Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,139)

Search Parameters:
Keywords = co-innovation sustainable innovation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1684 KiB  
Article
Beyond Assistance: Embracing AI as a Collaborative Co-Agent in Education
by Rena Katsenou, Konstantinos Kotsidis, Agnes Papadopoulou, Panagiotis Anastasiadis and Ioannis Deliyannis
Educ. Sci. 2025, 15(8), 1006; https://doi.org/10.3390/educsci15081006 - 6 Aug 2025
Abstract
The integration of artificial intelligence (AI) in education offers novel opportunities to enhance critical thinking while also posing challenges to independent cognitive development. In particular, Human-Centered Artificial Intelligence (HCAI) in education aims to enhance human experience by providing a supportive and collaborative learning [...] Read more.
The integration of artificial intelligence (AI) in education offers novel opportunities to enhance critical thinking while also posing challenges to independent cognitive development. In particular, Human-Centered Artificial Intelligence (HCAI) in education aims to enhance human experience by providing a supportive and collaborative learning environment. Rather than replacing the educator, HCAI serves as a tool that empowers both students and teachers, fostering critical thinking and autonomy in learning. This study investigates the potential for AI to become a collaborative partner that assists learning and enriches academic engagement. The research was conducted during the 2024–2025 winter semester within the Pedagogical and Teaching Sufficiency Program offered by the Audio and Visual Arts Department, Ionian University, Corfu, Greece. The research employs a hybrid ethnographic methodology that blends digital interactions—where students use AI tools to create artistic representations—with physical classroom engagement. Data was collected through student projects, reflective journals, and questionnaires, revealing that structured dialog with AI not only facilitates deeper critical inquiry and analytical reasoning but also induces a state of flow, characterized by intense focus and heightened creativity. The findings highlight a dialectic between individual agency and collaborative co-agency, demonstrating that while automated AI responses may diminish active cognitive engagement, meaningful interactions can transform AI into an intellectual partner that enriches the learning experience. These insights suggest promising directions for future pedagogical strategies that balance digital innovation with traditional teaching methods, ultimately enhancing the overall quality of education. Furthermore, the study underscores the importance of integrating reflective practices and adaptive frameworks to support evolving student needs, ensuring a sustainable model. Full article
(This article belongs to the Special Issue Unleashing the Potential of E-learning in Higher Education)
Show Figures

Figure 1

20 pages, 1083 KiB  
Article
The Risk of Global Environmental Change to Economic Sustainability and Law: Help from Digital Technology and Governance Regulation
by Zhen Cao, Zhuiwen Lai, Muhammad Bilawal Khaskheli and Lin Wang
Sustainability 2025, 17(15), 7094; https://doi.org/10.3390/su17157094 - 5 Aug 2025
Abstract
This research examines the compounding risks of global environmental change, including climate change, environmental law, biodiversity loss, and pollution, which threaten the stability of economic systems worldwide. While digital technology and global governance regulation are increasingly being proposed as solutions, their synergistic potential [...] Read more.
This research examines the compounding risks of global environmental change, including climate change, environmental law, biodiversity loss, and pollution, which threaten the stability of economic systems worldwide. While digital technology and global governance regulation are increasingly being proposed as solutions, their synergistic potential in advancing economic sustainability has been less explored. How can these technologies mitigate environmental risks while promoting sustainable and equitable development, aligning with the Sustainable Development Goals? We analyze policy global environmental data from the World Bank and the United Nations, as well as literature reviews on digital interventions, artificial intelligence, and smart databases. Global environmental change presents economic stability and rule of law threats, and innovative governance responses are needed. This study evaluates the potential for digital technology to be leveraged to enhance climate resilience and regulatory systems and address key implementation, equity, and policy coherence deficits. Policy recommendations for aligning economic development trajectories with planetary boundaries emphasize that proactive digital governance integration is indispensable for decoupling growth from environmental degradation. However, fragmented governance and unequal access to technologies undermine scalability. Successful experiences demonstrate that integrated policies, combining incentives, data transparency, and multilateral coordination, deliver maximum economic and environmental co-benefits, matching digital innovation with good governance. We provide policymakers with an action plan to leverage technology as a multiplier of sustainability, prioritizing inclusive governance structures to address implementation gaps and inform legislation. Full article
(This article belongs to the Special Issue Innovations in Environment Protection and Sustainable Development)
Show Figures

