Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (719)

Search Parameters:
Keywords = cloud meeting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 208 KiB  
Proceeding Paper
Post-Quantum Crystal-Kyber Group-Oriented Encryption Scheme for Cloud Security in Personal Health Records
by Zhen-Yu Wu and Chia-Hui Liu
Eng. Proc. 2025, 103(1), 6; https://doi.org/10.3390/engproc2025103006 - 6 Aug 2025
Abstract
As medical technology develops and digital demands grow, personal health records (PHRs) are becoming more patient-centered than before based on cloud-based health information exchanges. While enhancing data accessibility and sharing, these systems present privacy and security issues, including data breaches and unauthorized access. [...] Read more.
As medical technology develops and digital demands grow, personal health records (PHRs) are becoming more patient-centered than before based on cloud-based health information exchanges. While enhancing data accessibility and sharing, these systems present privacy and security issues, including data breaches and unauthorized access. We developed a post-quantum, group-oriented encryption scheme using the Crystal-Kyber Key encapsulation mechanism (KEM). Leveraging lattice-based post-quantum cryptography, this scheme ensures quantum resilience and chosen ciphertext attack security for layered cloud PHR environments. It supports four encryption modes: individual, group, subgroup-specific, and authorized subgroup decryption, meeting diverse data access needs. With efficient key management requiring only one private key per user, the developed scheme strengthens the privacy and security of PHRs in a future-proof, flexible, and scalable manner. Full article
30 pages, 6195 KiB  
Article
Digital Inspection Technology for Sheet Metal Parts Using 3D Point Clouds
by Jian Guo, Dingzhong Tan, Shizhe Guo, Zheng Chen and Rang Liu
Sensors 2025, 25(15), 4827; https://doi.org/10.3390/s25154827 - 6 Aug 2025
Abstract
To solve the low efficiency of traditional sheet metal measurement, this paper proposes a digital inspection method for sheet metal parts based on 3D point clouds. The 3D point cloud data of sheet metal parts are collected using a 3D laser scanner, and [...] Read more.
To solve the low efficiency of traditional sheet metal measurement, this paper proposes a digital inspection method for sheet metal parts based on 3D point clouds. The 3D point cloud data of sheet metal parts are collected using a 3D laser scanner, and the topological relationship is established by using a K-dimensional tree (KD tree). The pass-through filtering method is adopted to denoise the point cloud data. To preserve the fine features of the parts, an improved voxel grid method is proposed for the downsampling of the point cloud data. Feature points are extracted via the intrinsic shape signatures (ISS) algorithm and described using the fast point feature histograms (FPFH) algorithm. After rough registration with the sample consensus initial alignment (SAC-IA) algorithm, an initial position is provided for fine registration. The improved iterative closest point (ICP) algorithm, used for fine registration, can enhance the registration accuracy and efficiency. The greedy projection triangulation algorithm optimized by moving least squares (MLS) smoothing ensures surface smoothness and geometric accuracy. The reconstructed 3D model is projected onto a 2D plane, and the actual dimensions of the parts are calculated based on the pixel values of the sheet metal parts and the conversion scale. Experimental results show that the measurement error of this inspection system for three sheet metal workpieces ranges from 0.1416 mm to 0.2684 mm, meeting the accuracy requirement of ±0.3 mm. This method provides a reliable digital inspection solution for sheet metal parts. Full article
(This article belongs to the Section Industrial Sensors)
Show Figures

