Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = closterovirus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2270 KiB  
Article
Progress in Our Understanding of the Cross-Protection Mechanism of CTV-VT No-SY Isolates Against Homologous SY Isolates
by Grazia Licciardello, Giuseppe Scuderi, Marcella Russo, Marina Bazzano, Giuseppe Paradiso, Moshe Bar-Joseph and Antonino F. Catara
Pathogens 2025, 14(7), 701; https://doi.org/10.3390/pathogens14070701 - 16 Jul 2025
Viewed by 332
Abstract
The Citrus tristeza virus (CTV), a member of the Closterovirus genus, is considered a serious threat to citrus trees grafted onto sour orange (SO) rootstock. In the Mediterranean area, the most prevalent CTV strains are VT and T30. The VT strain includes both [...] Read more.
The Citrus tristeza virus (CTV), a member of the Closterovirus genus, is considered a serious threat to citrus trees grafted onto sour orange (SO) rootstock. In the Mediterranean area, the most prevalent CTV strains are VT and T30. The VT strain includes both mild and severe isolates, some of them associated with seedling yellows (SY) syndrome. Mild CTV-VT isolates that do not induce SY symptoms (no-SY) show minor variations in their Orf1a, p23, and p33 genes, with a single nucleotide polymorphism at position 161 of the p23 gene. These isolates can repress superinfection with homologous severe isolates. The aim of this study was to investigate the mechanism of cross-protection by means of biological indexing, real-time RT-PCR high-resolution melting (HRM), and p23 gene amplicon sequencing. Four no-SY CTV-VT isolates were inoculated onto SO seedlings and Hamlin sweet orange trees grafted on SO. These plants were later challenged with two homologous CTV-VT SY isolates and remained asymptomatic. The biological evaluation of the infection process in superinfected plants was investigated via inoculation of the bark on SO seedlings that were also asymptomatic. A parallel HRM analysis of midvein RNA extracts revealed that the melting temperature (Tm) of the no-SY isolates was statistically lower than that of the SY isolates. The Tm values of RNAs extracts from superinfected plants were not statistically different from those of the no-SY isolates. This suggests that the SY isolates failed to establish infection or replicate in plants pre-inoculated with no-SY isolates. This blockage of replication resembles superinfection exclusion, with attractive perspectives to prevent SY damage in field applications. Full article
Show Figures