Figure 1

12 pages, 671 KiB  
Proceeding Paper
The Role of Industrial Catalysts in Accelerating the Renewable Energy Transition
by Partha Protim Borthakur and Barbie Borthakur
Chem. Proc. 2025, 17(1), 6; https://doi.org/10.3390/chemproc2025017006 - 4 Aug 2025
Abstract
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting [...] Read more.
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting their transformative impact on renewable energy systems. Precious-metal-based electrocatalysts such as ruthenium (Ru), iridium (Ir), and platinum (Pt) demonstrate high efficiency but face challenges due to their cost and stability. Alternatives like nickel-cobalt oxide (NiCo2O4) and Ti3C2 MXene materials show promise in addressing these limitations, enabling cost-effective and scalable hydrogen production. Additionally, nickel-based catalysts supported on alumina optimize SMR, reducing coke formation and improving efficiency. In biofuel production, heterogeneous catalysts play a crucial role in converting biomass into valuable fuels. Co-based bimetallic catalysts enhance hydrodeoxygenation (HDO) processes, improving the yield of biofuels like dimethylfuran (DMF) and γ-valerolactone (GVL). Innovative materials such as biochar, red mud, and metal–organic frameworks (MOFs) facilitate sustainable waste-to-fuel conversion and biodiesel production, offering environmental and economic benefits. Power-to-X technologies, which convert renewable electricity into chemical energy carriers like hydrogen and synthetic fuels, rely on advanced catalysts to improve reaction rates, selectivity, and energy efficiency. Innovations in non-precious metal catalysts, nanostructured materials, and defect-engineered catalysts provide solutions for sustainable energy systems. These advancements promise to enhance efficiency, reduce environmental footprints, and ensure the viability of renewable energy technologies. Full article
Show Figures

Figure 1

25 pages, 2100 KiB  
Article
Flexible Demand Side Management in Smart Cities: Integrating Diverse User Profiles and Multiple Objectives
by Nuno Souza e Silva and Paulo Ferrão
Energies 2025, 18(15), 4107; https://doi.org/10.3390/en18154107 - 2 Aug 2025
Viewed by 200
Abstract
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, [...] Read more.
Demand Side Management (DSM) plays a crucial role in modern energy systems, enabling more efficient use of energy resources and contributing to the sustainability of the power grid. This study examines DSM strategies within a multi-environment context encompassing residential, commercial, and industrial sectors, with a focus on diverse appliance types that exhibit distinct operational characteristics and user preferences. Initially, a single-objective optimization approach using Genetic Algorithms (GAs) is employed to minimize the total energy cost under a real Time-of-Use (ToU) pricing scheme. This heuristic method allows for the effective scheduling of appliance operations while factoring in their unique characteristics such as power consumption, usage duration, and user-defined operational flexibility. This study extends the optimization problem to a multi-objective framework that incorporates the minimization of CO2 emissions under a real annual energy mix while also accounting for user discomfort. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) is utilized for this purpose, providing a Pareto-optimal set of solutions that balances these competing objectives. The inclusion of multiple objectives ensures a comprehensive assessment of DSM strategies, aiming to reduce environmental impact and enhance user satisfaction. Additionally, this study monitors the Peak-to-Average Ratio (PAR) to evaluate the impact of DSM strategies on load balancing and grid stability. It also analyzes the impact of considering different periods of the year with the associated ToU hourly schedule and CO2 emissions hourly profile. A key innovation of this research is the integration of detailed, category-specific metrics that enable the disaggregation of costs, emissions, and user discomfort across residential, commercial, and industrial appliances. This granularity enables stakeholders to implement tailored strategies that align with specific operational goals and regulatory compliance. Also, the emphasis on a user discomfort indicator allows us to explore the flexibility available in such DSM mechanisms. The results demonstrate the effectiveness of the proposed multi-objective optimization approach in achieving significant cost savings that may reach 20% for industrial applications, while the order of magnitude of the trade-offs involved in terms of emissions reduction, improvement in discomfort, and PAR reduction is quantified for different frameworks. The outcomes not only underscore the efficacy of applying advanced optimization frameworks to real-world problems but also point to pathways for future research in smart energy management. This comprehensive analysis highlights the potential of advanced DSM techniques to enhance the sustainability and resilience of energy systems while also offering valuable policy implications. Full article
Show Figures

