Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (163)

Search Parameters:
Keywords = climbing behavior

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8740 KiB  
Article
Agomelatine Ameliorates Cognitive and Behavioral Deficits in Aβ-Induced Alzheimer’s Disease-like Rat Model
by Raviye Ozen Koca, Z. Isik Solak Gormus, Hatice Solak, Burcu Gultekin, Ayse Ozdemir, Canan Eroglu Gunes, Ercan Kurar and Selim Kutlu
Medicina 2025, 61(8), 1315; https://doi.org/10.3390/medicina61081315 - 22 Jul 2025
Viewed by 275
Abstract
Background and Objectives: Alzheimer’s disease (AD) has become a serious health problem. Agomelatine (Ago) is a neuroprotective antidepressant. This study aimed to assess how Ago influences behavioral outcomes in AD-like rat model. Materials and Methods: Forty-eight Wistar albino rats were allocated into four [...] Read more.
Background and Objectives: Alzheimer’s disease (AD) has become a serious health problem. Agomelatine (Ago) is a neuroprotective antidepressant. This study aimed to assess how Ago influences behavioral outcomes in AD-like rat model. Materials and Methods: Forty-eight Wistar albino rats were allocated into four groups: Control (C), Alzheimer’s disease-like model (AD), Alzheimer’s disease-like model treated with Ago (ADAgo), and Ago alone (Ago). Physiological saline was injected intrahippocampally in C and Ago animals, whereas Aβ peptide was delivered similarly in AD and ADAgo rats. On day 15, 0.9% NaCl was administered to the C and AD groups, and Agomelatine (1 mg/kg/day) was infused into ADAgo and Ago rats via osmotic pumps for 30 days. Behavioral functions were evaluated using Open Field (OF), Forced Swim (FST), and Morris Water Maze (MWM) tests. Brain tissues were examined histopathologically. Neuritin, Nestin, DCX, NeuN, BDNF, MASH1, MT1, and MT2 transcripts were quantified by real-time PCR. Statistical analyses were performed in R 4.3.1, with p < 0.05 deemed significant. Results: In the FST, swimming, climbing, immobility time, and mobility percentage differed significantly among groups (p < 0.05). In the MWM, AD rats exhibited impaired learning and memory that was ameliorated by Ago treatment (p < 0.05). DCX expression decreased in AD rats but was elevated by Ago (p < 0.05). Nestin levels differed significantly between control and AD animals; MT1 expression varied between control and AD cohorts; and MT2 transcript levels were significantly lower in AD, ADAgo, and Ago groups compared to C (all p < 0.05). Conclusions: Ago exhibits antidepressant-like activity in this experimental AD model and may enhance cognitive function via mechanisms beyond synaptic plasticity and neurogenesis. Full article
(This article belongs to the Section Neurology)
Show Figures

Figure 1

17 pages, 6781 KiB  
Article
Fish Scale-Inspired Flow Control for Corner Vortex Suppression in Compressor Cascades
by Jin-Long Shen, Ho-Chun Yang and Szu-I Yeh
Biomimetics 2025, 10(7), 473; https://doi.org/10.3390/biomimetics10070473 - 18 Jul 2025
Viewed by 302
Abstract
Corner separation at the junction of blade surfaces and end walls remains a significant challenge in compressor cascade performance. This study proposes a passive flow control strategy inspired by the geometric arrangement of biological fish scales to address this issue. A fish scale-like [...] Read more.
Corner separation at the junction of blade surfaces and end walls remains a significant challenge in compressor cascade performance. This study proposes a passive flow control strategy inspired by the geometric arrangement of biological fish scales to address this issue. A fish scale-like surface structure was applied to the suction side of a cascade blade to reduce viscous drag and modulate secondary flow behavior. Wind tunnel experiments and numerical simulations were conducted to evaluate its aerodynamic effects. The results show that the fish scale-inspired configuration induced climbing vortices that energized low-momentum fluid near the end wall, effectively suppressing both passage and corner vortices. This led to a reduction in spanwise flow penetration and a decrease in total pressure loss of up to 5.69%. The enhanced control of secondary flows also contributed to improved flow uniformity in the end-wall region. These findings highlight the potential of biologically inspired surface designs for corner vortex suppression and aerodynamic efficiency improvement in turbomachinery systems. Full article
(This article belongs to the Special Issue Bio-Inspired Propulsion and Fluid Mechanics)
Show Figures

