Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,715)

Search Parameters:
Keywords = climate variations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4562 KiB  
Article
DNA Methylation-Associated Epigenetic Changes in Thermotolerance of Bemisia tabaci During Biological Invasions
by Tianmei Dai, Yusheng Wang, Xiaona Shen, Zhichuang Lü, Fanghao Wan and Wanxue Liu
Int. J. Mol. Sci. 2025, 26(15), 7466; https://doi.org/10.3390/ijms26157466 (registering DOI) - 1 Aug 2025
Abstract
Global warming and anthropogenic climate change are projected to expand the geographic distribution and population abundance of ectothermic species and exacerbate the biological invasion of exotic species. DNA methylation, as a reversible epigenetic modification, could provide a putative link between the phenotypic plasticity [...] Read more.
Global warming and anthropogenic climate change are projected to expand the geographic distribution and population abundance of ectothermic species and exacerbate the biological invasion of exotic species. DNA methylation, as a reversible epigenetic modification, could provide a putative link between the phenotypic plasticity of invasive species and environmental temperature variations. We assessed and interpreted the epigenetic mechanisms of invasive and indigenous species’ differential tolerance to thermal stress through the invasive species Bemisia tabaci Mediterranean (MED) and the indigenous species Bemisia tabaci AsiaII3. We examine their thermal tolerance following exposure to heat and cold stress. We found that MED exhibits higher thermal resistance than AsiaII3 under heat stress. The fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) results proved that the increased thermal tolerance in MED is closely related to DNA methylation changes, other than genetic variation. Furthermore, the quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting analysis of DNA methyltransferases (Dnmts) suggested that increased expression of Dnmt3 regulates the higher thermal tolerance of female MED adults. A mechanism is revealed whereby DNA methylation enhances thermal tolerance in invasive species. Our results show that the Dnmt-mediated regulation mechanism is particularly significant for understanding invasive species’ successful invasion and rapid adaptation under global warming, providing new potential targets for controlling invasive species worldwide. Full article
(This article belongs to the Section Molecular Biology)
17 pages, 359 KiB  
Article
Effect of Pre-Treatment on the Pressing Yield and Quality of Grape Juice Obtained from Grapes Grown in Poland
by Rafał Nadulski, Paweł Sobczak, Jacek Mazur and Grzegorz Łysiak
Sustainability 2025, 17(15), 7010; https://doi.org/10.3390/su17157010 (registering DOI) - 1 Aug 2025
Abstract
Gradual climate warming is favoring viticulture in Poland. At the same time, there is a lack of information about the suitability of grape varieties grown in Poland for processing. The primary aim of the study was to determine the effect of pre-treatment on [...] Read more.
Gradual climate warming is favoring viticulture in Poland. At the same time, there is a lack of information about the suitability of grape varieties grown in Poland for processing. The primary aim of the study was to determine the effect of pre-treatment on the pressing yield of grape juice and its qualitative assessment. The study applied pre-treatment of raw material, involving either enzymatic liquefaction of the pulp in the first case or freezing and thawing of the pulp prior to pressing in the second case. There was considerable variation among the grape varieties studied in terms of the characteristics under analysis. The varietal characteristics had a significant effect on the pressing yield and the quality of the juice obtained. Pre-treatment had different effects on the pressing yield of the individual grape varieties and the quality of the obtained juices. The research carried out may improve the efficiency and quality of agricultural production with the rational use of locally grown grape hybrids. Full article
12 pages, 1167 KiB  
Article
Experimental Studies on Partial Energy Harvesting by Novel Solar Cages, Microworlds, to Explore Sustainability
by Mohammad A. Khan, Brian Maricle, Zachary D. Franzel, Gabe Gransden and Matthew Vannette
Solar 2025, 5(3), 36; https://doi.org/10.3390/solar5030036 (registering DOI) - 1 Aug 2025
Abstract
Sources of renewable energy have attracted considerable attention. Their expanded use will have a substantial impact on both the cost of energy production and climate change. Solar energy is one efficient and safe option; however, solar energy harvesting sites, irrespective of the location, [...] Read more.
Sources of renewable energy have attracted considerable attention. Their expanded use will have a substantial impact on both the cost of energy production and climate change. Solar energy is one efficient and safe option; however, solar energy harvesting sites, irrespective of the location, can impact the ecosystem. This experimental study explores the energy available inside and outside of novel miniature energy harvesting cages by measuring light intensity and power generated. Varying light intensity outside the cage has been utilized to study the remaining energy inside the cage of a flexible design, where the heights of the harvesting panels are parameters. Cages are built from custom photovoltaic panels arranged in a staircase manner to provide access to growing plants. The balance between power generation and biological development is investigated. Two different structures are presented to explore the variation of illumination intensity inside the cages. The experimental results show a substantial reduction in energy inside the cages. The experimental results showed up to 24% reduction in illumination inside the cages in winter. The reduction is even larger in summer, up to 57%. The results from the models provide a framework to study the possible impact on a biological system residing inside the cages, paving the way for practical farming with sustainable energy harvesting. Full article
Show Figures