Figure 1

24 pages, 1964 KiB  
Article
Data-Driven Symmetry and Asymmetry Investigation of Vehicle Emissions Using Machine Learning: A Case Study in Spain
by Fei Wu, Jinfu Zhu, Hufang Yang, Xiang He and Qiao Peng
Symmetry 2025, 17(8), 1223; https://doi.org/10.3390/sym17081223 - 2 Aug 2025
Viewed by 231
Abstract
Understanding vehicle emissions is essential for developing effective carbon reduction strategies in the transport sector. Conventional emission models often assume homogeneity and linearity, overlooking real-world asymmetries that arise from variations in vehicle design and powertrain configurations. This study explores how machine learning and [...] Read more.
Understanding vehicle emissions is essential for developing effective carbon reduction strategies in the transport sector. Conventional emission models often assume homogeneity and linearity, overlooking real-world asymmetries that arise from variations in vehicle design and powertrain configurations. This study explores how machine learning and explainable AI techniques can effectively capture both symmetric and asymmetric emission patterns across different vehicle types, thereby contributing to more sustainable transport planning. Addressing a key gap in the existing literature, the study poses the following question: how do structural and behavioral factors contribute to asymmetric emission responses in internal combustion engine vehicles compared to new energy vehicles? Utilizing a large-scale Spanish vehicle registration dataset, the analysis classifies vehicles by powertrain type and applies five supervised learning algorithms to predict CO2 emissions. SHapley Additive exPlanations (SHAPs) are employed to identify nonlinear and threshold-based relationships between emissions and vehicle characteristics such as fuel consumption, weight, and height. Among the models tested, the Random Forest algorithm achieves the highest predictive accuracy. The findings reveal critical asymmetries in emission behavior, particularly among hybrid vehicles, which challenge the assumption of uniform policy applicability. This study provides both methodological innovation and practical insights for symmetry-aware emission modeling, offering support for more targeted eco-design and policy decisions that align with long-term sustainability goals. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

28 pages, 2266 KiB  
Review
Uncovering Plastic Pollution: A Scoping Review of Urban Waterways, Technologies, and Interdisciplinary Approaches
by Peter Cleveland, Donna Cleveland, Ann Morrison, Khoi Hoang Dinh, An Nguyen Pham Hai, Luca Freitas Ribeiro and Khanh Tran Duy
Sustainability 2025, 17(15), 7009; https://doi.org/10.3390/su17157009 - 1 Aug 2025
Viewed by 236
Abstract
Plastic pollution is a growing environmental and social concern, particularly in Southeast Asia, where urban rivers serve as key pathways for transporting waste to marine environments. This scoping review examines 110 peer-reviewed studies to understand how plastic pollution in waterways is being researched, [...] Read more.
Plastic pollution is a growing environmental and social concern, particularly in Southeast Asia, where urban rivers serve as key pathways for transporting waste to marine environments. This scoping review examines 110 peer-reviewed studies to understand how plastic pollution in waterways is being researched, addressed, and reconceptualized. Drawing from the literature across environmental science, technology, and social studies, we identify four interconnected areas of focus: urban pollution pathways, innovations in monitoring and methods, community-based interventions, and interdisciplinary perspectives. Our analysis combines qualitative synthesis with visual mapping techniques, including keyword co-occurrence networks, to explore how real-time tools, such as IoT sensors, multi-sensor systems, and geospatial technologies, are transforming the ways plastic waste is tracked and analyzed. The review also considers the growing use of novel theoretical frameworks, such as post-phenomenology and ecological materialism, to better understand the role of plastics as both pollutants and ecological agents. Despite progress, the literature reveals persistent gaps in longitudinal studies, regional representation, and policy translation, particularly across the Global South. We emphasize the value of participatory models and community-led research in bridging these gaps and advancing more inclusive and responsive solutions. These insights inform the development of plastic tracker technologies currently being piloted in Vietnam and contribute to broader sustainability goals, including SDG 6 (Clean Water and Sanitation), SDG 12 (Responsible Consumption and Production), and SDG 14 (Life Below Water). Full article
Show Figures