Figure 1

24 pages, 7960 KiB  
Article
Creep Behavior and Deformation Mechanism of Aluminum Alloy: Integrating Multiscale Simulation and Experiments
by Weizheng Lu, Jianguo Wu, Jiajun Liu, Xiaoai Yi, Qiyue Zhang, Yang Chen, Jia Li and Qihong Fang
Symmetry 2025, 17(7), 1146; https://doi.org/10.3390/sym17071146 - 17 Jul 2025
Viewed by 226
Abstract
Aluminum (Al) alloys exhibit exceptional mechanical properties, seeing widespread use in various industrial fields. Here, we use a multiscale simulation method combining phase field method, dislocation dynamics, and crystal plasticity finite element method to reveal the evolution law of precipitates, the interaction mechanism [...] Read more.
Aluminum (Al) alloys exhibit exceptional mechanical properties, seeing widespread use in various industrial fields. Here, we use a multiscale simulation method combining phase field method, dislocation dynamics, and crystal plasticity finite element method to reveal the evolution law of precipitates, the interaction mechanism between dislocations and precipitates, and the grain-level creep deformation mechanism in 7A09 Al alloy under creep loading. The phase field method indicates that Al alloys tend to form fewer but larger precipitates during the creep process, under the dominant effect of stress-assisted Ostwald ripening. The dynamic equilibrium process of precipitate is not only controlled by classical diffusion mechanisms, but also closely related to the local strain field induced by dislocations and the elastic interaction between precipitates. Dislocation dynamics simulations indicate that the appearance of multiple dislocation loops around the precipitate during the creep process is the main dislocation creep deformation mechanism. A crystal plasticity finite element model is established based on experimental characterization to investigate the macroscopic creep mechanism. The dislocation climb is hindered by grain boundaries during creep, and high-density dislocation bands are formed around specific grains, promoting non-uniform plastic strain and leading to strong strain gradients. This work provides fundamental insights into understanding creep behavior and deformation mechanism of Al alloy for deep-sea environments. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

14 pages, 971 KiB  
Article
High Voltage and Train-Surfing Injuries: A 30-Year Retrospective Analysis of High-Voltage Trauma and Its Impact on Cardiac Biomarkers
by Viktoria Koenig, Maximilian Monai, Alexandra Christ, Marita Windpassinger, Gerald C. Ihra, Alexandra Fochtmann-Frana and Julian Joestl
J. Clin. Med. 2025, 14(14), 4969; https://doi.org/10.3390/jcm14144969 - 14 Jul 2025
Viewed by 277
Abstract
Background: High-voltage electrical injuries (HVEIs) represent a complex and life-threatening entity, frequently involving multi-organ damage. While traditionally linked to occupational hazards, train surfing—riding on moving trains—and train climbing—scaling stationary carriages—have emerged as increasingly common causes among adolescents. Popularized via social media, these [...] Read more.
Background: High-voltage electrical injuries (HVEIs) represent a complex and life-threatening entity, frequently involving multi-organ damage. While traditionally linked to occupational hazards, train surfing—riding on moving trains—and train climbing—scaling stationary carriages—have emerged as increasingly common causes among adolescents. Popularized via social media, these behaviors expose individuals to the invisible danger of electric arcs from 15,000-volt railway lines, often resulting in extensive burns, cardiac complications, and severe trauma. This study presents a 30-year retrospective analysis comparing cardiac biomarkers and clinical outcomes in train-surfing injuries versus work-related HVEIs. Methods: All patients with confirmed high-voltage injury (≥1000 volts) admitted to a Level 1 burn center between 1994 and 2024 were retrospectively analyzed. Exclusion criteria comprised low-voltage trauma, suicide, incomplete records, and external treatment. Clinical and laboratory parameters—including total body surface area (TBSA), Abbreviated Burn Severity Index (ABSI), electrocardiogram (ECG) findings, intensive care unit (ICU) and hospital stay, mortality, and cardiac biomarkers (creatine kinase [CK], CK-MB, lactate dehydrogenase [LDH], aspartate transaminase [AST], troponin, and myoglobin)—were compared between the two cohorts. Results: Of 81 patients, 24 sustained train-surfing injuries and 57 were injured in occupational settings. Train surfers were significantly younger (mean 16.7 vs. 35.2 years, p = 0.008), presented with greater TBSA (49.9% vs. 17.9%, p = 0.008), higher ABSI scores (7.3 vs. 5.1, p = 0.008), longer ICU stays (53 vs. 17 days, p = 0.008), and higher mortality (20.8% vs. 3.5%). ECG abnormalities were observed in 51% of all cases, without significant group differences. However, all cardiac biomarkers were significantly elevated in train-surfing injuries at both 72 h and 10 days post-injury (p < 0.05), suggesting more pronounced cardiac and muscular damage. Conclusions: Train-surfing-related high-voltage injuries are associated with markedly more severe systemic and cardiac complications than occupational HVEIs. The significant biomarker elevation and critical care demands highlight the urgent need for targeted prevention, public awareness, and early cardiac monitoring in this high-risk adolescent population. Full article
(This article belongs to the Section Cardiovascular Medicine)
Show Figures

