Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,832)

Search Parameters:
Keywords = closed space

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 2291 KiB  
Article
A Study of Periodicities in a One-Dimensional Piecewise Smooth Discontinuous Map
by Rajanikant A. Metri, Bhooshan Rajpathak, Kethavath Raghavendra Naik and Mohan Lal Kolhe
Mathematics 2025, 13(15), 2518; https://doi.org/10.3390/math13152518 - 5 Aug 2025
Abstract
In this study, we investigate the nonlinear dynamical behavior of a one-dimensional linear piecewise-smooth discontinuous (LPSD) map with a negative slope, motivated by its occurrence in systems exhibiting discontinuities, such as power electronic converters. The objective of the proposed research is to develop [...] Read more.
In this study, we investigate the nonlinear dynamical behavior of a one-dimensional linear piecewise-smooth discontinuous (LPSD) map with a negative slope, motivated by its occurrence in systems exhibiting discontinuities, such as power electronic converters. The objective of the proposed research is to develop an analytical approach. Analytical conditions are derived for the existence of stable period-1 and period-2 orbits within the third quadrant of the parameter space defined by slope coefficients a<0 and b<0. The coexistence of multiple attractors is demonstrated. We also show that a novel class of orbits exists in which both points lie entirely in either the left or right domain. These orbits are shown to eventually exhibit periodic behavior, and a closed-form expression is derived to compute the number of iterations required for a trajectory to converge to such orbits. This method also enhances the ease of analyzing system stability by mapping the state–variable dynamics using a non-smooth discontinuous map. The analytical findings are validated using bifurcation diagrams, cobweb plots, and basin of attraction visualizations. Full article
Show Figures

Figure 1

14 pages, 3486 KiB  
Article
Spatiotemporal Activity Patterns of Sympatric Rodents and Their Predators in a Temperate Desert-Steppe Ecosystem
by Caibo Wei, Yijie Ma, Yuquan Fan, Xiaoliang Zhi and Limin Hua
Animals 2025, 15(15), 2290; https://doi.org/10.3390/ani15152290 - 5 Aug 2025
Abstract
Understanding how prey and predator species partition activity patterns across time and space is essential for elucidating behavioral adaptation and ecological coexistence. In this study, we examined the diel and seasonal activity rhythms of two sympatric rodent species—Rhombomys opimus (Great gerbil) and [...] Read more.
Understanding how prey and predator species partition activity patterns across time and space is essential for elucidating behavioral adaptation and ecological coexistence. In this study, we examined the diel and seasonal activity rhythms of two sympatric rodent species—Rhombomys opimus (Great gerbil) and Meriones meridianus (Midday gerbil)—and their primary predators, Otocolobus manul (Pallas’s cat) and Vulpes vulpes (Red fox), in a desert-steppe ecosystem on the northern slopes of the Qilian Mountains, China. Using over 8000 camera trap days and kernel density estimation, we quantified their activity intensity and spatiotemporal overlap. The two rodent species showed clear temporal niche differentiation but differed in their synchrony with predators. R. opimus exhibited a unimodal diurnal rhythm with spring activity peaks, while M. meridianus showed stable nocturnal activity with a distinct autumn peak. Notably, O. manul adjusted its activity pattern to partially align with that of R. opimus, whereas V. vulpes maintained a crepuscular–nocturnal rhythm overlapping more closely with that of M. meridianus. Despite distinct temporal rhythms, both rodent species shared high spatial overlap with their predators (overlap index OI = 0.64–0.83). These findings suggest that temporal partitioning may reduce predation risk for R. opimus, while M. meridianus co-occurs more extensively with its predators. Our results highlight the ecological role of native carnivores in rodent population dynamics and support their potential use in biodiversity-friendly rodent management strategies under arid grassland conditions. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