Figure 1

32 pages, 9914 KiB  
Review
Technology Advancements and the Needs of Farmers: Mapping Gaps and Opportunities in Row Crop Farming
by Rana Umair Hameed, Conor Meade and Gerard Lacey
Agriculture 2025, 15(15), 1664; https://doi.org/10.3390/agriculture15151664 - 1 Aug 2025
Viewed by 279
Abstract
Increased food production demands, labor shortages, and environmental concerns are driving the need for innovative agricultural technologies. However, effective adoption depends critically on aligning robot innovations with the needs of farmers. This paper examines the alignment between the needs of farmers and the [...] Read more.
Increased food production demands, labor shortages, and environmental concerns are driving the need for innovative agricultural technologies. However, effective adoption depends critically on aligning robot innovations with the needs of farmers. This paper examines the alignment between the needs of farmers and the robotic systems used in row crop farming. We review current commercial agricultural robots and research, and map these to the needs of farmers, as expressed in the literature, to identify the key issues holding back large-scale adoption. From initial pool of 184 research articles, 19 survey articles, and 82 commercial robotic solutions, we selected 38 peer-reviewed academic studies, 12 survey articles, and 18 commercially available robots for in-depth review and analysis for this study. We identify the key challenges faced by farmers and map them directly to the current and emerging capabilities of agricultural robots. We supplement the data gathered from the literature review of surveys and case studies with in-depth interviews with nine farmers to obtain deeper insights into the needs and day-to-day operations. Farmers reported mixed reactions to current technologies, acknowledging efficiency improvements but highlighting barriers such as capital costs, technical complexity, and inadequate support systems. There is a notable demand for technologies for improved plant health monitoring, soil condition assessment, and enhanced climate resilience. We then review state-of-the-art robotic solutions for row crop farming and map these technological capabilities to the farmers’ needs. Only technologies with field validation or operational deployment are included, to ensure practical relevance. These mappings generate insights that underscore the need for lightweight and modular robot technologies that can be adapted to diverse farming practices, as well as the need for farmers’ education and simpler interfaces to robotic operations and data analysis that are actionable for farmers. We conclude with recommendations for future research, emphasizing the importance of co-creation with the farming community to ensure the adoption and sustained use of agricultural robotic solutions. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

19 pages, 2528 KiB  
Systematic Review
The Nexus Between Green Finance and Artificial Intelligence: A Systemic Bibliometric Analysis Based on Web of Science Database
by Katerina Fotova Čiković, Violeta Cvetkoska and Dinko Primorac
J. Risk Financial Manag. 2025, 18(8), 420; https://doi.org/10.3390/jrfm18080420 - 1 Aug 2025
Viewed by 274
Abstract
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, [...] Read more.
The intersection of green finance and artificial intelligence (AI) represents a rapidly emerging and high-impact research domain with the potential to reshape sustainable economic systems. This study presents a comprehensive bibliometric and network analysis aimed at mapping the scientific landscape, identifying research hotspots, and highlighting methodological trends at this nexus. A dataset of 268 peer-reviewed publications (2014–June 2025) was retrieved from the Web of Science Core Collection, filtered by the Business Economics category. Analytical techniques employed include Bibliometrix in R, VOSviewer, and science mapping tools such as thematic mapping, trend topic analysis, co-citation networks, and co-occurrence clustering. Results indicate an annual growth rate of 53.31%, with China leading in both productivity and impact, followed by Vietnam and the United Kingdom. The most prolific affiliations and authors, primarily based in China, underscore a concentrated regional research output. The most relevant journals include Energy Economics and Finance Research Letters. Network visualizations identified 17 clusters, with focused analysis on the top three: (1) Emission, Health, and Environmental Risk, (2) Institutional and Technological Infrastructure, and (3) Green Innovation and Sustainable Urban Development. The methodological landscape is equally diverse, with top techniques including blockchain technology, large language models, convolutional neural networks, sentiment analysis, and structural equation modeling, demonstrating a blend of traditional econometrics and advanced AI. This study not only uncovers intellectual structures and thematic evolution but also identifies underdeveloped areas and proposes future research directions. These include dynamic topic modeling, regional case studies, and ethical frameworks for AI in sustainable finance. The findings provide a strategic foundation for advancing interdisciplinary collaboration and policy innovation in green AI–finance ecosystems. Full article
(This article belongs to the Special Issue Commercial Banking and FinTech in Emerging Economies)
Show Figures

