Bioinformatics Predicted Linear Epitopes of the Major Coat Protein of the Beet Yellows Virus for Detection of the Virus in the Cell Extract of the Infected Plant
Abstract
:1. Introduction
- Computer modeling. The prediction of the 3D structure of BYV virion was performed using software SWISS-MODEL Workspace (Team @ Biozentrum Basel) [6,7]. As a most suitable template, the program used the already calculated structure of potexvirus (Pepino Mosaic Virus) CP, which served as a template to build a 3D model of BYV CP. The program also allows prediction of the disposition of CP subunits in assembled virion. So, it become possible to predict the external parts of CP accessible for antibodies recognition.
- Cloning of outer epitopes sequences of CP gene into the expression vector. To express epitopes, their nucleotide sequences were cloned into pQE40 plasmid in frame with the murine gene of dihydrofolate reductase (DHFR).
- Analysis of obtained sera using leaf extract from Tetragonia tetragonioides infected with BYV.
2. Materials and Methods
2.1. Cloning Sequences of Predicted Epitopes of P22 BYV
2.2. Isolation of the BYV Epitopes Fused with DHFR
2.3. Positive Controls for Testing Antisera
2.4. Electron Microscopy
2.5. Immunization of Laboratory Animals
2.6. Obtaining Antisera
2.7. Antisera Testing
3. Results
3.1. Positive Controls
3.2. Cloning of BYV Epitopes
3.3. Selection of Epitopes Using 3D-Model of BYV p22 Coat Protein
3.4. Antiserum Analyses
3.4.1. Dot-ELISA
3.4.2. Plate Indirect ELISA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dolja, V.V.; Kreuze, J.F.; Valkonen, J.P. Comparative and functional genomics of closteroviruses. Virus Res. 2006, 117, 38–51. [Google Scholar] [CrossRef] [PubMed]
- Agranovsky, A.A. Closteroviruses: Molecular Biology, Evolution and Interactions with Cells. In Plant Viruses: Evolution and Management; Gaur, R., Petrov, N., Patil, B., Stoyanova, M., Eds.; Springer: Singapore, 2016. [Google Scholar] [CrossRef]
- Drygin, Y.F.; Chirkov, S.N.; Kondakova, O.A.; Zinovkin, R.A.; Ivanov, P.A.; Blintsov, A.N.; Gavryushina, E.S.; Zherdev, A.V.; Byzova, N.A.; Dzantiev, B.B.; et al. High-sensitive technologies for molecular diagnostics of potato virus and viroid infections. In Potato Production and Innovative Technologies; Haverkort, A.J., Anisimov, B.V., Eds.; Acad. Publishers: Wageningen, The Netherlands, 2007; pp. 274–285. [Google Scholar]
- Agranovsky, A.A.; Lomonosov Moscow State University, Moscow, Russia. Personal communication, 2020.
- Jameson, B.; Wolf, H. The antigenic index: A novel algorithm for predicting antigenic determinants. Biol. Comput. Appl. Biosci. 1988, 4, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Schwede, T.; Kopp, J.; Guex, N.; Peitsch, M.C. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 2003, 31, 3381–3385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordoli, A.K.; Kopp, J.; Schwede, T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics 2006, 22, 195–201. [Google Scholar] [CrossRef] [Green Version]
- GenBank Accession Numbers: ON738341.1, MT815988.1, MT701720.1, AF056575.1, OL472076.1. Available online: https://www.ncbi.nlm.nih.gov/genbank (accessed on 12 September 2022).