Figure 1

21 pages, 1800 KiB  
Article
GAPSO: Cloud-Edge-End Collaborative Task Offloading Based on Genetic Particle Swarm Optimization
by Wu Wen, Yibin Huang, Zhong Xiao, Lizhuang Tan and Peiying Zhang
Symmetry 2025, 17(8), 1225; https://doi.org/10.3390/sym17081225 - 3 Aug 2025
Viewed by 205
Abstract
In the 6G era, the proliferation of smart devices has led to explosive growth in data volume. The traditional cloud computing can no longer meet the demand for efficient processing of large amounts of data. Edge computing can solve the energy loss problems [...] Read more.
In the 6G era, the proliferation of smart devices has led to explosive growth in data volume. The traditional cloud computing can no longer meet the demand for efficient processing of large amounts of data. Edge computing can solve the energy loss problems caused by transmission delay and multi-level forwarding in cloud computing by processing data close to the data source. In this paper, we propose a cloud–edge–end collaborative task offloading strategy with task response time and execution energy consumption as the optimization targets under a limited resource environment. The tasks generated by smart devices can be processed using three kinds of computing nodes, including user devices, edge servers, and cloud servers. The computing nodes are constrained by bandwidth and computing resources. For the target optimization problem, a genetic particle swarm optimization algorithm considering three layers of computing nodes is designed. The task offloading optimization is performed by introducing (1) opposition-based learning algorithm, (2) adaptive inertia weights, and (3) adjustive acceleration coefficients. All metaheuristic algorithms adopt a symmetric training method to ensure fairness and consistency in evaluation. Through experimental simulation, compared with the classic evolutionary algorithm, our algorithm reduces the objective function value by about 6–12% and has higher algorithm convergence speed, accuracy, and stability. Full article
Show Figures

Figure 1

15 pages, 2538 KiB  
Article
Dynamic Obstacle Perception Technology for UAVs Based on LiDAR
by Wei Xia, Feifei Song and Zimeng Peng
Drones 2025, 9(8), 540; https://doi.org/10.3390/drones9080540 - 31 Jul 2025
Viewed by 143
Abstract
With the widespread application of small quadcopter drones in the military and civilian fields, the security challenges they face are gradually becoming apparent. Especially in dynamic environments, the rapidly changing conditions make the flight of drones more complex. To address the computational limitations [...] Read more.
With the widespread application of small quadcopter drones in the military and civilian fields, the security challenges they face are gradually becoming apparent. Especially in dynamic environments, the rapidly changing conditions make the flight of drones more complex. To address the computational limitations of small quadcopter drones and meet the demands of obstacle perception in dynamic environments, a LiDAR-based obstacle perception algorithm is proposed. First, accumulation, filtering, and clustering processes are carried out on the LiDAR point cloud data to complete the segmentation and extraction of point cloud obstacles. Then, an obstacle motion/static discrimination algorithm based on three-dimensional point motion attributes is developed to classify dynamic and static point clouds. Finally, oriented bounding box (OBB) detection is employed to simplify the representation of the spatial position and shape of dynamic point cloud obstacles, and motion estimation is achieved by tracking the OBB parameters using a Kalman filter. Simulation experiments demonstrate that this method can ensure a dynamic obstacle detection frequency of 10 Hz and successfully detect multiple dynamic obstacles in the environment. Full article
Show Figures

Figure 1

23 pages, 783 KiB  
Article
An Effective QoS-Aware Hybrid Optimization Approach for Workflow Scheduling in Cloud Computing
by Min Cui and Yipeng Wang
Sensors 2025, 25(15), 4705; https://doi.org/10.3390/s25154705 - 30 Jul 2025
Viewed by 187
Abstract
Workflow scheduling in cloud computing is attracting increasing attention. Cloud computing can assign tasks to available virtual machine resources in cloud data centers according to scheduling strategies, providing a powerful computing platform for the execution of workflow tasks. However, developing effective workflow scheduling [...] Read more.
Workflow scheduling in cloud computing is attracting increasing attention. Cloud computing can assign tasks to available virtual machine resources in cloud data centers according to scheduling strategies, providing a powerful computing platform for the execution of workflow tasks. However, developing effective workflow scheduling algorithms to find optimal or near-optimal task-to-VM allocation solutions that meet users’ specific QoS requirements still remains an open area of research. In this paper, we propose a hybrid QoS-aware workflow scheduling algorithm named HLWOA to address the problem of simultaneously minimizing the completion time and execution cost of workflow scheduling in cloud computing. First, the workflow scheduling problem in cloud computing is modeled as a multi-objective optimization problem. Then, based on the heterogeneous earliest finish time (HEFT) heuristic optimization algorithm, tasks are reverse topologically sorted and assigned to virtual machines with the earliest finish time to construct an initial workflow task scheduling sequence. Furthermore, an improved Whale Optimization Algorithm (WOA) based on Lévy flight is proposed. The output solution of HEFT is used as one of the initial population solutions in WOA to accelerate the convergence speed of the algorithm. Subsequently, a Lévy flight search strategy is introduced in the iterative optimization phase to avoid the algorithm falling into local optimal solutions. The proposed HLWOA is evaluated on the WorkflowSim platform using real-world scientific workflows (Cybershake and Montage) with different task scales (100 and 1000). Experimental results demonstrate that HLWOA outperforms HEFT, HEPGA, and standard WOA in both makespan and cost, with normalized fitness values consistently ranking first. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

