS or BS concentration. The optimal combination of CS and BS concentration was 1.5 mol/L and OD600 = 1.8. Thermochemical analyses showed an improved thermal stability of the reinforcing cohesive soil, with the lowest mass loss (32%) and the highest pyrolysis temperature (812 °C) of the samples at the optimal combination of BS and CS concentration. This study is expected to improve the understanding of the MICP reinforcement process and contribute to the optimal design of future biologically mediated soil amendments, promoting bioremediation. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

22 pages, 7345 KiB  
Article
Study on Coupled Evolution Mechanisms of Stress–Fracture–Seepage Fields in Overburden Strata During Fully Mechanized Coal Mining
by Yan Liu, Shangxin Fang, Tengfei Hu, Cun Zhang, Yuan Guo, Fuzhong Li and Jiawei Huang
Processes 2025, 13(6), 1753; https://doi.org/10.3390/pr13061753 - 2 Jun 2025
Viewed by 574
Abstract
Understanding the coupled evolution mechanisms of stress, fracture, and seepage fields in overburden strata is critical for preventing water inrush disasters during fully mechanized mining in deep coal seams, particularly under complex hydrogeological conditions. To address this challenge, this study integrates laboratory experiments [...] Read more.
Understanding the coupled evolution mechanisms of stress, fracture, and seepage fields in overburden strata is critical for preventing water inrush disasters during fully mechanized mining in deep coal seams, particularly under complex hydrogeological conditions. To address this challenge, this study integrates laboratory experiments with FLAC3D numerical simulations to systematically investigate the multi-field coupling behavior in the Luotuoshan coal mine. Three types of coal rock samples—raw coal/rock (bending subsidence zone), fractured coal/rock (fracture zone), and broken rock (caved zone)—were subjected to triaxial permeability tests under varying stress conditions. The experimental results quantitatively revealed distinct permeability evolution patterns: the fractured samples exhibited a 23–48 × higher initial permeability (28.03 mD for coal, 13.54 mD for rock) than the intact samples (0.50 mD for coal, 0.21 mD for rock), while the broken rock showed exponential permeability decay (120.32 mD to 23.72 mD) under compaction. A dynamic permeability updating algorithm was developed using FISH scripting language, embedding stress-dependent permeability models (R2 > 0.99) into FLAC3D to enable real-time coupling of stress–fracture–seepage fields during face advancement simulations. The key findings demonstrate four distinct evolutionary stages of pore water pressure: (1) static equilibrium (0–100 m advance), (2) fracture expansion (120–200 m, 484% permeability surge), (3) seepage channel formation (200–300 m, 81.67 mD peak permeability), and (4) high-risk water inrush (300–400 m, 23.72 mD stabilized permeability). The simulated fracture zone height reached 55 m, directly connecting with the overlying sandstone aquifer (9 m thick, 1 MPa pressure), validating field-observed water inrush thresholds. This methodology provides a quantitative framework for predicting water-conducting fracture zone development and optimizing real-time water hazard prevention strategies in similar deep mining conditions. Full article
(This article belongs to the Special Issue Advances in Coal Processing, Utilization, and Process Safety)
Show Figures

Figure 1

18 pages, 4825 KiB  
Article
The Prediction of Aquifer Water Abundance in Coal Mines Using a Convolutional Neural Network–Bidirectional Long Short-Term Memory Model: A Case Study of the 1301E Working Face in the Yili No. 1 Coal Mine
by Yangmin Ye, Wenping Li, Zhi Yang, Xiaoqin Li and Qiqing Wang
Water 2025, 17(11), 1595; https://doi.org/10.3390/w17111595 - 25 May 2025
Viewed by 493
Abstract
To address the challenges in predicting roof water hazards in weakly cemented strata of Northwest China, this study pioneers an integrated CNN-BiLSTM model for aquifer water abundance prediction. Focusing on the 1301E working face in the Yili No. 1 Coal Mine, we employed [...] Read more.
To address the challenges in predicting roof water hazards in weakly cemented strata of Northwest China, this study pioneers an integrated CNN-BiLSTM model for aquifer water abundance prediction. Focusing on the 1301E working face in the Yili No. 1 Coal Mine, we employed kriging interpolation to process sparse hydrological datasets (mean relative error: 8.7%), identifying five dominant controlling factors—aquifer burial depth, hydraulic conductivity, core recovery rate, sandstone–mudstone interbedded layer count, and sandstone equivalent thickness. The proposed bidirectional architecture synergizes CNN-based spatial feature extraction with BiLSTM-driven nonlinear temporal modeling, optimized via Bayesian algorithms to determine hyperparameters (32-channel convolutional kernels and 64-unit BiLSTM hidden layers). This framework achieves the comprehensive characterization of multifactorial synergistic effects. The experimental results demonstrate: (1) that the test set root mean square error (1.57 × 10−3) shows 65.3% and 85.9% reductions compared to the GA-BP and standalone CNN models, respectively; (2) that the coefficient of determination (R2 = 0.9966) significantly outperforms the conventional fuzzy analytic hierarchy process (FAHP, error: 0.071 L/(s·m)) and BP-based neural networks; (3) that water abundance zoning reveals predominantly weak water-rich zones (q = 0.05–0.1 L/(s·m)), with 93.3% spatial consistency between predictions and pumping test data. Full article
Show Figures