Figure 1

42 pages, 3564 KiB  
Review
A Review on Sustainable Upcycling of Plastic Waste Through Depolymerization into High-Value Monomer
by Ramkumar Vanaraj, Subburayan Manickavasagam Suresh Kumar, Seong Cheol Kim and Madhappan Santhamoorthy
Processes 2025, 13(8), 2431; https://doi.org/10.3390/pr13082431 - 31 Jul 2025
Viewed by 603
Abstract
Plastic waste accumulation is one of the most pressing environmental challenges of the 21st century, owing to the widespread use of synthetic polymers and the limitations of conventional recycling methods. Among available strategies, chemical upcycling via depolymerization has emerged as a promising circular [...] Read more.
Plastic waste accumulation is one of the most pressing environmental challenges of the 21st century, owing to the widespread use of synthetic polymers and the limitations of conventional recycling methods. Among available strategies, chemical upcycling via depolymerization has emerged as a promising circular approach that converts plastic waste back into valuable monomers and chemical feedstocks. This article provides an in-depth narrative review of recent progress in the upcycling of major plastic types such as PET, PU, PS, and engineering plastics through thermal, chemical, catalytic, biological, and mechanochemical depolymerization methods. Each method is critically assessed in terms of efficiency, scalability, energy input, and environmental impact. Special attention is given to innovative catalyst systems, such as microsized MgO/SiO2 and Co/CaO composites, and emerging enzymatic systems like engineered PETases and whole-cell biocatalysts that enable low-temperature, selective depolymerization. Furthermore, the conversion pathways of depolymerized products into high-purity monomers such as BHET, TPA, vanillin, and bisphenols are discussed with supporting case studies. The review also examines life cycle assessment (LCA) data, techno-economic analyses, and policy frameworks supporting the adoption of depolymerization-based recycling systems. Collectively, this work outlines the technical viability and sustainability benefits of depolymerization as a core pillar of plastic circularity and monomer recovery, offering a path forward for high-value material recirculation and waste minimization. Full article
Show Figures

Figure 1

28 pages, 2933 KiB  
Review
Learning and Development in Entrepreneurial Era: Mapping Research Trends and Future Directions
by Fayiz Emad Addin Al Sharari, Ahmad ali Almohtaseb, Khaled Alshaketheep and Kafa Al Nawaiseh
Adm. Sci. 2025, 15(8), 299; https://doi.org/10.3390/admsci15080299 - 31 Jul 2025
Viewed by 307
Abstract
The age of entrepreneurship calls for the evolving of learning and development (L&D) models to meet the dynamic demands of innovation, sustainability, and technology innovation. This study examines the trends and issues of L&D models for entrepreneurs, more so focusing on how these [...] Read more.
The age of entrepreneurship calls for the evolving of learning and development (L&D) models to meet the dynamic demands of innovation, sustainability, and technology innovation. This study examines the trends and issues of L&D models for entrepreneurs, more so focusing on how these models influence business success in a rapidly changing global landscape. The research employs bibliometric analysis, VOSviewer cluster analysis, and co-citation analysis to explore the literature from 1994 to 2024. Data collected from the Web of Science Core Collection database reflect significant trends in entrepreneurial L&D, with particular emphasis on the use of digital tools, sustainability processes, and governance systems. Findings emphasize the imperative role of L&D in fostering entrepreneurship, more so in areas such as digital transformation and the adoption of new technologies. The study also identifies central regions propelling this field, such as UK and USA. Future studies will be centered on the role of digital technologies, innovation, and green business models within entrepreneurial L&D frameworks. This study provides useful insight into the future of L&D within the entrepreneurial domain, guiding academia and companies alike in the planning of effective learning strategies to foster innovation and sustainable business growth. Full article
Show Figures