Figure 1

17 pages, 256 KiB  
Opinion
On the Trail of the Longest Plant RNA Virus: Citrus Tristeza Virus
by Moshe Bar-Joseph
Viruses 2025, 17(4), 508; https://doi.org/10.3390/v17040508 - 31 Mar 2025
Cited by 1 | Viewed by 911
Abstract
The devastating tristeza epidemic swept through South American citrus groves in the 1930s and subsequently spread to most citrus-growing regions worldwide, causing varying degrees of damage and prompting significant changes in citrus cultivation practices. The causal agent of the disease, citrus tristeza virus [...] Read more.
The devastating tristeza epidemic swept through South American citrus groves in the 1930s and subsequently spread to most citrus-growing regions worldwide, causing varying degrees of damage and prompting significant changes in citrus cultivation practices. The causal agent of the disease, citrus tristeza virus (CTV), belongs to the genus Closterovirus in the family Closteroviridae. CTV virions are approximately two microns long and possess the largest known positive-strand RNA genome in plants, spanning 19.3 kb. The history of tristeza disease and CTV’s molecular biology and taxonomic relationships have been extensively reviewed in the scientific literature. This paper primarily focuses on the author’s personal experiences with tristeza disease and its causal agent over the past six decades. The journey began during a period when biological indexing was the primary diagnostic tool. It later progressed through the isolation of purified CTV particles, which served as a practical diagnostic tool for CTV suppression efforts in Israel during the 1970s. However, biological indexing was first replaced by electron microscopy, followed by ELISA procedures; both were eventually abandoned after it was discovered that many ELISA-positive infections were caused by symptomless CTV isolates, even on trees grafted onto sour orange rootstocks. In retrospect, my work on CTV can be categorized into three main phases. It began with the biological phase, inherited from earlier generations of citrus virologists, followed by the isolation and partial characterization of CTV virions, and culminated in the genomic era. While we live in an age of remarkable biotechnological achievements, my recommendation for future CTV research is to integrate both biological and genomic approaches rather than viewing them as mutually exclusive. This is particularly important for economically significant pathogens such as CTV, which should be studied continuously as both biological agents and molecular pathogens. Full article
14 pages, 2265 KiB  
Article
A Chronological Study on Grapevine Leafroll-Associated Virus 2 in Australia
by Nuredin Habili, Qi Wu, Amy Rinaldo and Fiona Constable
Viruses 2023, 15(5), 1105; https://doi.org/10.3390/v15051105 - 30 Apr 2023
Cited by 4 | Viewed by 2849
Abstract
Grapevine leafroll disease affects the health status of grapevines worldwide. Most studies in Australia have focused on grapevine leafroll-associated viruses 1 and 3, while little attention has been given to other leafroll virus types, in particular, grapevine leafroll-associated virus 2 (GLRaV-2). A chronological [...] Read more.
Grapevine leafroll disease affects the health status of grapevines worldwide. Most studies in Australia have focused on grapevine leafroll-associated viruses 1 and 3, while little attention has been given to other leafroll virus types, in particular, grapevine leafroll-associated virus 2 (GLRaV-2). A chronological record of the temporal occurrence of GLRaV-2 in Australia since 2001 is reported. From a total of 11,257 samples, 313 tested positive, with an overall incidence of 2.7%. This virus has been detected in 18 grapevine varieties and Vitis rootstocks in different regions of Australia. Most varieties were symptomless on their own roots, while Chardonnay showed a decline in virus-sensitive rootstocks. An isolate of GLRaV-2, on own-rooted Vitis vinifera cv. Grenache, clone SA137, was associated with severe leafroll symptoms after veraison with abnormal leaf necrosis. The metagenomic sequencing results of the virus in two plants of this variety confirmed the presence of GLRaV-2, as well as two inert viruses, grapevine rupestris stem pitting-associated virus (GRSPaV) and grapevine rupestris vein feathering virus (GRVFV). No other leafroll-associated viruses were detected. Among the viroids, hop stunt viroid and grapevine yellow speckle viroid 1 were detected. Of the six phylogenetic groups identified in GLRaV-2, we report the presence of four groups in Australia. Three of these groups were detected in two plants of cv. Grenache, without finding any recombination event. The hypersensitive reaction of certain American hybrid rootstocks to GLRaV-2 is discussed. Due to the association of GLRaV-2 with graft incompatibility and vine decline, the risk from this virus in regions where hybrid Vitis rootstocks are used cannot be overlooked. Full article
(This article belongs to the Special Issue State-of-the-Art Plant Virus Research in Australasia)
Show Figures

