Challenges of Sustainable Water Management in a Heavily Industrialized Urban Basin, Case of Bytomka River, Poland
Abstract
:1. Introduction
- Water quality measurements from representative monitoring points;
- Flow measurement results as part of quantitative water resources assessment;
- Meteorological data (precipitation) in representative monitoring station;
- Inventory of wastewater discharges with data of quality and quantity.
2. Materials and Methods
2.1. Study Area
2.2. GIS-Based Methods—Land Development
2.3. Datasets of Water Quality and Flow Monitoring
2.4. Inventory of Wastewater Discharges in Bytomka River Basin
2.5. Water Quality Index Calculation
3. Results
3.1. Land Use and Impervious Surface Trends
- 1883—5.8%;
- 1996—20.3%;
- 2010—21.1%;
- 2024—22.8%.
3.2. Flow Variability and Water Quantity in Bytomka River 1990–2022
3.3. Water Quality Trends and WQI Analysis in Surface Waters of Bytomka River Basin in 1990–2024
3.4. Pollution Sources and Identification of Prevailing Impacts on Waters in River Basin in 1990–2024
3.5. Uncertainties of Analysis, Limitations, and Data Gaps Identified in the Case of the Bytomka River Basin
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, M.; Bodirsky, B.L.; Rijneveld, R.; Beier, F.; Bak, M.P.; Batool, M.; Droppers, B.; Popp, A.; van Vliet, M.T.H.; Strokal, M. A triple increase in global river basins with water scarcity due to future pollution. Nat. Commun. 2024, 15, 880. [Google Scholar] [CrossRef] [PubMed]
- Surian, N.; Rinaldi, M. Morphological response to river engineering and management in alluvial channels in Italy. Geomorphology 2003, 50, 307–326. [Google Scholar] [CrossRef]
- Postel, S.; Richter, B. Rivers for Life: Managing Water for People and Nature; Island Press: Washington, DC, USA, 2003. [Google Scholar]
- Poff, N.L.; Brinson, M.M.; Day, J.W. Aquatic Ecosystems and Global Climate Change: Potential Impacts on Inland Freshwater and Coastal Wetland Ecosystems; Pew Center for Global Change: Arlington, VA, USA, 2002. [Google Scholar]
- Agrawal, K.K.; Panda, C.; Bhuyan, M.K. Impact of urbanization on water quality. In Current Advances in Mechanical Engineering: Select Proceedings of ICRAMERD 2020; Springer: Singapore, 2021; pp. 665–673. [Google Scholar]
- MacKenzie, K.M.; Singh, K.; Binns, A.D.; Whiteley, H.R.; Gharabaghi, B. Effects of urbanization on stream flow, sediment, and phosphorous regime. J. Hydrol. 2022, 612, 128283. [Google Scholar] [CrossRef]
- Chiang, L.C.; Wang, Y.C.; Chen, Y.K.; Liao, C.J. Quantification of land use/land cover impacts on stream water quality across Taiwan. J. Clean. Prod. 2021, 318, 128443. [Google Scholar] [CrossRef]
- Wang, S.; Shentu, H.; Yu, H.; Wang, L.; Wang, J.; Ma, J.; Zheng, H.; Huang, S.; Dong, L.; Wei, J. Impact of urbanization and land use on wetland water quality: A case study in Mengxi town. Urban. Clim. 2024, 55, 101855. [Google Scholar] [CrossRef]
- de Magalhães, S.F.C.; de Moura Barboza, C.A.; Maia, M.B.; Molisani, M.M. Influence of land cover, catchment morphometry and rainfall on water quality and material transport of headwaters and low-order streams of a tropical mountainous watershed. Catena 2022, 213, 106137. [Google Scholar] [CrossRef]
- Vystavna, Y.; Paule-Mercado, M.C.; Schmidt, S.I.; Hejzlar, J.; Porcal, P.; Matiatos, I. Nutrient dynamics in temperate European catchments of different land use under changing climate. J. Hydrol. Reg. Stud. 2023, 45, 101288. [Google Scholar] [CrossRef]
- Yılmaz, S.G.; Chaudhary, A.; Kanda, R. Impacts of Extreme Weather Events on Hydromorphology of UK Rivers. Turk. J. Water Sci. Manag. 2021, 5, 108–147. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime: A new paradigm for riverine conservation and restoration. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Singh, H.; Pandey, R.; Singh, S.K.; Shukla, D.N. Assessment of heavy metal contamination in the sediment of the River Ghaghara, a major tributary of the River Ganga in Northern India. Appl. Water Sci. 2017, 7, 4133–4149. [Google Scholar] [CrossRef]
- Yu, H.; Kong, B.; He, Z.W.; Wang, G.; Wang, Q. The potential of integrating landscape, geochemical and economical indices to analyze watershed ecological environment. J. Hydrol. 2020, 583, 124298. [Google Scholar] [CrossRef]