16 pages, 343 KiB  
Article
Structured Distance to Normality of Dirichlet–Neumann Tridiagonal Toeplitz Matrices
by Zhaolin Jiang, Hongxiao Chu, Qiaoyun Miao and Ziwu Jiang
Axioms 2025, 14(8), 609; https://doi.org/10.3390/axioms14080609 - 5 Aug 2025
Abstract
This paper conducts a rigorous study on the spectral properties and operator-space distances of perturbed Dirichlet–Neumann tridiagonal (PDNT) Toeplitz matrices, with emphasis on their asymptotic behaviors. We establish explicit closed-form solutions for the eigenvalues and associated eigenvectors, highlighting their fundamental importance for characterizing [...] Read more.
This paper conducts a rigorous study on the spectral properties and operator-space distances of perturbed Dirichlet–Neumann tridiagonal (PDNT) Toeplitz matrices, with emphasis on their asymptotic behaviors. We establish explicit closed-form solutions for the eigenvalues and associated eigenvectors, highlighting their fundamental importance for characterizing matrix stability in the presence of perturbations. By exploiting the structural characteristics of PDNT Toeplitz matrices, we obtain closed-form expressions quantifying the distance to normality, the deviation from normality. Full article
Show Figures

Figure 1

13 pages, 1870 KiB  
Article
Study on the Spatiotemporal Distribution Characteristics and Constitutive Relationship of Foggy Airspace in Mountainous Expressways
by Xiaolei Li, Yinxia Zhan, Tingsong Cheng and Qianghui Song
Appl. Sci. 2025, 15(15), 8615; https://doi.org/10.3390/app15158615 (registering DOI) - 4 Aug 2025
Abstract
To study the generation and dissipation process of agglomerate fog in mountainous expressways and deeply understand the hazard mechanisms of agglomerate fog sections in mountainous expressways, based on the analysis of the geographical location characteristics of mountainous expressways and the spatial and temporal [...] Read more.
To study the generation and dissipation process of agglomerate fog in mountainous expressways and deeply understand the hazard mechanisms of agglomerate fog sections in mountainous expressways, based on the analysis of the geographical location characteristics of mountainous expressways and the spatial and temporal distribution characteristics of agglomerate fog, the airspace constitutive model of agglomerate fog in mountainous expressways was constructed based on Newton constitutive theory. Firstly, the properties of the Newtonian fluid and cluster fog were compared and analyzed, and the influence mechanism of environmental factors such as the altitude difference, topography, water system, valley effect, and vegetation on the generation and dissipation of agglomerate fog in mountainous expressways was analyzed. Based on Newton’s constitutive theory, the constitutive model of temperature, humidity, wind speed, and agglomerate fog points in the foggy airspace of the mountainous expressway was established. Then, the time and spatial distribution of fog in Chongqing and Guizhou from 2021 to 2023 were analyzed. Finally, the model was verified by using the meteorological data and fog warning data of Liupanshui City, Guizhou Province in 2023. The results show that the foggy airspace of mountainous expressways can be defined as “the space occupied by the agglomerate fog that occurs above the mountain expressway”; The temporal and spatial distribution of foggy airspace on expressways in mountainous areas is closely related to the topography, water system, vegetation distribution, and local microclimate formed by thermal radiation. The horizontal and vertical movements of the atmosphere have little influence on the foggy airspace on expressways in mountainous areas. The specific manifestation of time distribution is that the occurrence of agglomerate fog is concentrated from November to April of the following year, and the daily occurrence time is mainly concentrated between 4:00–8:00 and 18:00–22:00. The calculation results of the foggy airspace constitutive model of the expressway in the mountainous area show that when there is low surface radiation or no surface radiation, the fogging value range is [90, 100], and the fogging value range is [50, 70] when there is high surface radiation (>200), and there is generally no fog in other intervals. The research results can provide a theoretical basis for traffic safety management and control of mountainous expressway fog sections. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