Figure 1

19 pages, 3818 KiB  
Article
Discovery and Genome Characterization of a Closterovirus from Wheat Plants with Yellowing Leaf Symptoms in Japan
by Hideki Kondo, Hitomi Sugahara, Miki Fujita, Kiwamu Hyodo, Ida Bagus Andika, Hiroshi Hisano and Nobuhiro Suzuki
Pathogens 2023, 12(3), 358; https://doi.org/10.3390/pathogens12030358 - 21 Feb 2023
Cited by 1 | Viewed by 3437
Abstract
Many aphid-borne viruses are important pathogens that affect wheat crops worldwide. An aphid-transmitted closterovirus named wheat yellow leaf virus (WYLV) was found to have infected wheat plants in Japan in the 1970s; however, since then, its viral genome sequence and occurrence in the [...] Read more.
Many aphid-borne viruses are important pathogens that affect wheat crops worldwide. An aphid-transmitted closterovirus named wheat yellow leaf virus (WYLV) was found to have infected wheat plants in Japan in the 1970s; however, since then, its viral genome sequence and occurrence in the field have not been investigated. We observed yellowing leaves in the 2018/2019 winter wheat-growing season in an experimental field in Japan where WYLV was detected five decades ago. A virome analysis of those yellow leaf samples lead to the discovery of a closterovirus together with a luteovirus (barley yellow dwarf virus PAV variant IIIa). The complete genomic sequence of this closterovirus, named wheat closterovirus 1 isolate WL19a (WhCV1-WL19a), consisted of 15,452 nucleotides harboring nine open reading frames. Additionally, we identified another WhCV1 isolate, WL20, in a wheat sample from the winter wheat-growing season of 2019/2020. A transmission test indicated that WhCV1-WL20 was able to form typical filamentous particles and transmissible by oat bird-cherry aphid (Rhopalosiphum pad). Sequence and phylogenetic analyses showed that WhCV1 was distantly related to members of the genus Closterovirus (family Closteroviridae), suggesting that the virus represents a novel species in the genus. Furthermore, the characterization of WhCV1-WL19a-derived small RNAs using high-throughput sequencing revealed highly abundant 22-nt-class small RNAs potentially derived from the 3′-terminal end of the WhCV1 negative-strand genomic RNA, indicating that this terminal end of the WhCV1 genome is likely particularly targeted for the synthesis of viral small RNAs in wheat plants. Our results provide further knowledge on closterovirus diversity and pathogenicity and suggest that the impact of WhCV1 on wheat production warrants further investigations. Full article
(This article belongs to the Special Issue Plant Virus Genome Diversity in Plant Hosts and Insect Vectors)
Show Figures

Figure 1

11 pages, 14962 KiB  
Article
Discovery of a Closterovirus Infecting Jujube Plants Grown at Aksu Area in Xinjiang of China
by Qian Lu, Guoping Wang, Zuokun Yang, Yanxiang Wang, Buchen Yang, Jianyu Bai and Ni Hong
Viruses 2023, 15(2), 267; https://doi.org/10.3390/v15020267 - 17 Jan 2023
Viewed by 1712
Abstract
Chinese jujube (Ziziphus jujuba Mill.) is a widely grown fruit crop at Aksu in Xinjiang Uygur Autonomous Region of China. Viral disease-like symptoms are common on jujube plants. Here, for the first time, we report a virus tentatively named persimmon ampelovirus jujube [...] Read more.
Chinese jujube (Ziziphus jujuba Mill.) is a widely grown fruit crop at Aksu in Xinjiang Uygur Autonomous Region of China. Viral disease-like symptoms are common on jujube plants. Here, for the first time, we report a virus tentatively named persimmon ampelovirus jujube isolate (PAmpV-Ju) infecting jujube plants. The virus was identified using high-throughput sequencing from a jujube plant (ID: AKS15) and molecularly related to viruses in the family Closteroviridae. The genomic sequences of two PAmpV-Ju variants named AKS15-20 and AKS15-17 were determined by RT-PCR amplifications. The genome structure of PAmpV-Ju was identical to that of a recently reported persimmon ampelovirus (PAmpV) and consisted of seven open reading frames. The genomes of AKS15-20 and AKS15-17 shared 83.7% nt identity with each other, and the highest nt sequence identity of 79% with two variants of PAmpV. The incidence of PAmpV-Ju on Aksu jujube plants was evaluated by RT-PCR assays. The phylogenetic analysis of amplified partial sequences coding for polymerase, HSP70h, and CP revealed two phylogenetic clades represented by AKS15-20 and AKS15-17. Our study provides important evidence for understanding viruses infecting jujube plants and establishing efficient measures to prevent virus spread. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