Figure 1

16 pages, 2326 KiB  
Article
Patterns and Determinants of Ecological Uniqueness in Plant Communities on the Qinghai-Tibetan Plateau
by Liangtao Li and Gheyur Gheyret
Plants 2025, 14(15), 2379; https://doi.org/10.3390/plants14152379 (registering DOI) - 1 Aug 2025
Abstract
The Qinghai-Tibetan Plateau is one of the world’s most prominent biodiversity hotspots. Understanding the spatial patterns of ecological uniqueness in its plant communities is essential for uncovering the mechanisms of community assembly and informing effective conservation strategies. In this study, we analyzed data [...] Read more.
The Qinghai-Tibetan Plateau is one of the world’s most prominent biodiversity hotspots. Understanding the spatial patterns of ecological uniqueness in its plant communities is essential for uncovering the mechanisms of community assembly and informing effective conservation strategies. In this study, we analyzed data from 758 plots across 338 sites on the Qinghai-Tibetan Plateau. For each plot, the vegetation type was classified, and all plant species present, along with their respective abundance or coverage, were recorded in the database. To assess overall compositional variation, community β-diversity was quantified, while a plot-level approach was applied to determine the influence of local environmental conditions and community characteristics on ecological uniqueness. We used stepwise multiple regressions, variation partitioning, and structural equation modeling to identify the key drivers of spatial variation in ecological uniqueness. Our results show that (1) local contributions to β-diversity (LCBD) exhibit significant geographic variation—increasing with longitude, decreasing with latitude, and showing a unimodal trend along the elevational gradient; (2) shrubs and trees contribute more to β-diversity than herbaceous species, and LCBD is strongly linked to the proportion of rare species; and (3) community characteristics, including species richness and vegetation coverage, are the main direct drivers of ecological uniqueness, explaining 36.9% of the variance, whereas climate and soil properties exert indirect effects through their interactions. Structural equation modeling further reveals a coordinated influence of soil, climate, and community attributes on LCBD, primarily mediated through soil nutrient availability. These findings provide a theoretical basis for adaptive biodiversity management on the Qinghai-Tibetan Plateau and underscore the conservation value of regions with high ecological uniqueness. Full article
Show Figures