19 pages, 650 KiB  
Article
LEMAD: LLM-Empowered Multi-Agent System for Anomaly Detection in Power Grid Services
by Xin Ji, Le Zhang, Wenya Zhang, Fang Peng, Yifan Mao, Xingchuang Liao and Kui Zhang
Electronics 2025, 14(15), 3008; https://doi.org/10.3390/electronics14153008 - 28 Jul 2025
Viewed by 385
Abstract
With the accelerated digital transformation of the power industry, critical infrastructures such as power grids are increasingly migrating to cloud-native architectures, leading to unprecedented growth in service scale and complexity. Traditional operation and maintenance (O&M) methods struggle to meet the demands for real-time [...] Read more.
With the accelerated digital transformation of the power industry, critical infrastructures such as power grids are increasingly migrating to cloud-native architectures, leading to unprecedented growth in service scale and complexity. Traditional operation and maintenance (O&M) methods struggle to meet the demands for real-time monitoring, accuracy, and scalability in such environments. This paper proposes a novel service performance anomaly detection system based on large language models (LLMs) and multi-agent systems (MAS). By integrating the semantic understanding capabilities of LLMs with the distributed collaboration advantages of MAS, we construct a high-precision and robust anomaly detection framework. The system adopts a hierarchical architecture, where lower-layer agents are responsible for tasks such as log parsing and metric monitoring, while an upper-layer coordinating agent performs multimodal feature fusion and global anomaly decision-making. Additionally, the LLM enhances the semantic analysis and causal reasoning capabilities for logs. Experiments conducted on real-world data from the State Grid Corporation of China, covering 1289 service combinations, demonstrate that our proposed system significantly outperforms traditional methods in terms of the F1-score across four platforms, including customer services and grid resources (achieving up to a 10.3% improvement). Notably, the system excels in composite anomaly detection and root cause analysis. This study provides an industrial-grade, scalable, and interpretable solution for intelligent power grid O&M, offering a valuable reference for the practical implementation of AIOps in critical infrastructures. Evaluated on real-world data from the State Grid Corporation of China (SGCC), our system achieves a maximum F1-score of 88.78%, with a precision of 92.16% and recall of 85.63%, outperforming five baseline methods. Full article
(This article belongs to the Special Issue Advanced Techniques for Multi-Agent Systems)
Show Figures

Figure 1

24 pages, 3235 KiB  
Article
A Cost-Sensitive Small Vessel Detection Method for Maritime Remote Sensing Imagery
by Zhuhua Hu, Wei Wu, Ziqi Yang, Yaochi Zhao, Lewei Xu, Lingkai Kong, Yunpei Chen, Lihang Chen and Gaosheng Liu
Remote Sens. 2025, 17(14), 2471; https://doi.org/10.3390/rs17142471 - 16 Jul 2025
Viewed by 242
Abstract
Vessel detection technology based on marine remote sensing imagery is of great importance. However, it often faces challenges, such as small vessel targets, cloud occlusion, insufficient data volume, and severely imbalanced class distribution in datasets. These issues result in conventional models failing to [...] Read more.
Vessel detection technology based on marine remote sensing imagery is of great importance. However, it often faces challenges, such as small vessel targets, cloud occlusion, insufficient data volume, and severely imbalanced class distribution in datasets. These issues result in conventional models failing to meet the accuracy requirements for practical applications. In this paper, we first construct a novel remote sensing vessel image dataset that includes various complex scenarios and enhance the data volume and diversity through data augmentation techniques. Secondly, we address the class imbalance between foreground (small vessels) and background in remote sensing imagery from two perspectives: the sensitivity of IoU metrics to small object localization errors and the innovative design of a cost-sensitive loss function. Specifically, at the dataset level, we select vessel targets appearing in the original dataset as templates and randomly copy–paste several instances onto arbitrary positions. This enriches the diversity of target samples per image and mitigates the impact of data imbalance on the detection task. At the algorithm level, we introduce the Normalized Wasserstein Distance (NWD) to compute the similarity between bounding boxes. This enhances the importance of small target information during training and strengthens the model’s cost-sensitive learning capabilities. Ablation studies reveal that detection performance is optimal when the weight assigned to the NWD metric in the model’s loss function matches the overall proportion of small objects in the dataset. Comparative experiments show that the proposed NWD-YOLO achieves Precision, Recall, and AP50 scores of 0.967, 0.958, and 0.971, respectively, meeting the accuracy requirements of real-world applications. Full article
Show Figures