15 pages, 1193 KiB  
Article
Identification of Interactions between Proteins Encoded by Grapevine Leafroll-Associated Virus 3
by Ilani Mostert, Rachelle Bester, Johan T. Burger and Hans J. Maree
Viruses 2023, 15(1), 208; https://doi.org/10.3390/v15010208 - 11 Jan 2023
Cited by 7 | Viewed by 2612
Abstract
The roles of proteins encoded by members of the genus Ampelovirus, family Closteroviridae are largely inferred by sequence homology or analogy to similarly located ORFs in related viruses. This study employed yeast two-hybrid and bimolecular fluorescence complementation assays to investigate interactions between [...] Read more.
The roles of proteins encoded by members of the genus Ampelovirus, family Closteroviridae are largely inferred by sequence homology or analogy to similarly located ORFs in related viruses. This study employed yeast two-hybrid and bimolecular fluorescence complementation assays to investigate interactions between proteins of grapevine leafroll-associated virus 3 (GLRaV-3). The p5 movement protein, HSP70 homolog, coat protein, and p20B of GLRaV-3 were all found to self-interact, however, the mechanism by which p5 interacts remains unknown due to the absence of a cysteine residue crucial for the dimerisation of the closterovirus homolog of this protein. Although HSP70h forms part of the virion head of closteroviruses, in GLRaV-3, it interacts with the coat protein that makes up the body of the virion. Silencing suppressor p20B has been shown to interact with HSP70h, as well as the major coat protein and the minor coat protein. The results of this study suggest that the virion assembly of a member of the genus Ampelovirus occurs in a similar but not identical manner to those of other genera in the family Closteroviridae. Identification of interactions of p20B with virus structural proteins provides an avenue for future research to explore the mechanisms behind the suppression of host silencing and suggests possible involvement in other aspects of the viral replication cycle. Full article
(This article belongs to the Special Issue A Tribute to Giovanni P. Martelli)
Show Figures

Figure 1

10 pages, 2946 KiB  
Article
Bioinformatics Predicted Linear Epitopes of the Major Coat Protein of the Beet Yellows Virus for Detection of the Virus in the Cell Extract of the Infected Plant
by Eugene V. Skurat, Konstantin O. Butenko and Yuri F. Drygin
BioTech 2022, 11(4), 52; https://doi.org/10.3390/biotech11040052 - 10 Nov 2022
Viewed by 3054
Abstract
Beet yellows virus, which belongs to the genus Closterovirus, family Closteroviridae and has a significant negative economic impact, has proven to be challenging to detect and diagnose. To obtain antibodies against BYV, we propose an easier bioinformatics approach than the isolation and [...] Read more.
Beet yellows virus, which belongs to the genus Closterovirus, family Closteroviridae and has a significant negative economic impact, has proven to be challenging to detect and diagnose. To obtain antibodies against BYV, we propose an easier bioinformatics approach than the isolation and purification of the wild virus as an antigen. We used the SWISS-MODEL Workspace (Biozentrum Basel) protein 3D prediction program to discover epitopes of major coat protein p22 lying on the surface of the BYV capsid. Sequences coding these epitopes were cloned into plasmid pQE-40 (Qiagen) in frame with mouse dihydrofolate reductase gene. Fused epitopes were expressed in Escherichia coli and isolated by the Ni-NTA affinity chromatography. Murine antibodies were raised against each epitope and in a combination of both and characterized by dot-ELISA and indirect ELISA. We successively used these antibodies for diagnosis of virus disease in systemically infected Tetragonia tetragonioides. We believe the approach described above can be used for diagnostics of difficult-to-obtain and hazardous-to-health viral infections. Full article
Show Figures