Figure 1

17 pages, 431 KiB  
Article
Climate Crisis and Mental Well-Being: Nature Relatedness, Meaning in Life, and Gender Differences in a Jewish Australian Study
by Orly Sarid
Behav. Sci. 2025, 15(8), 1045; https://doi.org/10.3390/bs15081045 (registering DOI) - 1 Aug 2025
Abstract
Background: Amid growing concerns about climate crisis and its psychological toll, understanding how people find meaning through their connection to nature is increasingly important. The first aim of this study is to examine the association between Nature Relatedness (NR) and Meaning in Life [...] Read more.
Background: Amid growing concerns about climate crisis and its psychological toll, understanding how people find meaning through their connection to nature is increasingly important. The first aim of this study is to examine the association between Nature Relatedness (NR) and Meaning in Life (MIL). The second aim is to investigate if gender moderates this association and to explore how Jewish traditions influence gender differences in this relationship. Methods: A multi-methods design was employed. Participants were recruited through purposive sampling of prominent Jewish community figures, followed by snowball sampling via informant referrals. Thirty-five participants completed the Meaning in Life Questionnaire (MLQ) and the NR Scale. Two questions provided qualitative insights into participants’ personal interpretations and culturally grounded meanings of NR and MIL in the context of climate change and Jewish traditions. Results: Hierarchical multiple regression analyses assessed the main effects of NR and gender, as well as their interaction, on MLQ subscales. NR positively correlated with the MLQ Search dimension, indicating that individuals with stronger NR actively seek meaning in life. Gender moderated this relationship: NR did not correlate with MLQ Presence overall, but higher NR was linked to greater MIL presence among female participants. Thematic analysis of qualitative responses revealed gender-based variations and emphasized the role of Jewish teachings in connecting NR to cultural and religious practices. Conclusions: The findings point to the importance of cultural, religious, and gender factors in shaping the relationship between NR and MIL in a time of climate change crisis, offering implications for positive mental health research and culturally sensitive interventions. Full article
Show Figures

Figure 1

17 pages, 5311 KiB  
Article
Projections of Urban Heat Island Effects Under Future Climate Scenarios: A Case Study in Zhengzhou, China
by Xueli Ni, Yujie Chang, Tianqi Bai, Pengfei Liu, Hongquan Song, Feng Wang and Man Jin
Remote Sens. 2025, 17(15), 2660; https://doi.org/10.3390/rs17152660 (registering DOI) - 1 Aug 2025
Abstract
As global climate change accelerates, the urban heat island (UHI) phenomenon has become increasingly pronounced, posing significant challenges to urban energy balance, atmospheric processes, and public health. This study used the Weather Research and Forecasting (WRF) model to dynamically downscale two CMIP6 scenarios—moderate [...] Read more.
As global climate change accelerates, the urban heat island (UHI) phenomenon has become increasingly pronounced, posing significant challenges to urban energy balance, atmospheric processes, and public health. This study used the Weather Research and Forecasting (WRF) model to dynamically downscale two CMIP6 scenarios—moderate forcing (SSP245) and high forcing (SSP585)—focusing on Zhengzhou, a rapidly urbanizing city in central China. High-resolution simulations captured fine-scale intra-urban temperature patterns and analyze the spatial and seasonal variations in UHI intensity in 2030 and 2060. The results demonstrated significant seasonal variations in UHI effects in Zhengzhou for both 2030 and 2060 under SSP245 and SSP585 scenarios, with the most pronounced warming in summer. Notably, under the SSP245 scenario, elevated autumn temperatures in suburban areas reduced the urban–rural temperature gradient, while intensified rural cooling during winter enhanced the UHI effect. These findings underscore the importance of integrating high-resolution climate modeling into urban planning and developing targeted adaptation strategies based on future UHI patterns to address climate challenges. Full article
Show Figures