Figure 1

47 pages, 2595 KiB  
Article
Advancing Data Privacy in Cloud Storage: A Novel Multi-Layer Encoding Framework
by Kamta Nath Mishra, Rajesh Kumar Lal, Paras Nath Barwal and Alok Mishra
Appl. Sci. 2025, 15(13), 7485; https://doi.org/10.3390/app15137485 - 3 Jul 2025
Viewed by 557
Abstract
Data privacy is a crucial concern for individuals using cloud storage services, and cloud service providers are increasingly focused on meeting this demand. However, privacy breaches in the ever-evolving cyber landscape remain a significant threat to cloud storage infrastructures. Previous studies have aimed [...] Read more.
Data privacy is a crucial concern for individuals using cloud storage services, and cloud service providers are increasingly focused on meeting this demand. However, privacy breaches in the ever-evolving cyber landscape remain a significant threat to cloud storage infrastructures. Previous studies have aimed to address this issue but have often lacked comprehensive coverage of privacy attributes. In response to the identified gap in privacy-preserving techniques for cloud computing, this research paper presents a novel and adaptable framework. This approach introduces a multi-layer encoding storage arrangement combined with the implementation of a one-time password authorization approach. By integrating these elements, the proposed approach aims to enhance both the flexibility and efficiency of data protection in cloud environments. The findings of this study are anticipated to have significant implications, contributing to the advancement of existing techniques and inspiring the development of innovative research-driven solutions. Continuous research efforts are required to validate the effectiveness of the proposed framework across diverse contexts and assess its performance against evolving privacy vulnerabilities in cloud computing. Full article
(This article belongs to the Special Issue Cybersecurity: Advances in Security and Privacy Enhancing Technology)
Show Figures

Figure 1

26 pages, 7744 KiB  
Article
Integrating Fractional-Order Hopfield Neural Network with Differentiated Encryption: Achieving High-Performance Privacy Protection for Medical Images
by Wei Feng, Keyuan Zhang, Jing Zhang, Xiangyu Zhao, Yao Chen, Bo Cai, Zhengguo Zhu, Heping Wen and Conghuan Ye
Fractal Fract. 2025, 9(7), 426; https://doi.org/10.3390/fractalfract9070426 - 29 Jun 2025
Cited by 3 | Viewed by 413
Abstract
Medical images demand robust privacy protection, driving research into advanced image encryption (IE) schemes. However, current IE schemes still encounter certain challenges in both security and efficiency. Fractional-order Hopfield neural networks (HNNs) demonstrate unique advantages in IE. The introduction of fractional-order calculus operators [...] Read more.
Medical images demand robust privacy protection, driving research into advanced image encryption (IE) schemes. However, current IE schemes still encounter certain challenges in both security and efficiency. Fractional-order Hopfield neural networks (HNNs) demonstrate unique advantages in IE. The introduction of fractional-order calculus operators enables them to possess more complex dynamical behaviors, creating more random and unpredictable keystreams. To enhance privacy protection, this paper introduces a high-performance medical IE scheme that integrates a novel 4D fractional-order HNN with a differentiated encryption strategy (MIES-FHNN-DE). Specifically, MIES-FHNN-DE leverages this 4D fractional-order HNN alongside a 2D hyperchaotic map to generate keystreams collaboratively. This design not only capitalizes on the 4D fractional-order HNN’s intricate dynamics but also sidesteps the efficiency constraints of recent IE schemes. Moreover, MIES-FHNN-DE boosts encryption efficiency through pixel bit splitting and weighted accumulation, ensuring robust security. Rigorous evaluations confirm that MIES-FHNN-DE delivers cutting-edge security performance. It features a large key space (2383), exceptional key sensitivity, extremely low ciphertext pixel correlations (<0.002), excellent ciphertext entropy values (>7.999 bits), uniform ciphertext pixel distributions, outstanding resistance to differential attacks (with average NPCR and UACI values of 99.6096% and 33.4638%, respectively), and remarkable robustness against data loss. Most importantly, MIES-FHNN-DE achieves an average encryption rate as high as 102.5623 Mbps. Compared with recent leading counterparts, MIES-FHNN-DE better meets the privacy protection demands for medical images in emerging fields like medical intelligent analysis and medical cloud services. Full article
(This article belongs to the Special Issue Advances in Fractional-Order Chaotic and Complex Systems)
Show Figures