Figure 1

19 pages, 6229 KiB  
Article
Vegetation Structure and Environmental Correlates of Climbing Behavior for Desert Shrub Ochradenus baccatus
by Dhafer A. Al-Bakre
Plants 2025, 14(11), 1696; https://doi.org/10.3390/plants14111696 - 1 Jun 2025
Viewed by 579
Abstract
Ochradenus baccatus Delile (Resedaceae) is a widely distributed desert shrub known for its remarkable growth form plasticity, growing either independently or as a facultative climber on other vegetation. Despite its ecological adaptability, the drivers underlying its dual growth strategy remain poorly understood in [...] Read more.
Ochradenus baccatus Delile (Resedaceae) is a widely distributed desert shrub known for its remarkable growth form plasticity, growing either independently or as a facultative climber on other vegetation. Despite its ecological adaptability, the drivers underlying its dual growth strategy remain poorly understood in arid ecosystems. This study aimed to investigate the growth form plasticity of O. baccatus across diverse ecological gradients in Saudi Arabia and identify key environmental and floristic factors influencing its climbing and independent forms. Field surveys were conducted from 2020 to 2024 across 103 sites, using stratified random sampling. At each site, vegetation data were collected using 50 × 50 m quadrats, and species composition, life form percentage, and O. baccatus behavior were recorded. Results revealed clear ecological separation between behaviors. Climbing individuals were associated with higher elevations, greater tree and shrub cover, and moderate soil fertility, while independent individuals were broadly distributed in herbaceous and open habitats. Diversity indices (Shannon, Simpson, evenness) increased with altitude, particularly in climbing habitats. PERMANOVA confirmed significant differences in species composition between behaviors (p = 0.0001), and SIMPER analysis identified species like Haloxylon salicornicum and Zygophyllum album as key contributors in climbing habitats. Indicator species analysis revealed behavior-specific taxa, while CCA demonstrated that rainfall, soil moisture, and temperature were the strongest environmental predictors of growth behavior. This study highlights the ecological flexibility of O. baccatus and the role of environmental filtering and plant community structure in shaping its growth strategy. These results have implications for the growth form plasticity of desert plants and can be applied to vegetation management and restoration in arid ecosystems. Full article
(This article belongs to the Special Issue Plant Behavioral Ecology)
Show Figures