Figure 1

31 pages, 5669 KiB  
Article
Research on the Influence of the Parameters of the “AO-Shaped” Skywell of Traditional Huizhou Residential Houses on the Indoor Wind Environment
by Wenjia Pan and Bin Cheng
Buildings 2025, 15(15), 2713; https://doi.org/10.3390/buildings15152713 (registering DOI) - 1 Aug 2025
Abstract
This study was conducted in the context of China’s latest “double carbon” policy. The objective of this study was twofold: firstly, to examine the characteristics of traditional Chinese residential skywell; and secondly, to investigate and develop climate-adaptive technologies for these structures. To this [...] Read more.
This study was conducted in the context of China’s latest “double carbon” policy. The objective of this study was twofold: firstly, to examine the characteristics of traditional Chinese residential skywell; and secondly, to investigate and develop climate-adaptive technologies for these structures. To this end, a study was conducted on the Huizhou skywell architecture in China. Firstly, we obtained a large amount of basic data, such as traditional buildings and skywell parameters in Huizhou through field research and on-site mapping. Second, we combined a large number of parameters and typical cases to analyze the data and determine a more scientifically typical model of Huizhou architecture and experimental coverage of skywell data. Different shapes and sizes of skywell were formed by changing the combination of skywell length and width, and the indoor wind environments of these skywell dwelling models were simulated one by one using PHOENIX (v2016) software. Finally, the data obtained from these simulations are analyzed using the variable control method, and the simulated indoor wind environments of skywells under different scale combinations in terms of skywell length, width, and length–width coupling effects are summarized and compared. The following conclusions were drawn: (1) The length of the skywell has a certain effect on all indoor wind environments, and the variation in indoor wind speed is smallest when the length of the skywell is 7.5 m. When selecting the design size of the skywell, the length of the skywell can be increased accordingly. (2) The width of the skywell for the indoor wind environment is divided into two cases, when the length of the skywell is less than 3.75 m, increasing the width of the skywell will make the indoor wind environment more unstable. However, when the length of the skywell is greater than 3.75 m, the width of the skywell is positively related to the comfort of the indoor wind environment. (3) The area of the skywell should not be too large, usually between 11.25 m2 and 18.75 m2. A slender skywell is more likely to provide a comfortable indoor wind environment. (4) After extensive evaluation, we found that the comfort of the indoor wind environment is high when the width of the skywell is 2 m. The optimum dimensions for the ventilation performance of the skywell are 7.5 m in length and 2 m in width. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

15 pages, 619 KiB  
Article
Tell Me What You’ve Done, and I’ll Predict What You’ll Do: The Role of Motivation and Past Behavior in Exercise Adherence
by Luís Cid, Diogo Monteiro, Teresa Bento, Miguel Jacinto, Anabela Vitorino, Diogo S. Teixeira, Pedro Duarte-Mendes, Vasco Bastos and Nuno Couto
Healthcare 2025, 13(15), 1879; https://doi.org/10.3390/healthcare13151879 - 1 Aug 2025
Abstract
Introduction: The main purpose of this study was to test a hierarchical model of motivation that integrates Achievement Goal Theory and Self-Determination Theory to explain and predict exercise adherence. Method: In total, 2180 exercisers (1020 female, 1160 male) aged between 18 and 60 [...] Read more.
Introduction: The main purpose of this study was to test a hierarchical model of motivation that integrates Achievement Goal Theory and Self-Determination Theory to explain and predict exercise adherence. Method: In total, 2180 exercisers (1020 female, 1160 male) aged between 18 and 60 years, from different gyms and health clubs, completed several scales validated in exercise settings, regarding perceived motivational climate, basic psychological need satisfaction, behavioral regulation, and exercise adherence. For the last measure, weekly computer access to a control system over a 6-month period before and after data collection was consulted. Results: Through structural equation models (SEM), it was verified that (1) task-involving climate positively predicted basic psychological needs. In turn, the satisfaction of these needs predicted autonomous motivation, which led to a positive prediction of adherence; (2) a small variation in exercise adherence was explained by the motivational model under analysis. Nevertheless, models significantly improved their analytical power when past adherence was inserted in the model increasing the explained variance in future behavior from 9.2% to 64%. Conclusions: In conclusion, autonomous motivation can predict people’s exercise adherence, and past behavior increases that predictive effect. The present study brings scientific evidence to the popular saying “tell me what you’ve done and, and I’ll predict what you’ll do”. Full article
Show Figures