Figure 1

23 pages, 1454 KiB  
Article
The Internet of Things, Fog, and Cloud Continuum: Integration Challenges and Opportunities for Smart Cities
by Rodger Lea, Toni Adame, Alexandre Berne and Selma Azaiez
Future Internet 2025, 17(7), 281; https://doi.org/10.3390/fi17070281 - 25 Jun 2025
Viewed by 414
Abstract
This paper explores the broad area of Smart City services and how the evolving Cloud-Edge-IoT continuum can support application deployment in Smart Cities. We initially introduce a range of Smart City services and highlight their computational needs. We then discuss the role of [...] Read more.
This paper explores the broad area of Smart City services and how the evolving Cloud-Edge-IoT continuum can support application deployment in Smart Cities. We initially introduce a range of Smart City services and highlight their computational needs. We then discuss the role of the Cloud-Edge-IoT continuum as a technological platform to meet those needs. To validate this approach, we present the COGNIFOG platform, a Cloud-Edge-IoT platform developed to support city-centric use cases, and an initial technology trial that shows the early benefits of using the platform. We conclude with plans for improvements to COGNIFOG based on the trials and with a broader set of observations on the future of the Cloud-Edge-IoT continuum in Smart City services and applications. Full article
Show Figures

Figure 1

25 pages, 6702 KiB  
Article
Bridge Deformation Monitoring Combining 3D Laser Scanning with Multi-Scale Algorithms
by Dongmei Tan, Wenjie Li, Yu Tao and Baifeng Ji
Sensors 2025, 25(13), 3869; https://doi.org/10.3390/s25133869 - 21 Jun 2025
Viewed by 929
Abstract
To address the inefficiencies and limited spatial resolution of traditional single-point monitoring techniques, this study proposes a multi-scale analysis method that integrates the Multi-Scale Model-to-Model Cloud Comparison (M3C2) algorithm with least-squares plane fitting. This approach employs the M3C2 algorithm for qualitative full-field deformation [...] Read more.
To address the inefficiencies and limited spatial resolution of traditional single-point monitoring techniques, this study proposes a multi-scale analysis method that integrates the Multi-Scale Model-to-Model Cloud Comparison (M3C2) algorithm with least-squares plane fitting. This approach employs the M3C2 algorithm for qualitative full-field deformation detection and utilizes least-squares plane fitting for quantitative feature extraction. When applied to the approach span of a cross-river bridge in Hubei Province, China, this method leverages dense point clouds (greater than 500 points per square meter) acquired using a Leica RTC360 scanner. Data preprocessing incorporates curvature-adaptive cascade denoising, achieving over 98% noise removal while retaining more than 95% of structural features, along with octree-based simplification. By extracting multi-level slice features from bridge decks and piers, this method enables the simultaneous analysis of global trends and local deformations. The results revealed significant deformation, with an average settlement of 8.2 mm in the left deck area. The bridge deck exhibited a deformation trend characterized by left and higher right in the vertical direction, while the bridge piers displayed noticeable tilting, particularly with the maximum offset of the rear pier columns reaching 182.2 mm, which exceeded the deformation of the front pier. The bridge deck’s micro-settlement error was ±1.2 mm, and the pier inclination error was ±2.8 mm, meeting the Chinese Highway Bridge Maintenance Code (JTG H11-2004) and the American Association of State Highway and Transportation Officials (AASHTO) standards, and the multi-scale algorithm achieved engineering-level accuracy. Utilizing point cloud densities >500 pt/m2, the M3C2 algorithm achieved a spatial resolution of 0.5 mm, enabling sub-millimeter full-field analysis for complex scenarios. This method significantly enhances bridge safety monitoring precision, enhances the precision of intelligent systems monitoring, and supports the development of targeted systems as pile foundation reinforcement efforts and as improvements to foundations. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