Figure 1

17 pages, 3055 KiB  
Article
Characterization of Driver Dynamic Visual Perception Under Different Road Linearity Conditions
by Zhenxiang Hao, Jianping Hu, Jin Ran, Xiaohui Sun, Yuhang Zheng and Chengzhang Li
Appl. Sci. 2025, 15(11), 6076; https://doi.org/10.3390/app15116076 - 28 May 2025
Viewed by 375
Abstract
Drivers’ visual characteristics have an important impact on traffic safety, but existing studies are mostly limited to single-scene analyses and lack a systematic study on the dynamic changes in drivers’ eye tracking characteristics on different road sections. In this study, 23 drivers were [...] Read more.
Drivers’ visual characteristics have an important impact on traffic safety, but existing studies are mostly limited to single-scene analyses and lack a systematic study on the dynamic changes in drivers’ eye tracking characteristics on different road sections. In this study, 23 drivers were recruited to wear the aSee Glasses eye tracking device and driving tests were conducted on four typical road sections, namely, straight ahead, turning, climbing, and downhill. The average fixation duration, pupil diameter, and the saccade amplitude of the eye tracking were collected, one-way analysis of variance (ANOVA) was used to explore the differences between the different road sections, and a mathematical model of changes in the visual characteristics over time was constructed, based on the fitting of the data. Computerized fitting models of changes over time were also constructed using the Origin 2021 software. The results show that different road sections had significant effects on drivers’ visual tasks: the longest average fixation duration was found in the straight road section, the largest pupil diameter was found in the curved road section, and the highest saccade amplitude was found in the downhill road section, reflecting the influence of the complexity of the driving task on the cognitive load. The fitted model further reveals the dynamic change law of eye tracking indicators over time, providing a quantitative basis for modeling driving behavior and visual tasks. This study provides a theoretical basis and practical reference for the optimal design of advanced driver assistance systems, traffic safety management, and road planning. Full article
Show Figures

Figure 1

17 pages, 1298 KiB  
Article
Locomotion, Postures, and Substrate Use in Captive Southern Pygmy Slow Lorises (Strepsirrhini, Primates): Implications for Conservation
by Dionisios Youlatos, Dimitris Pylarinos, Nikolaos Evangelos Karantanis and Leszek Rychlik
Animals 2025, 15(11), 1576; https://doi.org/10.3390/ani15111576 - 28 May 2025
Viewed by 424
Abstract
Studies of positional (=locomotor and postural) behavior are central to understanding how animals interact with the challenges imposed by their environment and are crucial for conservation management. The present study investigates, for the first time, the positional behavior and substrate use of the [...] Read more.
Studies of positional (=locomotor and postural) behavior are central to understanding how animals interact with the challenges imposed by their environment and are crucial for conservation management. The present study investigates, for the first time, the positional behavior and substrate use of the endangered southern pygmy slow loris Xanthonycticebus pygmaeus. Despite their very specialized morphology and ecology, the positional behavior of lorises is understudied. Behavioral data were collected using 30-s scan instant sampling on seven captive animals housed in a large, enriched enclosure of the Poznań Nowe Zoo (Poland) during February–June 2013. Pygmy slow lorises were almost exclusively arboreal and most activities occurred on multiple substrates (82.93%). Small (57.91%) and large (28.28%) substrates were extensively used. Horizontal (42.11%) and oblique (38.47%) substrates dominated. Clamber (39.39%), quadrupedalism (33.77%), and vertical climb (17.62%) were the main locomotor modes. Standing was the dominant posture (47.23%), followed by hanging (27.32%) and clinging (11.31%). Our results concur with the limited observations available on other lorisines; pygmy slow lorises employed a diverse and flexible positional repertoire as an adaptation to the exploitation of the continuous forest layers with intertwined small substrates of various inclinations. Consequently, protecting and managing these habitats, supported by ex situ reintroduction programs, can effectively contribute to the conservation of the species’ populations. Full article
(This article belongs to the Collection Recent Advance in Wildlife Conservation)
Show Figures