Figure 1

22 pages, 2806 KiB  
Article
Concrete Obtained with the Viterbo O’Reilly Method for Aggregate Gradation: A Potential Model for Sustainable Design and Reducing Development Costs
by Edinson Murillo Mosquera, Sergio Cifuentes, Juan Carlos Obando, Sergio Neves Monteiro and Henry A. Colorado
Materials 2025, 18(15), 3558; https://doi.org/10.3390/ma18153558 - 29 Jul 2025
Viewed by 307
Abstract
The following investigation presents concrete cement obtained with the Viterbo O’Reilly Diaz method, introduced to quantify the concrete mixture by using an aggregate gradation method. This research uses this procedure to decrease the amount of cement in the mix, thus reducing the CO [...] Read more.
The following investigation presents concrete cement obtained with the Viterbo O’Reilly Diaz method, introduced to quantify the concrete mixture by using an aggregate gradation method. This research uses this procedure to decrease the amount of cement in the mix, thus reducing the CO2 footprint and production costs, which directly impact the environmental and economical sustainability of the material. The formulations used structural and general use Portland cements. As aggregates, fine sand and 3/4” gravel were included. Several characterization techniques were used, including granulometry testing for the aggregates, compression strength testing for the concrete samples, and granulometry testing for the raw materials. Compressive tests were conducted on samples after 28 days of curing, while scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS) was used to understand the microstructure. The results revealed the optimal amounts of water, cement, and aggregates. Combinations of fine and coarse aggregates were determined as well. The main novelty in this manuscript is the use of the Viterbo O’Reilly mix design method to innovatively enhance concrete mixes by analyzing material properties and behavior in detail, an unexplored method in the literature. This research considers not only strength but also durability and workability, using mathematical tools for data analysis. This data-driven approach ensures effective aggregate gradation towards sustainability when compared to other traditional methods. Full article
Show Figures

Figure 1

19 pages, 664 KiB  
Article
Advanced Global CO2 Emissions Forecasting: Enhancing Accuracy and Stability Across Diverse Regions
by Adham Alsharkawi, Emran Al-Sherqawi, Kamal Khandakji and Musa Al-Yaman
Sustainability 2025, 17(15), 6893; https://doi.org/10.3390/su17156893 - 29 Jul 2025
Viewed by 227
Abstract
This study introduces a robust global time-series forecasting model developed to estimate CO2 emissions across diverse regions worldwide. The model employs a deep learning architecture with multiple hidden layers, ensuring both high predictive accuracy and temporal stability. Our methodology integrates innovative training [...] Read more.
This study introduces a robust global time-series forecasting model developed to estimate CO2 emissions across diverse regions worldwide. The model employs a deep learning architecture with multiple hidden layers, ensuring both high predictive accuracy and temporal stability. Our methodology integrates innovative training strategies and advanced optimization techniques to effectively handle heterogeneous time-series data. Emphasis is placed on the critical role of accurate and stable forecasts in supporting evidence-based policy-making and promoting environmental sustainability. This work contributes to global efforts to monitor and mitigate climate change, in alignment with the United Nations Sustainable Development Goals (SDGs). Full article
(This article belongs to the Special Issue Effectiveness Evaluation of Sustainable Climate Policies)
Show Figures

Figure 1

19 pages, 264 KiB  
Article
From Road Transport to Intermodal Freight: The Formula 1 Races Logistics Case
by Martina Maria Petralia and Letizia Tebaldi
Sustainability 2025, 17(15), 6889; https://doi.org/10.3390/su17156889 - 29 Jul 2025
Viewed by 193
Abstract
According to the Formula 1 commitment to produce net zero carbon emissions by 2030, the present paper examines the environmental impact of Formula 1 logistics by means of a case study carried out from the point of view of an Italian company, with [...] Read more.
According to the Formula 1 commitment to produce net zero carbon emissions by 2030, the present paper examines the environmental impact of Formula 1 logistics by means of a case study carried out from the point of view of an Italian company, with reference to the European Grand Prix. Logistics accounts for approximately 49% of the sport’s total emissions and accordingly, to reduce its carbon footprint, addressing the logistics activity is vital. Two scenarios are compared in detail: AS-IS, involving only road transport of assets, and TO-BE, in which a combined rail–road approach (i.e., intermodal freight) is implemented. While the AS-IS scenario is more cost-effective, it has a significant environmental impact in terms of CO2 emissions; in contrast, though more complex and costly, TO-BE offers major advantages for environmental sustainability, including reduced emissions (approximately half compared to AS-IS) and improved efficiency through intermodal transport units. This study stresses that a combined transport system, facilitated by the European rail infrastructure, is a more sustainable option for Formula 1 logistics. However, achieving full carbon neutrality still represents a challenge that will require further innovations and collaboration among the stakeholders of this world. Full article
25 pages, 2465 KiB  
Article
Co-Designing Sustainable and Resilient Rubber Cultivation Systems Through Participatory Research with Stakeholders in Indonesia
by Pascal Montoro, Sophia Alami, Uhendi Haris, Charloq Rosa Nababan, Fetrina Oktavia, Eric Penot, Yekti Purwestri, Suroso Rahutomo, Sabaruddin Kadir, Siti Subandiyah, Lina Fatayati Syarifa and Taryono
Sustainability 2025, 17(15), 6884; https://doi.org/10.3390/su17156884 - 29 Jul 2025
Viewed by 324
Abstract
The rubber industry is facing major socio-economic and environmental constraints. Rubber-based agroforestry systems represent a more sustainable solution through the diversification of income and the provision of greater ecosystem services than monoculture plantations. Participative approaches are known for their ability to co-construct solutions [...] Read more.
The rubber industry is facing major socio-economic and environmental constraints. Rubber-based agroforestry systems represent a more sustainable solution through the diversification of income and the provision of greater ecosystem services than monoculture plantations. Participative approaches are known for their ability to co-construct solutions with stakeholders and to promote a positive impact on smallholders. This study therefore implemented a participatory research process with stakeholders in the natural rubber sector for the purpose of improving inclusion, relevance and impact. Facilitation training sessions were first organised with academic actors to prepare participatory workshops. A working group of stakeholder representatives was set up and participated in these workshops to share a common representation of the value chain and to identify problems and solutions for the sector in Indonesia. By fostering collective intelligence and systems thinking, the process is aimed at enabling the development of adaptive technical solutions and building capacity across the sector for future government replanting programmes. The resulting adaptive technical packages were then detailed and objectified by the academic consortium and are part of a participatory plant breeding approach adapted to the natural rubber industry. On-station and on-farm experimental plans have been set up to facilitate the drafting of projects for setting up field trials based on these outcomes. Research played a dual role as both knowledge provider and facilitator, guiding a co-learning process rooted in social inclusion, equity and ecological resilience. The initiative highlighted the potential of rubber cultivation to contribute to climate change mitigation and food sovereignty, provided that it can adapt through sustainable practices like agroforestry. Continued political and financial support is essential to sustain and scale these innovations. Full article
Show Figures