32 pages, 4845 KiB  
Article
Mechanism Analysis and Establishment of a Prediction Model for the Total Pressure Loss in the Multi-Branch Pipeline System of the Pneumatic Seeder
by Wei Qin, Cheng Qian, Yuwu Li, Daoqing Yan, Zhuorong Fan, Minghua Zhang, Ying Zang and Zaiman Wang
Agriculture 2025, 15(15), 1681; https://doi.org/10.3390/agriculture15151681 - 3 Aug 2025
Viewed by 55
Abstract
This study aims to clarify the nonlinear pressure loss patterns of the pneumatic system in a pneumatic seeder under varying pipeline structures and airflow parameters, and to develop a rapid prediction equation for the main pipe’s pressure loss. The studied multi-branch pipeline system [...] Read more.
This study aims to clarify the nonlinear pressure loss patterns of the pneumatic system in a pneumatic seeder under varying pipeline structures and airflow parameters, and to develop a rapid prediction equation for the main pipe’s pressure loss. The studied multi-branch pipeline system consists of a main pipe, a header, and ten branch pipes. The main pipe is vertically installed at the center of the header in a straight-line configuration. The ten branch pipes are symmetrically and evenly spaced along the axial direction of the header, distributed on both sides of the main pipe. The outlet directions of the branch pipes are arranged in a 180° orientation opposite to the inlet direction of the main pipe, forming a symmetric multi-branch configuration. Firstly, this study investigated the flow characteristics within the multi-branch pipeline of the pneumatic system and elaborated on the mechanism of flow division in the pipeline. The key geometric factors affecting airflow were identified. Secondly, from a microscopic perspective, CFD simulations were employed to analyze the fundamental causes of pressure loss in the multi-branch pipeline system. Finally, from a macroscopic perspective, a dimensional analysis method was used to establish an empirical equation describing the relationship between the pressure loss (P) and several influencing factors, including the air density (ρ), air’s dynamic viscosity (μ), closed-end length of the header (Δl), branch pipe 1’s flow rate (Q), main pipe’s inner diameter (D), header’s inner diameter (γ), branch pipe’s inner diameter (d), and the spacing of the branch pipe (δ). The results of the bench tests indicate that when 0.0018 m3·s−1Q ≤ 0.0045 m3·s−1, 0.0272 m < d ≤ 0.036 m, 0.225 m < δ ≤ 0.26 m, 0.057 m ≤ γ ≤ 0.0814 m, and 0.0426 m ≤ D ≤ 0.0536 m, the prediction accuracy of the empirical equation can be controlled within 10%. Therefore, the equation provides a reference for the structural design and optimization of pneumatic seeders’ multi-branch pipelines. Full article
Show Figures