Figure 1

12 pages, 14016 KiB  
Article
Peculiarities of the Creep Behavior of 15Kh2NMFAA Vessel Steel at High Temperatures
by Egor Terentyev, Artem Marchenkov, Vladimir Loktionov, Anastasia Pankina, Georgy Sviridov, Ksenia Borodavkina, Danila Chuprin and Nikita Lavrik
Metals 2025, 15(6), 571; https://doi.org/10.3390/met15060571 - 22 May 2025
Viewed by 331
Abstract
The creep properties of 15Kh2NMFAA nuclear WWER (water–water energetic reactor) vessel steel in the range of 500–1200 °C temperatures, which may appear during severe nuclear reactor accidents, were investigated. The present paper attempts to analyze the creep curves obtained from tensile testing at [...] Read more.
The creep properties of 15Kh2NMFAA nuclear WWER (water–water energetic reactor) vessel steel in the range of 500–1200 °C temperatures, which may appear during severe nuclear reactor accidents, were investigated. The present paper attempts to analyze the creep curves obtained from tensile testing at high temperatures using the Larson–Miller parametric technique. The power law rate and material coefficient of Norton’s equation with the Monkman–Grant relationship coefficient were found for each test temperature. It is shown that in accordance with the Monkman–Grant relationship coefficient values, changing the creep type from dislocation glide to high temperature dislocation climb occurs in the temperature range of 600–700 °C, which leads to a slope change in the Larson–Miller parameter plot and the conversion of steel creep behavior. It is also shown that in the range of A1A3 temperatures, a stepwise change in creep characteristics occurs, which is associated with phase transformations. In addition, the constancy of the product of the time to rupture τr and the minimum creep rate ϵ˙min in the ranges of 600–700 °C and A3—1200 °C was noted. The proposed approach improves the accuracy of time to rupture estimation of 15Kh2NMFAA steel by at least one order of magnitude. Based on the research results, the calculated dependence of the steel’s long-term strength limit on temperature was obtained for several time bases, allowing us to increase the accuracy of material survivability prediction in the case of a severe accident at a nuclear reactor. Full article
(This article belongs to the Special Issue Advances in Creep Behavior of Metallic Materials)
Show Figures

Figure 1

22 pages, 21306 KiB  
Article
Fingolimod Prevents Neuroinflammation but Has a Limited Effect on the Development of Ataxia in a Mouse Model for SCA1
by Chen Yang, Nienke Gravendeel, Amy Chin On, Laura Post, Ryan van Bergen, Catarina Osorio and Martijn Schonewille
Int. J. Mol. Sci. 2025, 26(10), 4698; https://doi.org/10.3390/ijms26104698 - 14 May 2025
Viewed by 850
Abstract
Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disorder that predominantly affects the Purkinje cells (PCs) of the cerebellum, leading to cerebellar degeneration, motor dysfunction, and cognitive impairment. Sphingosine-1-phosphate (S1P) signaling, known to modulate neuroinflammation, has been identified as a potential therapeutic target [...] Read more.
Spinocerebellar ataxia type 1 (SCA1) is a neurodegenerative disorder that predominantly affects the Purkinje cells (PCs) of the cerebellum, leading to cerebellar degeneration, motor dysfunction, and cognitive impairment. Sphingosine-1-phosphate (S1P) signaling, known to modulate neuroinflammation, has been identified as a potential therapeutic target in SCA1. To investigate the therapeutic efficacy of the S1P modulator fingolimod, we treated a mouse model for SCA1, ATXN1[82Q]/+ mice during three different periods with fingolimod and assessed the effects. Potential therapeutic effects were monitored by tracking locomotion during the treatment period and examining PC morphology, connectivity, and markers for neuroinflammation post-mortem. Fingolimod treatment reduced astrocyte and microglial activation during all three treatment periods. We found no effect on calbindin levels or the thickness of the molecular layer, but fingolimod did improve the extent of the synaptic input of climbing fibers to PCs. While fingolimod improved important aspects of cellular pathology, we could only detect signs of improvement in the locomotion phenotype when treatment started at a later stage of the disease. In conclusion, fingolimod is able to mitigate neuroinflammation, preserve aspects of PC function in SCA1, and remediate part of the ataxia phenotype when treatment is appropriately timed. Although behavioral benefits were limited, targeting S1P pathways represents a potential therapeutic strategy for SCA1. Further studies are needed to optimize treatment regimens and assess long-term outcomes. Full article
Show Figures