Figure 1

18 pages, 9863 KiB  
Article
Virus Yellows and Syndrome “Basses Richesses” in Western Switzerland: A Dramatic 2020 Season Calls for Urgent Control Measures
by Mathieu Mahillon, Raphaël Groux, Floriane Bussereau, Justine Brodard, Christophe Debonneville, Sonia Demal, Isabelle Kellenberger, Madlaina Peter, Thomas Steinger and Olivier Schumpp
Pathogens 2022, 11(8), 885; https://doi.org/10.3390/pathogens11080885 - 6 Aug 2022
Cited by 20 | Viewed by 4230
Abstract
Massive outbreaks of virus yellows (VY) and syndrome “basses richesses” (SBR) are thought to be responsible for the major loss of sugar beet yields in 2020 in western cantons of Switzerland. Typical yellowing symptoms were visible during field inspections, and control measures were [...] Read more.
Massive outbreaks of virus yellows (VY) and syndrome “basses richesses” (SBR) are thought to be responsible for the major loss of sugar beet yields in 2020 in western cantons of Switzerland. Typical yellowing symptoms were visible during field inspections, and control measures were reportedly ineffective or even absent. Both diseases induce yellowing but have distinct etiologies; while VY is caused by aphid-transmitted RNA viruses, SBR is caused by the cixiid-transmitted γ-proteobacterium Candidatus Arsenophonus phytopathogenicus. To clarify the situation, samples from diseased plants across the country were screened for the causal agents of VY and SBR at the end of the season. Beet yellows virus (BYV) and Beet chlorosis virus (BChV) showed high incidence nationwide, and were frequently found together in SBR-infected fields in the West. Beet mild yellowing virus (BMYV) was detected in two sites in the West, while there was no detection of Beet western yellows virus or Beet mosaic virus. The nucleotide diversity of the detected viruses was then investigated using classic and high-throughput sequencing. For both diseases, outbreaks were analyzed in light of monitoring of the respective vectors, and symptoms were reproduced in greenhouse conditions by means of insect-mediated inoculations. Novel quantification tools were designed for BYV, BChV and Ca. A. phytopathogenicus, leading to the identification of specific tissues tropism for these pathogens. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

17 pages, 2136 KiB  
Article
The Intriguing Conundrum of a Nonconserved Multifunctional Protein of Citrus Tristeza Virus That Interacts with a Viral Long Non-Coding RNA
by Sung-Hwan Kang, Vicken Aknadibossian, Laxmi Kharel, Shachinthaka D. Dissanayaka Mudiyanselage, Ying Wang and Svetlana Y. Folimonova
Viruses 2021, 13(11), 2129; https://doi.org/10.3390/v13112129 - 22 Oct 2021
Cited by 8 | Viewed by 3105
Abstract
Citrus tristeza virus (CTV), the largest non-segmented plant RNA virus, has several peculiar features, among which is the production of a 5′-terminal long non-coding RNA (lncRNA) termed low-molecular-weight tristeza 1 (LMT1). In this study, we found that p33, a unique viral protein that [...] Read more.
Citrus tristeza virus (CTV), the largest non-segmented plant RNA virus, has several peculiar features, among which is the production of a 5′-terminal long non-coding RNA (lncRNA) termed low-molecular-weight tristeza 1 (LMT1). In this study, we found that p33, a unique viral protein that performs multiple functions in the virus infection cycle, specifically binds LMT1, both in vivo and in vitro. These results were obtained through the expression of p33 under the context of the wild type virus infection or along with a mutant CTV variant that does not produce LMT1 as well as via ectopic co-expression of p33 with LMT1 in Nicotiana benthamiana leaves followed by RNA immunoprecipitation and rapid amplification of cDNA ends assays. Further experiments in which a recombinant p33 protein and an in vitro transcribed full-length LMT1 RNA or its truncated fragments were subjected to an electrophoretic mobility shift assay demonstrated that p33 binds to at least two distinct regions within LMT1. To the best of our knowledge, this is the first report of a plant virus protein binding to a lncRNA produced by the same virus. The biological significance of the interaction between these two viral factors is discussed. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