Figure 1

34 pages, 9289 KiB  
Article
Structure of the Secretory Compartments in Goblet Cells in the Colon and Small Intestine
by Alexander A. Mironov, Irina S. Sesorova, Pavel S. Vavilov, Roberto Longoni, Paola Briata, Roberto Gherzi and Galina V. Beznoussenko
Cells 2025, 14(15), 1185; https://doi.org/10.3390/cells14151185 - 31 Jul 2025
Viewed by 148
Abstract
The Golgi of goblet cells represents a specialized machine for mucin glycosylation. This process occurs in a specialized form of the secretory pathway, which remains poorly examined. Here, using high-resolution three-dimensional electron microscopy (EM), EM tomography, serial block face scanning EM (SBF-SEM) and [...] Read more.
The Golgi of goblet cells represents a specialized machine for mucin glycosylation. This process occurs in a specialized form of the secretory pathway, which remains poorly examined. Here, using high-resolution three-dimensional electron microscopy (EM), EM tomography, serial block face scanning EM (SBF-SEM) and immune EM we analyzed the secretory pathway in goblet cells and revealed that COPII-coated buds on the endoplasmic reticulum (ER) are extremely rare. The ERES vesicles with dimensions typical for the COPII-dependent vesicles were not found. The Golgi is formed by a single cisterna organized in a spiral with characteristics of the cycloid surface. This ribbon has a shape of a cup with irregular perforations. The Golgi cup is filled with secretory granules (SGs) containing glycosylated mucins. Their diameter is close to 1 µm. The cup is connected with ER exit sites (ERESs) with temporal bead-like connections, which are observed mostly near the craters observed at the externally located cis surface of the cup. The craters represent conus-like cavities formed by aligned holes of gradually decreasing diameters through the first three Golgi cisternae. These craters are localized directly opposite the ERES. Clusters of the 52 nm vesicles are visible between Golgi cisternae and between SGs. The accumulation of mucin, started in the fourth cisternal layer, induces distensions of the cisternal lumen. The thickness of these distensions gradually increases in size through the next cisternal layers. The spherical distensions are observed at the edges of the Golgi cup, where they fuse with SGs and detach from the cisternae. After the fusion of SGs located just below the apical plasma membrane (APM) with APM, mucus is secreted. The content of this SG becomes less osmiophilic and the excessive surface area of the APM is formed. This membrane is eliminated through the detachment of bubbles filled with another SG and surrounded with a double membrane or by collapse of the empty SG and transformation of the double membrane lacking a visible lumen into multilayered organelles, which move to the cell basis and are secreted into the intercellular space where the processes of dendritic cells are localized. These data are evaluated from the point of view of existing models of intracellular transport. Full article
Show Figures

Graphical abstract

16 pages, 2389 KiB  
Article
Designing an SOI Interleaver Using Genetic Algorithm
by Michael Gad, Mostafa Fedawy, Mira Abboud, Hany Mahrous, Gamal A. Ebrahim, Mostafa M. Salah, Ahmed Shaker, W. Fikry and Michael Ibrahim
Photonics 2025, 12(8), 775; https://doi.org/10.3390/photonics12080775 (registering DOI) - 31 Jul 2025
Viewed by 98
Abstract
A multi-objective genetic algorithm is tailored to optimize the design of a wavelength interleaver/deinterleaver device. An interleaver combines data streams from two physical channels into one. The deinterleaver does the opposite job. The WDM requirements for this device include channel spacing of 50 [...] Read more.
A multi-objective genetic algorithm is tailored to optimize the design of a wavelength interleaver/deinterleaver device. An interleaver combines data streams from two physical channels into one. The deinterleaver does the opposite job. The WDM requirements for this device include channel spacing of 50 GHz, channel bandwidth of 20 GHz, free spectral range of 100 GHz, maximum channel dispersion of 30 ps/nm, and maximum crosstalk of −23 dB. The challenges for the optimization process include the lack of a closed-form expression for the device performance and the trade-off between the conflicting performance parameters. So, for this multi-objective problem, the proposed approach maneuvers to find a compromise between the performance parameters within a few minutes, saving the designer the laborious design process previously proposed in the literature, which relies on visually inspecting the Z-plane for the dynamics of the transmission poles and zeros. Designs of better performance are achieved, with fewer ring resonators, a channel dispersion as low as 1.6 ps/nm, and crosstalk as low as −30 dB. Full article
(This article belongs to the Special Issue Advanced Materials and Devices for Silicon Photonics)
Show Figures