- Kumar, N.; Dubey, A.K.; Goswami, U.P.; Singh, S.K. Modelling of hydrological and environmental flow dynamics over a central Himalayan River basin through satellite altimetry and recent climate projections. Int. J. Climatol. 2022, 42, 8446–8471. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, M.; Tang, S.; You, X.; Li, Y.; Mei, Y.; Chen, Y. Investigation of the key mechanisms and optimum conditions of high-effective phosphate removal by bimetallic La-Fe-CNT film. Sep. Purif. Technol. 2024, 341, 126938. [Google Scholar] [CrossRef]
- Xue, L.; Yang, F.; Yang, C.; Chen, X.; Zhang, L.; Chi, Y.; Yang, G. Identification of potential impacts of climate change and anthropogenic activities on streamflow alterations in the Tarim River Basin, China. Sci. Rep. 2017, 7, 8254. [Google Scholar] [CrossRef]
- EU. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Official Journal of the European Union, L 327, 22 December 2000; EU: Brussels, Belgium; 1–73. [Google Scholar]
- Mukheibir, P. Water Access, Water Scarcity, and Climate Change. Environ. Manag. 2010, 45, 1027–1039. [Google Scholar] [CrossRef]
- Van Dijk, A.I.J.M.; Beck, H.E.; Boergens, E.; de Jeu, R.A.M.; Dorigo, W.A.; Edirisinghe, C.; Forootan, E.; Guo, E.; Güntner, A.; Hou, J.; et al. Global Water Monitor 2024, Summary Report. Published by Global Water Monitor Consortium. 2025. Available online: https://www.globalwater.online/ (accessed on 10 March 2025).
- Locke, K.A. Impacts of land use/land cover on water quality: A contemporary review for researchers and policymakers. Water Qual. Res. J. 2024, 59, 89–106. [Google Scholar] [CrossRef]
- Tanaka, S.K.; Zhu, T.; Lund, J.R.; Howitt, R.E.; Jenkins, M.W.; Pulido, M.A.; Tauber, M.; Ritzema, R.S.; Ferreira, I.C. Climate warming and water management adaptation for California. Clim. Change 2006, 76, 361–387. [Google Scholar] [CrossRef]
- Fowler, H.J.; Kilsby, C.G.; Stunell, J. Modelling the impacts of projected future climate change on water resources in north-west England. Hydrol. Earth Syst. Sci. 2007, 11, 1115–1126. [Google Scholar] [CrossRef]
- O’Hara, J.K.; Georgakakos, K.R. Quantifying the urban water supply impacts of climate change. Water Resour. Manag. 2008, 22, 1477–1497. [Google Scholar] [CrossRef]
- Palmer, M.A.; Reidy Liermann, C.A.; Nilsson Ch Flörke, M.; Alcamo, J.; Sam Lake, P.; Bond, N. Climate change and the world’s river basins: Anticipating management options. Front. Ecol. Environ. 2008, 6, 81–89. [Google Scholar] [CrossRef]
- Garrote, L. Managing Water Resources to Adapt to Climate Change: Facing Uncertainty and Scarcity in a Changing Context. Water Resour. Manag. 2017, 31, 2951–2963. [Google Scholar] [CrossRef]
- New, M.; Lopez, A.; Dessai, S.; Wilby, R. Challenges in using probabilistic climate change information for impact assessments: An example from the water sector. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 2117–2131. [Google Scholar] [CrossRef] [PubMed]
- Freas, K.; Bailey, B.; Munevar, A.; Butler, S. Incorporating climate change in water planning. J. Am. Water Work. Assoc. 2008, 100, 92. [Google Scholar] [CrossRef]
- Groves, D.G.; Yates, D.; Tebaldi, C. Developing and applying uncertain global climate change projections for regional water management planning. Water Resour. Res. 2008, 44, W12413. [Google Scholar] [CrossRef]
- Ludwig, F.; van Slobbe, E.; Cofino, W. Climate change adaptation and Integrated Water Resource Management in the water sector. J. Hydrol. 2014, 518, 235–242. [Google Scholar] [CrossRef]
- Arnell, N.W.; Delaney, E.K. Adapting to climate change: Public water supply in England and Wales. Clim. Change 2006, 78, 227–255. [Google Scholar] [CrossRef]
- Arnell, N.W.; Charlton, M.B. Adapting to climate change impacts on water resources in England—An assessment of draft Water Resources Management Plans. Glob. Environ. Chang. 2011, 21, 238–248. [Google Scholar] [CrossRef]
- Hydroportal. Available online: https://isok.gov.pl/hydroportal.html (accessed on 10 March 2025).
- National Monitoring of Water Quality in Poland, National Inspectorate of Environmental Protection. Available online: https://wody.gios.gov.pl/pjwp/publication/367 (accessed on 16 April 2024).