14 pages, 2915 KiB  
Article
The p23 of Citrus Tristeza Virus Interacts with Host FKBP-Type Peptidyl-Prolylcis-Trans Isomerase 17-2 and Is Involved in the Intracellular Movement of the Viral Coat Protein
by Zuokun Yang, Yongle Zhang, Guoping Wang, Shaohua Wen, Yanxiang Wang, Liu Li, Feng Xiao and Ni Hong
Cells 2021, 10(4), 934; https://doi.org/10.3390/cells10040934 - 17 Apr 2021
Cited by 10 | Viewed by 3739
Abstract
Citrus tristeza virus is a member of the genus Closterovirus in the family Closteroviridae. The p23 of citrus tristeza virus (CTV) is a multifunctional protein and RNA silencing suppressor. In this study, we identified a p23 interacting partner, FK506-binding protein (FKBP) 17-2, [...] Read more.
Citrus tristeza virus is a member of the genus Closterovirus in the family Closteroviridae. The p23 of citrus tristeza virus (CTV) is a multifunctional protein and RNA silencing suppressor. In this study, we identified a p23 interacting partner, FK506-binding protein (FKBP) 17-2, from Citrus aurantifolia (CaFKBP17-2), a susceptible host, and Nicotiana benthamiana (NbFKBP17-2), an experimental host for CTV. The interaction of p23 with CaFKBP17-2 and NbFKBP17-2 were individually confirmed by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. Subcellular localization tests showed that the viral p23 translocated FKBP17-2 from chloroplasts to the plasmodesmata of epidermal cells of N. benthamiana leaves. The knocked-down expression level of NbFKBP17-2 mRNA resulted in a decreased CTV titer in N. benthamiana plants. Further, BiFC and Y2H assays showed that NbFKBP17-2 also interacted with the coat protein (CP) of CTV, and the complexes of CP/NbFKBP17-2 rapidly moved in the cytoplasm. Moreover, p23 guided the CP/NbFKBP17-2 complexes to move along the cell wall. To the best of our knowledge, this is the first report of viral proteins interacting with FKBP17-2 encoded by plants. Our results provide insights for further revealing the mechanism of the CTV CP protein movement. Full article
(This article belongs to the Collection Plant-Virus/Viroid-Vector Interactions)
Show Figures

Figure 1

23 pages, 1713 KiB  
Review
Probing into the Effects of Grapevine Leafroll-Associated Viruses on the Physiology, Fruit Quality and Gene Expression of Grapes
by Yashu Song, Robert H. Hanner and Baozhong Meng
Viruses 2021, 13(4), 593; https://doi.org/10.3390/v13040593 - 31 Mar 2021
Cited by 35 | Viewed by 5852
Abstract
Grapevine leafroll is one of the most widespread and highly destructive grapevine diseases that is responsible for great economic losses to the grape and wine industries throughout the world. Six distinct viruses have been implicated in this disease complex. They belong to three [...] Read more.
Grapevine leafroll is one of the most widespread and highly destructive grapevine diseases that is responsible for great economic losses to the grape and wine industries throughout the world. Six distinct viruses have been implicated in this disease complex. They belong to three genera, all in the family Closteroviridae. For the sake of convenience, these viruses are named as grapevine leafroll-associated viruses (GLRaV-1, -2, -3, -4, -7, and -13). However, their etiological role in the disease has yet to be established. Furthermore, how infections with each GLRaV induce the characteristic disease symptoms remains unresolved. Here, we first provide a brief overview on each of these GLRaVs with a focus on genome structure, expression strategies and gene functions, where available. We then provide a review on the effects of GLRaV infection on the physiology, fruit quality, fruit chemical composition, and gene expression of grapevine based on the limited information so far reported in the literature. We outline key methodologies that have been used to study how GLRaV infections alter gene expression in the grapevine host at the transcriptomic level. Finally, we present a working model as an initial attempt to explain how infections with GLRaVs lead to the characteristic symptoms of grapevine leafroll disease: leaf discoloration and downward rolling. It is our hope that this review will serve as a starting point for grapevine virology and the related research community to tackle this vastly important and yet virtually uncharted territory in virus-host interactions involving woody and perennial fruit crops. Full article
(This article belongs to the Special Issue Closteroviridae)
Show Figures