Figure 1

16 pages, 5555 KiB  
Article
Water Inrush Mechanism During Mining Adjacent to Large Water-Conducting Faults
by Xiaofei Gong, Dan Ma, Luyuan Wu, Qiang Li, Zhenhua Li, Feng Du, Rui Qiao and Jiufang Han
Water 2025, 17(10), 1508; https://doi.org/10.3390/w17101508 - 16 May 2025
Viewed by 459
Abstract
In mining operations, the rock mass located between the water-conducting fault fracture zone and the waterproof protective coal column is highly susceptible to damage, which may result in sudden water inrush disasters. This paper first employs indoor experiments and on-site rock sample analysis [...] Read more.
In mining operations, the rock mass located between the water-conducting fault fracture zone and the waterproof protective coal column is highly susceptible to damage, which may result in sudden water inrush disasters. This paper first employs indoor experiments and on-site rock sample analysis to determine the macroscopic mechanical parameters of rocks and rock masses, as well as the microscopic mechanical parameters of block contacts. The fracture and seepage evolution mechanisms in the mining-induced rock mass adjacent to major faults were analyzed utilizing the discrete element-fluid coupling theory in Universal Distinct Element Code (UDEC). The results identified three primary pathways for water hazards caused by mining: the calculated stress field and seepage field indicated that the formation of the water-inrush channels was determined by the parameters of coal seam mining. Different waterproof protective coal columns were set up for the three geological conditions under study. Additionally, a “claw-shaped” detection and flow monitoring method has been proposed for small water-conducting faults. These findings are important and provide valuable guidance for understanding and managing water inrush hazards in mining operations near major faults. Full article
Show Figures

Figure 1

13 pages, 4154 KiB  
Article
Grey Situation Decision Method Based on Improved Whitening Function to Identify Water Inrush Sources in the Whole Cycle of Coal Mining
by Qiding Ju, Youbiao Hu and Qimeng Liu
Water 2025, 17(10), 1479; https://doi.org/10.3390/w17101479 - 14 May 2025
Viewed by 340
Abstract
This study proposes a comprehensive model for identifying mine water inrush sources in coal mines throughout the full mining cycle, utilizing an improved whitening function and the CRITIC-weighted grey situational decision method. Traditional water source identification methods often fail to account for the [...] Read more.
This study proposes a comprehensive model for identifying mine water inrush sources in coal mines throughout the full mining cycle, utilizing an improved whitening function and the CRITIC-weighted grey situational decision method. Traditional water source identification methods often fail to account for the dynamic changes in water sources during the mining process, which can be influenced by geological and hydrological conditions. The model integrates an exponential whitening function with the CRITIC weighting approach to address the high variability and correlations between variables. Through the analysis of 244 groundwater samples from the Sunan mining area, the model demonstrated significant improvements in accuracy across different mining stages. The results showed overall classification accuracies exceeding 85%, indicating the model’s effectiveness in providing real-time early warnings for water hazards. This model not only optimizes traditional methods but also offers a robust tool for dynamic water source identification, thereby supporting safer and more efficient coal mining operations. Full article
(This article belongs to the Special Issue Engineering Hydrogeology Research Related to Mining Activities)
Show Figures