36 pages, 9412 KiB  
Article
Mapping Solar Future Perspectives of a Climate Change Hotspot: An In-Depth Study of Greece’s Regional Solar Energy Potential, Climatic Trends Influences and Insights for Sustainable Development
by Stavros Vigkos and Panagiotis G. Kosmopoulos
Atmosphere 2025, 16(7), 762; https://doi.org/10.3390/atmos16070762 - 21 Jun 2025
Viewed by 1190
Abstract
This study addresses the influence of clouds and aerosols on solar radiation and energy over Greece from September 2004 to August 2024. By leveraging Earth Observation data and radiative transfer models, the largest to date time series was constructed, in order to investigate [...] Read more.
This study addresses the influence of clouds and aerosols on solar radiation and energy over Greece from September 2004 to August 2024. By leveraging Earth Observation data and radiative transfer models, the largest to date time series was constructed, in order to investigate the fluctuations in global horizontal irradiance, its rate of change, and the natural and anthropogenic factors that drive them. By incorporating simulation tools and appropriate calibration, the solar potential per region and the rate of change of the produced photovoltaic energy for 1 kWp were also quantified, highlighting the climatic effects on the production of solar energy. Additionally, two energy planning scenarios were explored: the first regarding the energy adequacy that each region can achieve, if a surface equal to 1% of its total area is covered with photovoltaics; and the latter estimating the necessary area covered with photovoltaics to fully meet each region’s energy demand. Finally, to ensure a solid and holistic approach, the research converted energy data into economic gains and avoided CO2 emissions. The study is innovative, particularly for the Greek standards, in terms of the volume and type of information it provides. It is able to offer stakeholders and decision and policymakers, both in Greece and worldwide thanks to the use of open access data, invaluable insights regarding the impact of climate change on photovoltaic energy production, the optimization of photovoltaic installations and investments and the resulting financial and environmental benefits from proper and methodical energy planning. Full article
Show Figures

Figure 1

21 pages, 11817 KiB  
Article
The Proposal and Validation of a Distributed Real-Time Data Management Framework Based on Edge Computing with OPC Unified Architecture and Kafka
by Daixing Lu, Kun Wang, Yubo Wang and Ye Shen
Appl. Sci. 2025, 15(12), 6862; https://doi.org/10.3390/app15126862 - 18 Jun 2025
Viewed by 463
Abstract
With the advent of Industry 4.0, the manufacturing industry is facing unprecedented data challenges. Sensors, PLCs, and various types of automation equipment in smart factories continue to generate massive amounts of heterogeneous data, but existing systems generally have bottlenecks in data collection standardization, [...] Read more.
With the advent of Industry 4.0, the manufacturing industry is facing unprecedented data challenges. Sensors, PLCs, and various types of automation equipment in smart factories continue to generate massive amounts of heterogeneous data, but existing systems generally have bottlenecks in data collection standardization, real-time processing capabilities, and system scalability, which make it difficult to meet the needs of efficient collaboration and dynamic decision making. This study proposes a multi-level industrial data processing framework based on edge computing that aims to improve the response speed and processing ability of manufacturing sites to data and to realize real-time decision making and lean management of intelligent manufacturing. At the edge layer, the OPC UA (OPC Unified Architecture) protocol is used to realize the standardized collection of heterogeneous equipment data, and a lightweight edge-computing algorithm is designed to complete the analysis and processing of data so as to realize a visualization of the manufacturing process and the inventory in a production workshop. In the storage layer, Apache Kafka is used to implement efficient data stream processing and improve the throughput and scalability of the system. The test results show that compared with the traditional workshop, the framework has excellent performance in improving the system throughput capacity and real-time response speed, can effectively support production process judgment and status analysis on the edge side, and can realize the real-time monitoring and management of the entire manufacturing workshop. This research provides a practical solution for the industrial data management system, not only helping enterprises improve the transparency level of manufacturing sites and the efficiency of resource scheduling but also providing a practical basis for further research on industrial data processing under the “edge-cloud collaboration” architecture in the academic community. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Figure 1