Graphical abstract

24 pages, 12897 KiB  
Article
Shear Properties and Failure Mechanism of Matched Discontinuities Between Two Different Rock Types Under Direct Shear
by Xiaobo Zhang, Shu Ouyang, Chenglong Fan, Le Yi and Da Liu
Appl. Sci. 2025, 15(10), 5289; https://doi.org/10.3390/app15105289 - 9 May 2025
Viewed by 377
Abstract
The shear mechanical properties of rock discontinuities with different joint wall compressive strengths are a practical basis for the stability analysis of layered rock mass. Shear tests on discontinuities possessing different joint wall strengths were carried out. The shear strength and failure characteristics [...] Read more.
The shear mechanical properties of rock discontinuities with different joint wall compressive strengths are a practical basis for the stability analysis of layered rock mass. Shear tests on discontinuities possessing different joint wall strengths were carried out. The shear strength and failure characteristics were analyzed, and the influences of discontinuity morphology on its shear properties were investigated. Meanwhile, numerical tests were performed to study the shear mechanical behavior and dilation evolution of discontinuities possessing different joint wall compressive strengths. Results show that the shear process of discontinuities possessing different joint wall strengths can be divided into four stages: meshing and compacting, climbing wear of soft rock and crack formation of hard rock, shear of part of soft rock and crack expansion of hard rock, complete shearing of the rock discontinuity. Shear failure of discontinuities was mainly concentrated on the morphological structure facing the shear direction. The dilatancy evolution process of discontinuities was mainly affected by the roughness and normal stress. The magnitude of dilation, peak shear strength and residual shear strength of discontinuities possessing different joint wall strengths were between the discontinuities possessing identical joint wall strengths composed of soft and hard rock, under the same loading condition. Full article
Show Figures

Figure 1

19 pages, 14521 KiB  
Article
Anisotropy in Creep Behavior of a Directionally Solidified Ni-Based Superalloy at 980 °C and 1070 °C
by Anping Long, Xiaoshan Liu, Junyi Cheng, Jiangying Xiong, Ganjiang Feng, Jianzheng Guo and Rutie Liu
Materials 2025, 18(9), 1998; https://doi.org/10.3390/ma18091998 - 28 Apr 2025
Viewed by 449
Abstract
Directionally solidified (DS) superalloys have become a primary material choice for turbine blade applications. Due to the complex shape of the blades, certain regions inevitably experience stress axes oriented orthogonally to the crystal growth direction. Therefore, this study explores the creep characteristics of [...] Read more.
Directionally solidified (DS) superalloys have become a primary material choice for turbine blade applications. Due to the complex shape of the blades, certain regions inevitably experience stress axes oriented orthogonally to the crystal growth direction. Therefore, this study explores the creep characteristics of a DS superalloy in different orientations (transverse (T) versus longitudinal (L) with respect to grain growth direction) under intermediate and high temperatures (980 °C and 1070 °C), while simultaneously analyzing their respective deformation mechanisms and microstructural transformation behaviors. Experimental findings reveal pronounced orientation-dependent variations in creep performance, deformation modes, and microstructural development. Notably, the T specimen exhibits higher creep resistance at 980 °C, which can provide a basis for the design of some components that require high creep resistance and maintain small deformation. At 980 °C, L specimens primarily undergo γ′ phase shearing via antiphase boundaries (APBs) pairs, whereas T specimen exhibits APB pairs and superlattice intrinsic stacking faults (SISFs) shearing mechanisms. At 1070 °C, the L specimen exhibits dislocation shearing of γ′ alongside dislocation bypassing of tertiary γ′, while the T specimen demonstrates dislocation climbing within the γ channels. Additionally, the L specimen exhibits significant N-type rafting, while the T specimen shows significant Ostwald ripening characteristics, with an Ostwald ripening rate constant of 1.04 × 10−20 m3/h. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