Figure 1

17 pages, 333 KiB  
Article
Hille–Yosida-Type Theorem for Fractional Differential Equations with Dzhrbashyan–Nersesyan Derivative
by Vladimir E. Fedorov, Wei-Shih Du, Marko Kostić, Marina V. Plekhanova and Darya V. Melekhina
Fractal Fract. 2025, 9(8), 499; https://doi.org/10.3390/fractalfract9080499 - 30 Jul 2025
Viewed by 238
Abstract
It is a well-known fact that the Dzhrbashyan–Nersesyan fractional derivative includes as particular cases the fractional derivatives of Riemann–Liouville, Gerasimov–Caputo, and Hilfer. The notion of resolving a family of operators for a linear equation with the Dzhrbashyan–Nersesyan fractional derivative is introduced here. Hille–Yosida-type [...] Read more.
It is a well-known fact that the Dzhrbashyan–Nersesyan fractional derivative includes as particular cases the fractional derivatives of Riemann–Liouville, Gerasimov–Caputo, and Hilfer. The notion of resolving a family of operators for a linear equation with the Dzhrbashyan–Nersesyan fractional derivative is introduced here. Hille–Yosida-type theorem on necessary and sufficient conditions of the existence of a strongly continuous resolving family of operators is proved using Phillips-type approximations. The conditions concern the location of the resolvent set and estimates for the resolvent of a linear closed operator A at the unknown function in the equation. The existence of a resolving family means the existence of a solution for the equation under consideration. For such equation with an operator A satisfying Hille–Yosida-type conditions the uniqueness of a solution is shown also. The obtained results are illustrated by an example for an equation of the considered form in a Banach space of sequences. It is shown that such a problem in a space of sequences is equivalent to some initial boundary value problems for partial differential equations. Thus, this paper obtains key results that make it possible to determine the properties of the initial value problem involving the Dzhrbashyan–Nersesyan derivative by examining the properties of the operator in the equation; the results prove the existence and uniqueness of the solution and the correctness of the problem. Full article
(This article belongs to the Special Issue Fractional Systems, Integrals and Derivatives: Theory and Application)
22 pages, 4093 KiB  
Article
A Deep Learning-Driven Black-Box Benchmark Generation Method via Exploratory Landscape Analysis
by Haoming Liang, Fuqing Zhao, Tianpeng Xu and Jianlin Zhang
Appl. Sci. 2025, 15(15), 8454; https://doi.org/10.3390/app15158454 - 30 Jul 2025
Viewed by 214
Abstract
In the context of algorithm selection, the careful design of benchmark functions and problem instances plays a pivotal role in evaluating the performance of optimization methods. Traditional benchmark functions have been criticized for their limited resemblance to real-world problems and insufficient coverage of [...] Read more.
In the context of algorithm selection, the careful design of benchmark functions and problem instances plays a pivotal role in evaluating the performance of optimization methods. Traditional benchmark functions have been criticized for their limited resemblance to real-world problems and insufficient coverage of the problem space. Exploratory landscape analysis (ELA) offers a systematic framework for characterizing objective functions, based on quantitative landscape features. This study proposes a method for generating benchmark functions tailored to single-objective continuous optimization problems with boundary constraints using predefined ELA feature vectors to guide their construction. The process begins with the creation of random decision variables and corresponding objective values, which are iteratively adjusted using the covariance matrix adaptation evolution strategy (CMA-ES) to ensure alignment with a target ELA feature vector within a specified tolerance. Once the feature criteria are met, the resulting topological map point is used to train a neural network to produce a surrogate function that retains the desired landscape characteristics. To validate the proposed approach, functions from the well-known Black Box Optimization Benchmark (BBOB) suite are replicated, and novel functions are generated with unique ELA feature combinations not found in the original suite. The experiment results demonstrate that the synthesized landscapes closely resemble their BBOB counterparts and preserve the consistency of the algorithm rankings, thereby supporting the effectiveness of the proposed approach. Full article
Show Figures