Figure 1

18 pages, 7967 KiB  
Article
Evaluation of Water Richness in Sandstone Aquifers Based on the CRITIC-TOPSIS Method: A Case Study of the Guojiawan Coal Mine in Fugu Mining Area, Shaanxi Province, China
by Chao Niu, Xiangqun Jia, Lele Xiao, Lei Dong, Hui Qiao, Fujing Huang, Xiping Liu, Shoutao Luo and Wanxue Qian
Water 2025, 17(10), 1424; https://doi.org/10.3390/w17101424 - 9 May 2025
Cited by 1 | Viewed by 412
Abstract
Taking the Guojiawan coal mine in the Shenfu Mining Area as a case study, five evaluation factors (aquifer thickness, brittle–plastic rock thickness ratio, core recovery rate, number of sandstone–mudstone interbeds, and fractal dimension of the faults) were selected as indicators to evaluate the [...] Read more.
Taking the Guojiawan coal mine in the Shenfu Mining Area as a case study, five evaluation factors (aquifer thickness, brittle–plastic rock thickness ratio, core recovery rate, number of sandstone–mudstone interbeds, and fractal dimension of the faults) were selected as indicators to evaluate the water richness of the sandstone aquifer in the roof strata of the main coal seam. Accordingly, the weights of the water richness evaluation indicators, derived using the criteria importance through intercriteria correlation (CRITIC) evaluation method, were integrated with the computational procedures of the technique for order of preference by similarity to ideal solution (TOPSIS) evaluation method. The indicator weights and evaluation approaches were combined through different fusion strategies. Finally, based on the water richness zoning results for the study area, the advantages and disadvantages of the two fusion approaches, C-TOPSIS-a and C-TOPSIS-b, were compared. Comprehensive analysis was conducted to evaluate the rationality of the water richness zoning. The C-TOPSIS-b evaluation method achieved the optimal evaluation outcome. The water richness was classified into five grades: weak, relatively weak, moderate, relatively strong, and strong. Among these, the regions with weak to relatively weak, moderate, and strong to relatively strong water richness are primarily in the northern, central, southern, and southwestern parts, respectively. Full article
Show Figures

Figure 1

20 pages, 12803 KiB  
Article
Prediction of the Water-Conducting Fracture Zone Height Across the Entire Mining Area Based on the Multiple Nonlinear Coordinated Regression Model
by Jianye Feng, Xiaoming Shi, Jiasen Chen and Kang Wang
Water 2025, 17(9), 1303; https://doi.org/10.3390/w17091303 - 27 Apr 2025
Viewed by 426
Abstract
The water-conducting fracture zone (WCFZ) is a critical geological structure formed by the destruction of overburden during coal mining operations. Accurately predicting the height of the water-conducting fractured zone (HWCFZ) is essential for ensuring safe coal production. Based on more than 150 measured [...] Read more.
The water-conducting fracture zone (WCFZ) is a critical geological structure formed by the destruction of overburden during coal mining operations. Accurately predicting the height of the water-conducting fractured zone (HWCFZ) is essential for ensuring safe coal production. Based on more than 150 measured heights of fractured water-conducting zone samples from various mining areas in China, this study investigates the influence of five primary factors on the height: mining thickness, mining depth, length of the panel, coal seam dip, and the proportion coefficient of hard rock. The correlation degrees and relative weights of each factor are determined through grey relational analysis and principal component analysis. All five factors exhibit strong correlations with the height of the fractured water-conducting zone, with correlation degrees exceeding 0.79. Mining thickness is found to have the highest weight (0.256). A multiple nonlinear coordinated regression equation was constructed through regression analysis of the influencing factors. The prediction accuracy was compared with three other predictive models: the multiple nonlinear additive regression model, the BP neural network model, and the GA-BP neural network model. Among these models, the multiple nonlinear coordinated regression model was found to achieve the lowest error rate (7.23%) and the highest coefficient of determination (R2 = 87.42%), indicating superior accuracy and reliability. The model’s performance is further validated using drill hole data and numerical simulations at the B-1 drill hole in the Fuda Coal Mine. Predictive results for the entire Fuda Coal Mine area indicate that as the No. 15 coal seam extends northwestward, the height of the fractured water-conducting zone increases from 52.1 m to 73.9 m. These findings have significant implications for improving mine safety and preventing geological hazards in coal mining operations. Full article
Show Figures