11 pages, 1890 KiB  
Article
First-Principles Study on the Migration and Release Properties of Xe on the Surface of Uranium Mononitride
by Tianhao Rui, Yulin Lan, Zhuangzhuang Ma, Linyuan Lu, Yunhao Wang, Yang Yu, Mingxuan Deng, Tianxing Lan, Zhekang Zhao, Junjie Wang, Congyi Li and Haibin Zhang
Crystals 2025, 15(5), 409; https://doi.org/10.3390/cryst15050409 - 27 Apr 2025
Viewed by 362
Abstract
The fission gas uranium mononitride (UN) causes swelling and affects the properties of fission fuel. Since surface behavior is closely related to the release of gases, it is crucial to study the properties of Xe on the UN surface. Density functional theory was [...] Read more.
The fission gas uranium mononitride (UN) causes swelling and affects the properties of fission fuel. Since surface behavior is closely related to the release of gases, it is crucial to study the properties of Xe on the UN surface. Density functional theory was used to study the properties of Xe gas on the UN(001) surface and subsurface layers. Different bulk and surface models of UN were established, and the formation energies of bulk and surface defects, as well as the incorporation energy of surface Xe, were calculated. Differential charge density maps were generated, and the analysis revealed that the migration of Xe atoms on the surface predominantly occurs through a vacancy mechanism. Furthermore, Xe atoms located in the subsurface and interstitial positions are less likely to escape from the surface due to the influence of surrounding atoms. Finally, the Climbing Image Nudged Elastic Band method was employed to calculate migration pathways and the associated migration energies. The modelling results indicated that surface Xe atoms’ migration exhibits a vacancy-assisted mechanism, while surface and subsurface U-vacancies on the UN surface may promote the diffusion of fission gas atoms. Full article
Show Figures

Figure 1

22 pages, 10899 KiB  
Article
Study on the Effects of Vibration Force Field on the Mixing and Structural Properties of PLA/PBS/EGMA Blends
by Bin Xue, Jun Li, Qu Yang, Danxiang Wei and Guiting Wu
Polymers 2025, 17(7), 947; https://doi.org/10.3390/polym17070947 - 31 Mar 2025
Viewed by 459
Abstract
This study investigates the effects of a vibration force field on the mixing and structural properties of polylactic acid (PLA), polybutylene succinate (PBS), and ethylene–glycidyl methacrylate terpolymer (EGMA) blends. A balanced triple-screw dynamic extrusion process was utilized to prepare PLA/PBS/EGMA composites under various [...] Read more.
This study investigates the effects of a vibration force field on the mixing and structural properties of polylactic acid (PLA), polybutylene succinate (PBS), and ethylene–glycidyl methacrylate terpolymer (EGMA) blends. A balanced triple-screw dynamic extrusion process was utilized to prepare PLA/PBS/EGMA composites under various vibration parameters, specifically amplitude and frequency. The results indicate that the introduction of a vibration force field significantly enhances the dispersion of the PLA/PBS/EGMA blend, leading to improved mechanical properties, thermal stability, and crystallization behavior. When the vibration frequency was 6 Hz and the amplitude was 1.0 mm, the impact strength increased from the steady-state value of 70.86 KJ/m2 to 88.21 KJ/m2. When the amplitude was 0.4 mm and the frequency was 10 Hz, the impact strength reached 81.86 KJ/m2. The orthogonal experimental design and entropy method analysis revealed that vibration frequency and amplitude play a dominant role in optimizing mechanical performance, whereas processing temperature and rotor speed exhibit minimal impact. Scanning electron microscopy (SEM) analysis confirmed that the vibration force field reduces phase separation, promoting a finer and more homogeneous dispersion of PBS and EGMA within the PLA matrix. Additionally, TGA and DTG curves suggest that when the vibration amplitude and frequency are lower than specific thresholds, the thermal stability of the blend deteriorates. In contrast, when they exceed those thresholds, thermal stability improves. For instance, with an amplitude of 1.0 mm, the initial degradation temperature (T5) climbs from 328.6 °C to 333.7 °C. At a frequency of 10 Hz, T5 reaches 333.1 °C. These findings provide theoretical support for the application of vibration-assisted extrusion in the development of high-performance biodegradable polymer blends. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