Figure 1

15 pages, 2006 KiB  
Article
Hydrological Responses to Territorial Spatial Change in the Xitiaoxi River Basin: A Simulation Study Using the SWAT Model Driven by China Meteorological Assimilation Driving Datasets
by Dongyan Kong, Huiguang Chen and Kongsen Wu
Water 2025, 17(15), 2267; https://doi.org/10.3390/w17152267 - 30 Jul 2025
Viewed by 244
Abstract
The use of the Soil and Water Assessment Tool (SWAT) model driven by China Meteorological Assimilation Driving Datasets (CMADS) for runoff simulation research is of great significance for regional flood prevention and control. Therefore, from the perspective of production-living-ecological space, this article combined [...] Read more.
The use of the Soil and Water Assessment Tool (SWAT) model driven by China Meteorological Assimilation Driving Datasets (CMADS) for runoff simulation research is of great significance for regional flood prevention and control. Therefore, from the perspective of production-living-ecological space, this article combined multi-source data such as DEM, soil texture and land use type, in order to construct scenarios of territorial spatial change (TSC) across distinct periods. Based on the CMADS-L40 data and the SWAT model, it simulated the runoff dynamics in the Xitiaoxi River Basin, and analyzed the hydrological response characteristics under different TSCs. The results showed that The SWAT model, driven by CMADS-L40 data, demonstrated robust performance in monthly runoff simulation. The coefficient of determination (R2), Nash–Sutcliffe efficiency coefficient (NSE), and the absolute value of percentage bias (|PBIAS|) during the calibration and validation period all met the accuracy requirements of the model, which validated the applicability of CMADS-L40 data and the SWAT model for runoff simulation at the watershed scale. Changes in territorial spatial patterns are closely correlated with runoff variation. Changes in agricultural production space and forest ecological space show statistically significant negative correlation with runoff change, while industrial production space change exhibits a significant positive correlation with runoff change. The expansion of production space, particularly industrial production space, leads to increased runoff, whereas the enlargement of agricultural production space and forest ecological space can reduce runoff. This article contributes to highlighting the role of land use policy in hydrological regulation, providing a scientific basis for optimizing territorial spatial planning to mitigate flood risks and protect water resources. Full article
(This article belongs to the Topic Natural Hazards and Disaster Risks Reduction, 2nd Edition)
Show Figures

Figure 1

16 pages, 2562 KiB  
Article
Harmonic and Interharmonic Measurement Method Using Two-Fold Compound Convolution Windows and Zoom Fast Fourier Transform
by Xiangui Xiao, Lei Zhao, Shengjun Zhou, Haijun Liu, Zhong Fu and Dan Hu
Energies 2025, 18(15), 4047; https://doi.org/10.3390/en18154047 - 30 Jul 2025
Viewed by 183
Abstract
With the rapidly increasing penetration of new energy resources, the power grid faces significant threats from harmonics. To measure and suppress these harmonics, numerous harmonic measurement methods have been proposed. However, accurately identifying the parameters of harmonics and interharmonics remains challenging. To address [...] Read more.
With the rapidly increasing penetration of new energy resources, the power grid faces significant threats from harmonics. To measure and suppress these harmonics, numerous harmonic measurement methods have been proposed. However, accurately identifying the parameters of harmonics and interharmonics remains challenging. To address this issue, we propose a new method that combines two-fold convolution windows and ZoomFFT. This method leverages the advantages of low side lobe peaks and high side lobe attenuation rates of compound convolution windows to suppress spectral leakage. Additionally, a six-spectral-line interpolation method is employed to correct the calculation results. Furthermore, ZoomFFT is utilized to locally amplify the spectrum, enabling the distinction between interharmonics and harmonics with closely spaced frequencies. The simulation results demonstrate that the proposed algorithm effectively identifies interharmonics with similar frequencies, outperforming single-window functions and ZoomFFT in terms of accuracy. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