23 pages, 3558 KiB  
Article
Research on High-Reliability Energy-Aware Scheduling Strategy for Heterogeneous Distributed Systems
by Ziyu Chen, Jing Wu, Lin Cheng and Tao Tao
Big Data Cogn. Comput. 2025, 9(6), 160; https://doi.org/10.3390/bdcc9060160 - 17 Jun 2025
Viewed by 535
Abstract
With the demand for workflow processing driven by edge computing in the Internet of Things (IoT) and cloud computing growing at an exponential rate, task scheduling in heterogeneous distributed systems has become a key challenge to meet real-time constraints in resource-constrained environments. Existing [...] Read more.
With the demand for workflow processing driven by edge computing in the Internet of Things (IoT) and cloud computing growing at an exponential rate, task scheduling in heterogeneous distributed systems has become a key challenge to meet real-time constraints in resource-constrained environments. Existing studies now attempt to achieve the best balance in terms of time constraints, energy efficiency, and system reliability in Dynamic Voltage and Frequency Scaling environments. This study proposes a two-stage collaborative optimization strategy. With the help of an innovative algorithm design and theoretical analysis, the multi-objective optimization challenges mentioned above are systematically solved. First, based on a reliability-constrained model, we propose a topology-aware dynamic priority scheduling algorithm (EAWRS). This algorithm constructs a node priority function by incorporating in-degree/out-degree weighting factors and critical path analysis to enable multi-objective optimization. Second, to address the time-varying reliability characteristics introduced by DVFS, we propose a Fibonacci search-based dynamic frequency scaling algorithm (SEFFA). This algorithm effectively reduces energy consumption while ensuring task reliability, achieving sub-optimal processor energy adjustment. The collaborative mechanism of EAWRS and SEFFA has well solved the dynamic scheduling challenge based on DAG in heterogeneous multi-core processor systems in the Internet of Things environment. Experimental evaluations conducted at various scales show that, compared with the three most advanced scheduling algorithms, the proposed strategy reduces energy consumption by an average of 14.56% (up to 58.44% under high-reliability constraints) and shortens the makespan by 2.58–56.44% while strictly meeting reliability requirements. Full article
Show Figures

Figure 1

28 pages, 8816 KiB  
Article
Reconstruction, Segmentation and Phenotypic Feature Extraction of Oilseed Rape Point Cloud Combining 3D Gaussian Splatting and CKG-PointNet++
by Yourui Huang, Jiale Pang, Shuaishuai Yu, Jing Su, Shuainan Hou and Tao Han
Agriculture 2025, 15(12), 1289; https://doi.org/10.3390/agriculture15121289 - 15 Jun 2025
Viewed by 535
Abstract
Phenotypic traits and phenotypic extraction at the seedling stage of oilseed rape play a crucial role in assessing oilseed rape growth, breeding new varieties and estimating yield. Manual phenotyping not only consumes a lot of labor and time costs, but even the measurement [...] Read more.
Phenotypic traits and phenotypic extraction at the seedling stage of oilseed rape play a crucial role in assessing oilseed rape growth, breeding new varieties and estimating yield. Manual phenotyping not only consumes a lot of labor and time costs, but even the measurement process can cause structural damage to oilseed rape plants. Existing crop phenotype acquisition methods have limitations in terms of throughput and accuracy, which are difficult to meet the demands of phenotype analysis. We propose an oilseed rape segmentation and phenotyping measurement method based on 3D Gaussian splatting with improved PointNet++. The CKG-PointNet++ network is designed to integrate CGLU and FastKAN convolutional modules in the SA layer, and introduce MogaBlock and a self-attention mechanism in the FP layer to enhance local and global feature extraction. Experiments show that the method achieves a 97.70% overall accuracy (OA) and 96.01% mean intersection over union (mIoU) on the oilseed rape point cloud segmentation task. The extracted phenotypic parameters were highly correlated with manual measurements, with leaf length and width, leaf area and leaf inclination R2 of 0.9843, 0.9632, 0.9806 and 0.8890, and RMSE of 0.1621 cm, 0.1546 cm, 0.6892 cm2 and 2.1144°, respectively. This technique provides a feasible solution for high-throughput and rapid measurement of seedling phenotypes in oilseed rape. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

Back to TopTop