Figure 1

12 pages, 928 KiB  
Article
Semipersistently Transmitted, Phloem Limited Plant Viruses Are Inoculated during the First Subphase of Intracellular Stylet Penetrations in Phloem Cells
by Jaime Jiménez, Aránzazu Moreno and Alberto Fereres
Viruses 2021, 13(1), 137; https://doi.org/10.3390/v13010137 - 19 Jan 2021
Cited by 8 | Viewed by 3550
Abstract
The green peach aphid Myzus persicae Sulzer is the main vector of the semipersistently transmitted and phloem-limited Beet yellows virus (BYV, Closterovirus). Studies monitoring the M. persicae probing behavior by using the Electrical penetration graphs (EPG) technique revealed that inoculation of BYV [...] Read more.
The green peach aphid Myzus persicae Sulzer is the main vector of the semipersistently transmitted and phloem-limited Beet yellows virus (BYV, Closterovirus). Studies monitoring the M. persicae probing behavior by using the Electrical penetration graphs (EPG) technique revealed that inoculation of BYV occurs during unique brief intracellular punctures (phloem-pds) produced in companion and/or sieve element cells. Intracellular stylet punctures (or pds) are subdivided in three subphases (II-1, II-2 and II-3), which have been related to the delivery or uptake of non-phloem limited viruses transmitted in a non-persistent or semipersistent manner. As opposed to non-phloem limited viruses, the specific pd subphase(s) involved in the successful delivery of phloem limited viruses by aphids remain unknown. Therefore, we monitored the feeding process of BYV-carrying M. persicae individuals in sugar beet plants by the EPG technique and the feeding process was artificially terminated at each phloem-pd subphase. Results revealed that aphids that only performed the subphase II-1 of the phloem-pd transmitted BYV at similar efficiency than those allowed to perform subphase II-2 or the complete phloem-pd. This result suggests that BYV inoculation occurs during the first subphase of the phloem-pd. The specific transmission mechanisms involved in BYV delivery in phloem cells are discussed. Full article
(This article belongs to the Special Issue Closteroviridae)
Show Figures

Figure 1

17 pages, 15672 KiB  
Review
Walking Together: Cross-Protection, Genome Conservation, and the Replication Machinery of Citrus tristeza virus
by Svetlana Y. Folimonova, Diann Achor and Moshe Bar-Joseph
Viruses 2020, 12(12), 1353; https://doi.org/10.3390/v12121353 - 26 Nov 2020
Cited by 21 | Viewed by 4273
Abstract
“Cross-protection”, a nearly 100 years-old virological term, is suggested to be changed to “close protection”. Evidence for the need of such change has accumulated over the past six decades from the laboratory experiments and field tests conducted by plant pathologists and plant virologists [...] Read more.
“Cross-protection”, a nearly 100 years-old virological term, is suggested to be changed to “close protection”. Evidence for the need of such change has accumulated over the past six decades from the laboratory experiments and field tests conducted by plant pathologists and plant virologists working with different plant viruses, and, in particular, from research on Citrus tristeza virus (CTV). A direct confirmation of such close protection came with the finding that “pre-immunization” of citrus plants with the variants of the T36 strain of CTV but not with variants of other virus strains was providing protection against a fluorescent protein-tagged T36-based recombinant virus variant. Under natural conditions close protection is functional and is closely associated both with the conservation of the CTV genome sequence and prevention of superinfection by closely similar isolates. It is suggested that the mechanism is primarily directed to prevent the danger of virus population collapse that could be expected to result through quasispecies divergence of large RNA genomes of the CTV variants continuously replicating within long-living and highly voluminous fruit trees. This review article provides an overview of the CTV cross-protection research, along with a discussion of the phenomenon in the context of the CTV biology and genetics. Full article
(This article belongs to the Special Issue Closteroviridae)
Show Figures