11 pages, 209 KiB  
Article
Knowledge and Awareness of Dental Students and Practitioners About the Utilization of Endocrown
by Raneem Alfahad, Maryam Quritum, Lamia Hakami, Maha Aldandan, Osama Alharbi, Omar Almasoud, Abdullah Alasafirah and Passent Ellakany
Dent. J. 2025, 13(8), 348; https://doi.org/10.3390/dj13080348 - 29 Jul 2025
Viewed by 218
Abstract
Background/Objectives: The aim of this study was to evaluate the level of awareness among dental students and practitioners regarding the utilization of endocrowns in clinical settings, along with any differences in knowledge based on gender, educational level, and workplace. Methods: A [...] Read more.
Background/Objectives: The aim of this study was to evaluate the level of awareness among dental students and practitioners regarding the utilization of endocrowns in clinical settings, along with any differences in knowledge based on gender, educational level, and workplace. Methods: A cross-sectional online survey-based study was conducted, including 1154 participants from various dental institutions across Saudi Arabia. The questionnaire included demographic data and closed-ended questions focused on knowledge and awareness of endocrowns. Data was analyzed using statistical tests, including chi-square, to see any significant differences. Results: Most participants (81%) had knowledge about endocrowns, mainly from their colleagues. Knowledge levels and preferences (like the use of lithium disilicate and adhesive resin cement) differed based on gender, educational level, and workplace. Male participants and undergraduates showed better awareness in some areas. Faculty members mostly depend on college training, while private practitioners obtain most of their information from workshops. Conclusions: Males showed significant superiority in knowledge about endocrown usage. Colleges were the most prevalent source of information regarding endocrown restorations. Significant molar tooth loss and restricted inter-arch space were the most common reasons for utilizing endocrowns. Moreover, endocrowns were considered a viable alternative to traditional post and core. Full article
(This article belongs to the Special Issue Dental Education: Innovation and Challenge)
24 pages, 1538 KiB  
Review
H+ and Confined Water in Gating in Many Voltage-Gated Potassium Channels: Ion/Water/Counterion/Protein Networks and Protons Added to Gate the Channel
by Alisher M. Kariev and Michael E. Green
Int. J. Mol. Sci. 2025, 26(15), 7325; https://doi.org/10.3390/ijms26157325 - 29 Jul 2025
Viewed by 280
Abstract
The mechanism by which voltage-gated ion channels open and close has been the subject of intensive investigation for decades. For a large class of potassium channels and related sodium channels, the consensus has been that the gating current preceding the main ionic current [...] Read more.
The mechanism by which voltage-gated ion channels open and close has been the subject of intensive investigation for decades. For a large class of potassium channels and related sodium channels, the consensus has been that the gating current preceding the main ionic current is a large movement of positively charged segments of protein from voltage-sensing domains that are mechanically connected to the gate through linker sections of the protein, thus opening and closing the gate. We have pointed out that this mechanism is based on evidence that has alternate interpretations in which protons move. Very little literature considers the role of water and protons in gating, although water must be present, and there is evidence that protons can move in related channels. It is known that water has properties in confined spaces and at the surface of proteins different from those in bulk water. In addition, there is the possibility of quantum properties that are associated with mobile protons and the hydrogen bonds that must be present in the pore; these are likely to be of major importance in gating. In this review, we consider the evidence that indicates a central role for water and the mobility of protons, as well as alternate ways to interpret the evidence of the standard model in which a segment of protein moves. We discuss evidence that includes the importance of quantum effects and hydrogen bonding in confined spaces. K+ must be partially dehydrated as it passes the gate, and a possible mechanism for this is considered; added protons could prevent this mechanism from operating, thus closing the channel. The implications of certain mutations have been unclear, and we offer consistent interpretations for some that are of particular interest. Evidence for proton transport in response to voltage change includes a similarity in sequence to the Hv1 channel; this appears to be conserved in a number of K+ channels. We also consider evidence for a switch in -OH side chain orientation in certain key serines and threonines. Full article
Show Figures