Figure 1

17 pages, 3944 KiB  
Article
Functionalized Magnetic Nanoparticles as Recyclable Draw Solutes for Forward Osmosis: A Sustainable Approach to Produced Water Reclamation
by Sunith B. Madduri and Raghava R. Kommalapati
Separations 2025, 12(8), 199; https://doi.org/10.3390/separations12080199 - 29 Jul 2025
Viewed by 282
Abstract
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the [...] Read more.
Magnetic nanoparticles (MNPs), especially iron oxide (Fe3O4), display distinctive superparamagnetic characteristics and elevated surface-area-to-volume ratios, facilitating improved physicochemical interactions with solutes and pollutants. These characteristics make MNPs strong contenders for use in water treatment applications. This research investigates the application of iron oxide MNPs synthesized via co-precipitation as innovative draw solutes in forward osmosis (FO) for treating synthetic produced water (SPW). The FO membrane underwent surface modification with sulfobetaine methacrylate (SBMA), a zwitterionic polymer, to increase hydrophilicity, minimize fouling, and elevate water flux. The SBMA functional groups aid in electrostatic repulsion of organic and inorganic contaminants, simultaneously encouraging robust hydration layers that improve water permeability. This adjustment is vital for sustaining consistent flux performance while functioning with MNP-based draw solutions. Material analysis through thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR) verified the MNPs’ thermal stability, consistent morphology, and modified surface chemistry. The FO experiments showed a distinct relationship between MNP concentration and osmotic efficiency. At an MNP dosage of 10 g/L, the peak real-time flux was observed at around 3.5–4.0 L/m2·h. After magnetic regeneration, 7.8 g of retrieved MNPs generated a steady flow of ~2.8 L/m2·h, whereas a subsequent regeneration (4.06 g) resulted in ~1.5 L/m2·h, demonstrating partial preservation of osmotic driving capability. Post-FO draw solutions, after filtration, exhibited total dissolved solids (TDS) measurements that varied from 2.5 mg/L (0 g/L MNP) to 227.1 mg/L (10 g/L MNP), further validating the effective dispersion and solute contribution of MNPs. The TDS of regenerated MNP solutions stayed similar to that of their fresh versions, indicating minimal loss of solute activity during the recycling process. The combined synergistic application of SBMA-modified FO membranes and regenerable MNP draw solutes showcases an effective and sustainable method for treating produced water, providing excellent water recovery, consistent operational stability, and opportunities for cyclic reuse. Full article
(This article belongs to the Section Purification Technology)
Show Figures

Graphical abstract

Back to TopTop