Figure 1

24 pages, 12707 KiB  
Article
Prediction of Water Inrush Hazard in Fully Mechanized Coal Seams’ Mining Under Aquifers by Numerical Simulation in ANSYS Software
by Ivan Sakhno, Natalia Zuievska, Li Xiao, Yurii Zuievskyi, Svitlana Sakhno and Roman Semchuk
Appl. Sci. 2025, 15(8), 4302; https://doi.org/10.3390/app15084302 - 14 Apr 2025
Cited by 3 | Viewed by 581
Abstract
The process of fully mechanized coal seam mining under aquifers and surface water bodies has been a challenge in recent years for different countries. During the evolution of subsidence and the overburdening of rock mass movement above the longwall goaf, there is always [...] Read more.
The process of fully mechanized coal seam mining under aquifers and surface water bodies has been a challenge in recent years for different countries. During the evolution of subsidence and the overburdening of rock mass movement above the longwall goaf, there is always a potential risk of connecting the water-conducting fracture zone with aquifers. The water inflows in the coal mine’s roadways have a negative impact on the productivity of the working faces and pose significant hazards to miners in the event of water inrush. Therefore, the assessment of the height of the water-flowing fractured zone has an important scientific and practical significance. The background of this study is the Xinhu Coal Mine in Anhui Province, China. In the number 81 mining area of the Xinhu Coal Mine during the mining of the number 815 longwall, a water inflow occurred due to fractures in the sandstone in the overburden rock. The experience of the successful implementation of the water inrush control method by horizontal regional grouting through multiple directional wells is described in this paper. This study proposes an algorithm for the assessment of the risk of water inrush from aquifers, based on an ANSYS 17.2 simulation in the complex anticline coal seam bedding. It was found that the safety factors based on the stress and strain parameters can be used as criteria for the risk of rock failure in the aquifer zone. For the number 817 longwall panel of the Xinhu Coal Mine, the probability of rock mass failure indicates a low risk of the occurrence of a water-flowing fractured zone. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

17 pages, 9448 KiB  
Article
Analysis of the Quality of Typical Acidic Groundwater of the Guangwang Mining Area and Its Associated Human Health Risks
by Guo Liu, Man Gao, Mingtan Zhu, Shuang Ren and Jiajun Fan
Sustainability 2025, 17(6), 2677; https://doi.org/10.3390/su17062677 - 18 Mar 2025
Viewed by 340
Abstract
This study determined the hydro-chemical properties of groundwater in a typical mining area and its associated human health risks, focusing on the Guangwang mining area. Groundwater samples were analyzed for toxic metals, after which analysis of principal components, the entropy-weighted water quality index, [...] Read more.
This study determined the hydro-chemical properties of groundwater in a typical mining area and its associated human health risks, focusing on the Guangwang mining area. Groundwater samples were analyzed for toxic metals, after which analysis of principal components, the entropy-weighted water quality index, and Spearman analysis of correlation were applied to the collected data. The Environmental Protection Agency of the United States’s health hazard appraisal was utilized to assess the hazards of toxic metals in the local water supply to the health of both grownups and juveniles. HCO3-Na and SO4⋅Cl-Ca⋅Mg were found to be the predominant groundwater hydro-chemical types. The eastern section of the area of study showed the greatest average total dissolved solids (16,347.00 mg/L) and SO42− (8980.00 mg/L) levels. It was determined that the groundwater hydro-chemical type was Ca-HCO3 and that limestone leeching and the evaporative level in the coal seam aquifer were the predominant factors regulating groundwater hydrochemistry. Six of the ten assessed metals exceeded the World Health Organization’s safe water for drinking standards, with particularly high Al (66.97 mg/L) and Cd (194.53 μg/L). Spearman correlation analysis showed significant correlations between Mn, Al, Cu, and Zn, which could be attributed to bauxite minerals associated with the coal mine. Release of metal ions was attributed to the oxidation of metal sulfide minerals, which is driven by mining-induced water–rock interaction. The intake of water for drinking was shown to be the predominant route of hazard to human health. The hazard index decreased from east to west due to the level of abandoned coal mines in the eastern region, along with well-developed fissures. The total carcinogenic hazard for grownups exceeded that of juveniles due to the greater quantity of water for drinking consumed and higher surface area of skin amongst grownups. The results can guide groundwater pollution regulation activities in mining areas to minimize potential hazards of groundwater quality to the health of humans. Full article
Show Figures

Figure 1

Back to TopTop