16 pages, 4888 KiB  
Article
Exploring Migraine Pathogenesis: Transcriptomic Insights and Pathway Analysis in Nitroglycerin-Induced Rat Model
by Qiao-Wen Chen, Run-Tian Meng and Chih-Yuan Ko
Curr. Issues Mol. Biol. 2025, 47(4), 241; https://doi.org/10.3390/cimb47040241 - 30 Mar 2025
Cited by 1 | Viewed by 870
Abstract
Migraine is a chronic neurovascular disease with unclear pathophysiological mechanisms. In this study, its pathogenic mechanisms were investigated through bioinformatics analysis of migraine-related pathways and key genes. Female Sprague Dawley rats were divided into control and migraine model groups. The control group received [...] Read more.
Migraine is a chronic neurovascular disease with unclear pathophysiological mechanisms. In this study, its pathogenic mechanisms were investigated through bioinformatics analysis of migraine-related pathways and key genes. Female Sprague Dawley rats were divided into control and migraine model groups. The control group received saline, while the migraine model group received nitroglycerin (NTG) to induce migraines over four weeks. Migraine-like behaviors were assessed within two hours following the final NTG injection. Genes of hypothalamus were identified using DESeq2. Gene ontology enrichment and KEGG pathway analyses were conducted, followed by the identification of hub genes based on protein interaction networks by using algorithms such as Closeness, Degree, and Maximum Neighborhood Component. Rats with NTG-induced migraine showed increased head scratching and cage climbing and a reduced sucrose preference. Transcriptome analysis revealed 1564 differentially expressed genes, with 1233 upregulated and 331 downregulated. Pathways linked to inflammation, PI3K–Akt signaling, and cytokine–cytokine receptor interactions were found to have enriched expression of several genes. Further protein interaction network analysis identified nine hub genes: Alb, Tgfb1, Cd4, Ptprc, Itgb1, Icam1, Col1a1, Pxdn, and Itgad. These findings suggest that migraine involves PI3K–Akt signaling and cytokine–cytokine receptor interactions, providing insights into molecular mechanisms and potential therapeutic targets. However, the study was limited by a small sample size and reliance on a single experimental model, which may constrain the clinical applicability of the findings. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

20 pages, 7827 KiB  
Article
Neuroprotective Effects of Cilomilast and Chlorogenic Acid Against Scopolamine-Induced Memory Deficits via Modulation of the cAMP/PKA–CREB–BDNF Pathway
by Esraa M. Mosalam, Soha M. Atya, Noha M. Mesbah, Shady Allam and Eman T. Mehanna
Int. J. Mol. Sci. 2025, 26(7), 3108; https://doi.org/10.3390/ijms26073108 - 28 Mar 2025
Cited by 1 | Viewed by 803
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive decline, neuroinflammation and neuronal damage. This study aimed to investigate the neuroprotective effects of cilomilast (CILO), a phosphodiesterase-4 (PDE4) inhibitor, alone and in combination with chlorogenic acid (CGA), a natural polyphenol, against scopolamine [...] Read more.
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive decline, neuroinflammation and neuronal damage. This study aimed to investigate the neuroprotective effects of cilomilast (CILO), a phosphodiesterase-4 (PDE4) inhibitor, alone and in combination with chlorogenic acid (CGA), a natural polyphenol, against scopolamine (SCOP)-induced cognitive impairment in mice. Forty male albino mice were divided into five groups: normal control, SCOP control, CGA + SCOP, CILO + SCOP and CILO + CGA + SCOP. Behavioral assessments, including the Y-maze and pole climbing tests, demonstrated that SCOP significantly impaired cognition, while treatment with CILO and CGA reversed these deficits, with the combination group showing the greatest improvement. Histopathological analyses revealed that CILO and CGA reduced neuronal damage and amyloid beta (Aβ) accumulation. Immunohistochemical and biochemical assessments confirmed a decrease in neuroinflammatory markers, including tumor necrosis factor-alpha (TNF-α) and nuclear factor kappa B (NF-κB). Molecular analyses showed that CILO restored cyclic adenosine monophosphate (cAMP) levels, leading to activation of protein kinase A (PKA), cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF), key regulators of neuronal plasticity and survival. CGA enhanced these effects by further inhibiting PDE4, amplifying the neuroprotective response. These findings suggest that PDE4 inhibitors, particularly in combination with CGA, may represent promising therapeutic strategies for AD-related cognitive impairment. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

Back to TopTop