- The QIAexpressionist. A Handbook for High-Level Expression and Purification of 6xHis-Tagged Proteins, 5th ed.; Qiagen: Germantown, MD, USA, 2003; pp. 67–143. [Google Scholar]
- Skurat, E.V.; Butenko, K.O.; Kondakova, O.A.; Nikitin, N.A.; Karpova, O.V.; Drygin, Y.F.; Atabekov, J.G. Chimeric Virus as a Source of the Potato Leafroll Virus Antigen. Mol. Biotechnol. 2017, 59, 469–481. [Google Scholar] [CrossRef] [PubMed]
- Harlow, E.; Lane, D. Antibodies, 2nd ed.; Cold Spring Harbor Laboratory: New York, NY, USA, 1988; pp. 298–299. [Google Scholar]
- Egorov, A.; Osipov, A.; Dzantiev, B.; Gavrilova, E. Theory and Practice of Enzyme Linked Immunosorbent Analysis, 1st ed.; Vishaya Shkola: Moscow, Russia, 1991; pp. 181–312. [Google Scholar]
- Rosano, G.L.; Ceccarelli, E.A. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol. 2014, 17, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, B.E.; Brown, A.L.; Grace, K.G.; Hastings, G.Z.; Brown, F.; Rowlands, D.J.; Francis, M.J. Presentation and Immunogenicity of Viral Epitopes on the Surface of Hybrid Hepatitis B Virus Core Particles Produced in Bacteria. J. Gen. Virol. 1990, 71, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Nuss, J.M.; Air, G.M. Defining the requirements for an antibody epitope on influenza virus neuraminidase: How tolerant are protein epitopes? J. Mol. Biol. 1994, 235, 747–759. [Google Scholar] [CrossRef] [PubMed]
- Barai, R.S.; Sharma, U.B.; Srivastava, P.G.; Shailendra Kumar, S.; Jaiswal, A.K. In Silico 3D structure prediction of E- protein [envelope protein] of Japanese Encephalitis Virus (JEV) and peptide De Formylase of Mycobacterium Tuberculosis through homology modeling. In Proceedings of the 8th National Symposium on Biochemical Engineering & Biotechnology, New Delhi, India, 10–11 March 2006. [Google Scholar] [CrossRef]
- Lawko, N.; Plaskasovitis, C.; Stokes, C.; Abelseth, L.; Ian Fraser, I.; Sharma, R.; Kirsch, R.; Hasan, M.; Abelseth, E.; Willerth, S.M. 3D Tissue Models as an Effective Tool for Studying Viruses and Vaccine Development. Front. Mater. 2021, 8, 631373. [Google Scholar] [CrossRef]
- Olaya, C.; Raikhy, B.G.; Cheng, J.; Hanu, R.; Pappu, H.P. Identification and localization of Tospovirus genus-wide conserved residues in 3D models of the nucleocapsid and the silencing suppressor proteins. Virol. J. 2019, 16, 7. [Google Scholar] [CrossRef] [PubMed]
- Drygin, Y.F.; Butenko, K.O.; Gasanova, T.V. Environmentally friendly method of RNA isolation. Anal. Biochem. 2021, 620, 104–113. [Google Scholar] [CrossRef] [PubMed]
- Drygin, Y.F.; Gasanova, T.V.; Butenko, K.O. Polyclonal antibodies against potato spindle tuber viroid RNA. Front. Biosci. 2022, 14, 7. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skurat, E.V.; Butenko, K.O.; Drygin, Y.F. Bioinformatics Predicted Linear Epitopes of the Major Coat Protein of the Beet Yellows Virus for Detection of the Virus in the Cell Extract of the Infected Plant. BioTech 2022, 11, 52. https://doi.org/10.3390/biotech11040052
Skurat EV, Butenko KO, Drygin YF. Bioinformatics Predicted Linear Epitopes of the Major Coat Protein of the Beet Yellows Virus for Detection of the Virus in the Cell Extract of the Infected Plant. BioTech. 2022; 11(4):52. https://doi.org/10.3390/biotech11040052
Chicago/Turabian StyleSkurat, Eugene V., Konstantin O. Butenko, and Yuri F. Drygin. 2022. "Bioinformatics Predicted Linear Epitopes of the Major Coat Protein of the Beet Yellows Virus for Detection of the Virus in the Cell Extract of the Infected Plant" BioTech 11, no. 4: 52. https://doi.org/10.3390/biotech11040052
APA StyleSkurat, E. V., Butenko, K. O., & Drygin, Y. F. (2022). Bioinformatics Predicted Linear Epitopes of the Major Coat Protein of the Beet Yellows Virus for Detection of the Virus in the Cell Extract of the Infected Plant. BioTech, 11(4), 52. https://doi.org/10.3390/biotech11040052