Graphical abstract

18 pages, 11346 KiB  
Article
Comparative CFD Analysis Using RANS and LES Models for NOx Dispersion in Urban Streets with Active Public Interventions in Medellín, Colombia
by Juan Felipe Rodríguez Berrio, Fabian Andres Castaño Usuga, Mauricio Andres Correa, Francisco Rodríguez Cortes and Julio Cesar Saldarriaga
Sustainability 2025, 17(15), 6872; https://doi.org/10.3390/su17156872 - 29 Jul 2025
Viewed by 193
Abstract
The Latin American and Caribbean (LAC) region faces persistent challenges of inequality, climate change vulnerability, and deteriorating air quality. The Aburrá Valley, where Medellín is located, is a narrow tropical valley with complex topography, strong thermal inversions, and unstable atmospheric conditions, all of [...] Read more.
The Latin American and Caribbean (LAC) region faces persistent challenges of inequality, climate change vulnerability, and deteriorating air quality. The Aburrá Valley, where Medellín is located, is a narrow tropical valley with complex topography, strong thermal inversions, and unstable atmospheric conditions, all of which exacerbate the accumulation of pollutants. In Medellín, NO2 concentrations have remained nearly unchanged over the past eight years, consistently approaching critical thresholds, despite the implementation of air quality control strategies. These persistent high concentrations are closely linked to the variability of the atmospheric boundary layer (ABL) and are often intensified by prolonged dry periods. This study focuses on a representative street canyon in Medellín that has undergone recent urban interventions, including the construction of new public spaces and pedestrian areas, without explicitly considering their impact on NOx dispersion. Using Computational Fluid Dynamics (CFD) simulations, this work evaluates the influence of urban morphology on NOx accumulation. The results reveal that areas with high Aspect Ratios (AR > 0.65) and dense vegetation exhibit reduced wind speeds at the pedestrian level—up to 40% lower compared to open zones—and higher NO2 concentrations, with maximum simulated values exceeding 50 μg/m3. This study demonstrates that the design of pedestrian corridors in complex urban environments like Medellín can unintentionally create pollutant accumulation zones, underscoring the importance of integrating air quality considerations into urban planning. The findings provide actionable insights for policymakers, emphasizing the need for comprehensive modeling and field validation to ensure healthier urban spaces in cities affected by persistent air quality issues. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

20 pages, 1449 KiB  
Article
Deep Reinforcement Learning-Based Resource Allocation for UAV-GAP Downlink Cooperative NOMA in IIoT Systems
by Yuanyan Huang, Jingjing Su, Xuan Lu, Shoulin Huang, Hongyan Zhu and Haiyong Zeng
Entropy 2025, 27(8), 811; https://doi.org/10.3390/e27080811 - 29 Jul 2025
Viewed by 287
Abstract
This paper studies deep reinforcement learning (DRL)-based joint resource allocation and three-dimensional (3D) trajectory optimization for unmanned aerial vehicle (UAV)–ground access point (GAP) cooperative non-orthogonal multiple access (NOMA) communication in Industrial Internet of Things (IIoT) systems. Cooperative and non-cooperative users adopt different signal [...] Read more.
This paper studies deep reinforcement learning (DRL)-based joint resource allocation and three-dimensional (3D) trajectory optimization for unmanned aerial vehicle (UAV)–ground access point (GAP) cooperative non-orthogonal multiple access (NOMA) communication in Industrial Internet of Things (IIoT) systems. Cooperative and non-cooperative users adopt different signal transmission strategies to meet diverse, task-oriented, quality-of-service requirements. Specifically, the DRL framework based on the Soft Actor–Critic algorithm is proposed to jointly optimize user scheduling, power allocation, and UAV trajectory in continuous action spaces. Closed-form power allocation and maximum weight bipartite matching are integrated to enable efficient user pairing and resource management. Simulation results show that the proposed scheme significantly enhances system performance in terms of throughput, spectral efficiency, and interference management, while enabling robustness against channel uncertainties in dynamic IIoT environments. The findings indicate that combining model-free reinforcement learning with conventional optimization provides a viable solution for adaptive resource management in dynamic UAV-GAP cooperative communication scenarios. Full article
Show Figures

Figure 1

Back to TopTop