Figure 1

23 pages, 3797 KiB  
Article
A Long Non-Coding RNA of Citrus tristeza virus: Role in the Virus Interplay with the Host Immunity
by Sung-Hwan Kang, Yong-Duo Sun, Osama O. Atallah, Jose Carlos Huguet-Tapia, Jerald D. Noble and Svetlana Y. Folimonova
Viruses 2019, 11(5), 436; https://doi.org/10.3390/v11050436 - 14 May 2019
Cited by 35 | Viewed by 5234
Abstract
During infection, Citrus tristeza virus (CTV) produces a non-coding subgenomic RNA referred to as low-molecular-weight tristeza 1 (LMT1), which for a long time has been considered as a by-product of the complex CTV replication machinery. In this study, we investigated the role of [...] Read more.
During infection, Citrus tristeza virus (CTV) produces a non-coding subgenomic RNA referred to as low-molecular-weight tristeza 1 (LMT1), which for a long time has been considered as a by-product of the complex CTV replication machinery. In this study, we investigated the role of LMT1 in the virus infection cycle using a CTV variant that does not produce LMT1 (CTV-LMT1d). We showed that lack of LMT1 did not halt virus ability to replicate or form proper virions. However, the mutant virus demonstrated significantly reduced invasiveness and systemic spread in Nicotiana benthamiana as well as an inability to establish infection in citrus. Introduction of CTV-LMT1d into the herbaceous host resulted in elevation of the levels of salicylic acid (SA) and SA-responsive pathogenesis-related genes beyond those upon inoculation with wild-type (WT) virus (CTV-WT). Further analysis showed that the LMT1 RNA produced by CTV-WT or via ectopic expression in the N. benthamiana leaves suppressed SA accumulation and up-regulated an alternative oxidase gene, which appeared to mitigate the accumulation of reactive oxygen species. To the best of our knowledge, this is the first report of a plant viral long non-coding RNA being involved in counter-acting host response by subverting the SA-mediated plant defense. Full article
(This article belongs to the Special Issue Plant Immunity to Virus Infections)
Show Figures

Figure 1

17 pages, 2384 KiB  
Article
Codon Usage Bias Analysis of Citrus tristeza virus: Higher Codon Adaptation to Citrus reticulata Host
by Kajal Kumar Biswas, Supratik Palchoudhury, Prosenjit Chakraborty, Utpal K. Bhattacharyya, Dilip K. Ghosh, Palash Debnath, Chandrika Ramadugu, Manjunath L. Keremane, Ravi K. Khetarpal and Richard F. Lee
Viruses 2019, 11(4), 331; https://doi.org/10.3390/v11040331 - 8 Apr 2019
Cited by 46 | Viewed by 6084
Abstract
Citrus tristeza virus (CTV), a member of the aphid-transmitted closterovirus group, is the causal agent of the notorious tristeza disease in several citrus species worldwide. The codon usage patterns of viruses reflect the evolutionary changes for optimization of their survival and adaptation in [...] Read more.
Citrus tristeza virus (CTV), a member of the aphid-transmitted closterovirus group, is the causal agent of the notorious tristeza disease in several citrus species worldwide. The codon usage patterns of viruses reflect the evolutionary changes for optimization of their survival and adaptation in their fitness to the external environment and the hosts. The codon usage adaptation of CTV to specific citrus hosts remains to be studied; thus, its role in CTV evolution is not clearly comprehended. Therefore, to better explain the host–virus interaction and evolutionary history of CTV, the codon usage patterns of the coat protein (CP) genes of 122 CTV isolates originating from three economically important citrus hosts (55 isolate from Citrus sinensis, 38 from C. reticulata, and 29 from C. aurantifolia) were studied using several codon usage indices and multivariate statistical methods. The present study shows that CTV displays low codon usage bias (CUB) and higher genomic stability. Neutrality plot and relative synonymous codon usage analyses revealed that the overall influence of natural selection was more profound than that of mutation pressure in shaping the CUB of CTV. The contribution of high-frequency codon analysis and codon adaptation index value show that CTV has host-specific codon usage patterns, resulting in higheradaptability of CTV isolates originating from C. reticulata (Cr-CTV), and low adaptability in the isolates originating from C. aurantifolia (Ca-CTV) and C. sinensis (Cs-CTV). The combination of codon analysis of CTV with citrus genealogy suggests that CTV evolved in C. reticulata or other Citrus progenitors. The outcome of the study enhances the understanding of the factors involved in viral adaptation, evolution, and fitness toward their hosts. This information will definitely help devise better management strategies of CTV. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

Back to TopTop