- Polish National Meteorological and Hydrological Institute. Available online: https://danepubliczne.imgw.pl/pl/datastore (accessed on 16 September 2024).
- Kostecki, M.; Pohl, A.; Tytła, M.; Kernert, J. Bytomka River—Ecosystem Functioning in Conditions of Antropogenic Impact—Possibilities of Restoration; IPIŚ—PAN Institute of Environmental Engineering of the Polish Academy of Sciences: Zabrze, Poland, 2022; ISBN 978-83-60877-22-7. [Google Scholar]
- Cadaster of Water Permits of Reginal Water Management Board. (Limited Access to Database 25 September 2023).
- Batbayar, G.; Pfeiffer, M.; Kappas, M.; Karthe, D. Development and application of GIS-based assessment of land-use impacts on water quality: A case study of the Kharaa River Basin. Ambio 2019, 48, 1154–1168. [Google Scholar] [CrossRef]
- Chidiac, S.; El Najjar, P.; Ouaini, N.; El Rayess, Y.; El Azzi, C. A comprehensive review of water quality indices (WQIs): History, models, attempts and perspectives. Rev. Environ. Sci. Biotechnol. 2023, 22, 349–395. [Google Scholar] [CrossRef]
- Aljanabi, Z.Z.; Jawad Al-Obaidy, A.H.M.; Hassan, F.M. A brief review of water quality indices and their applications. IOP Conf. Ser. Earth Environ. Sci. 2021, 779, 012088. [Google Scholar] [CrossRef]
- Uddin GNash, S.; Olbert, A.I. A review of water quality index models and their use for assessing surface water quality. Ecol. Indic. 2021, 122, 107218. [Google Scholar] [CrossRef]
- Simpson, I.M.; Winston, R.J.; Brooker, M.R. Effects of land use, climate, and imperviousness on urban stormwater quality: A meta-analysis. Sci. Total Environ. 2022, 809, 152206. [Google Scholar] [CrossRef] [PubMed]
- Das Gupta, A. Implication of environmental flows in river basin management. Phys. Chem. Earth 2008, 33, 298–303. [Google Scholar] [CrossRef]
- Barrow, C.H.J. River Basin Development Planning and Management: A Critical Review. World Dev. 1998, 26, 171–186. [Google Scholar] [CrossRef]
- Polish Water Act. J. Laws; 20 July 2017; p. 1478. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170001566 (accessed on 10 March 2025).
- Dyson, M.; Bergkamp, G.; Scanlon, J. (Eds.) Flow: The Essentials of Environmental Flows; International Union for Conservation of Nature and Natural Resources (IUCN): Gland, Switzerland; Cambridge, UK, 2003. [Google Scholar]
- Köhler, J.; Varga, E.; Spahr, S.; Gessner, J.; Stelzer, K.; Brandt, G.; Mahecha, M.D.; Kraemer, G.; Pusch, M.; Wolter, C.; et al. Unpredicted ecosystem response to compound human impacts in a European river. Nat. Sci. Rep. 2024, 14, 16445. [Google Scholar] [CrossRef]
Discharge | Q Average [m3/day] | Characteristic Limits of Contaminations in Water Permits |
---|---|---|
Saline mine waters | 81,326 | Chlorides 1000–6500 [mg/L] Sulphates 500–2000 [mg/L] TSS 35 [mg/L] |
Wastewater (sewage) | 61,580 | BOD 15–40 [mgO2/L] COD 125–150 [mgO2/L] N 10–30 [mg/L] P 1–50 [mg/L] |
Industrial wastewater | 2005 | Cu 0.5 [mg/L] Cr 0.1–0.5 [mg/L] Pb 0.5 [mg/L] Hg 0.06 [mg/L] Ni 0.5 [mg/L] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janson, E.K.; Hamerla, A. Challenges of Sustainable Water Management in a Heavily Industrialized Urban Basin, Case of Bytomka River, Poland. Sustainability 2025, 17, 5707. https://doi.org/10.3390/su17135707
Janson EK, Hamerla A. Challenges of Sustainable Water Management in a Heavily Industrialized Urban Basin, Case of Bytomka River, Poland. Sustainability. 2025; 17(13):5707. https://doi.org/10.3390/su17135707
Chicago/Turabian StyleJanson, Ewa Katarzyn, and Adam Hamerla. 2025. "Challenges of Sustainable Water Management in a Heavily Industrialized Urban Basin, Case of Bytomka River, Poland" Sustainability 17, no. 13: 5707. https://doi.org/10.3390/su17135707
APA StyleJanson, E. K., & Hamerla, A. (2025). Challenges of Sustainable Water Management in a Heavily Industrialized Urban Basin, Case of Bytomka River, Poland. Sustainability, 17(13), 5707. https://doi.org/10.3390/su17135707