Figure 1

21 pages, 1379 KiB  
Article
Stream Temperature, Density Dependence, Catchment Size, and Physical Habitat: Understanding Salmonid Size Variation Across Small Streams
by Kyle D. Martens and Warren D. Devine
Fishes 2025, 10(8), 368; https://doi.org/10.3390/fishes10080368 (registering DOI) - 1 Aug 2025
Abstract
The average body size (fork length) of juvenile salmonids in small streams varies across landscapes and can be influenced by stream temperature, density dependence, catchment size, and physical habitat. In this study, we compared sets of 16 mixed-effects linear models representing these four [...] Read more.
The average body size (fork length) of juvenile salmonids in small streams varies across landscapes and can be influenced by stream temperature, density dependence, catchment size, and physical habitat. In this study, we compared sets of 16 mixed-effects linear models representing these four potentially influencing indicators for three species/age classes to assess the relative importance of their influences on body size. The global model containing all indicators was the most parsimonious model for juvenile coho salmon (Oncorhynchus kisutch; R2m = 0.4581, R2c = 0.5859), age-0 trout (R2m = 0.4117, R2c = 0.5968), and age-1 or older coastal cutthroat trout (O. clarkii; R2m = 0.2407, R2c = 0.5188). Contrary to expectations, salmonid density, catchment size, and physical habitat metrics contributed more to the top models for both coho salmon and age-1 or older cutthroat trout than stream temperature metrics. However, a stream temperature metric, accumulated degree days, had the only significant relationship (positive) of the indicators with body size in age-0 trout (95% CI 1.58 to 23.04). Our analysis identifies complex relationships between salmonid body size and environmental influences, such as the importance of physical habitat such as pool size and boulders. However, management or restoration actions aimed at improving or preventing anticipated declines in physical habitat such as adding instream wood or actions that may lead to increasing pool area have potential to ensure a natural range of salmonid body sizes across watersheds. Full article
(This article belongs to the Special Issue Habitat as a Template for Life Histories of Fish)
Show Figures

Figure 1

27 pages, 2327 KiB  
Article
Experimental Study of Ambient Temperature Influence on Dimensional Measurement Using an Articulated Arm Coordinate Measuring Machine
by Vendula Samelova, Jana Pekarova, Frantisek Bradac, Jan Vetiska, Matej Samel and Robert Jankovych
Metrology 2025, 5(3), 45; https://doi.org/10.3390/metrology5030045 (registering DOI) - 1 Aug 2025
Abstract
Articulated arm coordinate measuring machines are designed for in situ use directly in manufacturing environments, enabling efficient dimensional control outside of climate-controlled laboratories. This study investigates the influence of ambient temperature variation on the accuracy of length measurements performed with the Hexagon Absolute [...] Read more.
Articulated arm coordinate measuring machines are designed for in situ use directly in manufacturing environments, enabling efficient dimensional control outside of climate-controlled laboratories. This study investigates the influence of ambient temperature variation on the accuracy of length measurements performed with the Hexagon Absolute Arm 8312. The experiment was carried out in a laboratory setting simulating typical shop floor conditions through controlled temperature changes in the range of approximately 20–31 °C. A calibrated steel gauge block was used as a reference standard, allowing separation of the influence of the measuring system from that of the measured object. The results showed that the gauge block length changed in line with the expected thermal expansion, while the articulated arm coordinate measuring machine exhibited only a minor residual thermal drift and stable performance. The experiment also revealed a constant measurement offset of approximately 22 µm, likely due to calibration deviation. As part of the study, an uncertainty budget was developed, taking into account all relevant sources of influence and enabling a more realistic estimation of accuracy under operational conditions. The study confirms that modern carbon composite articulated arm coordinate measuring machines with integrated compensation can maintain stable measurement behavior even under fluctuating temperatures in controlled environments. Full article
Show Figures

Figure 1

16 pages, 7392 KiB  
Article
Genetic Diversity and Population Structure of Tufted Deer (Elaphodus cephalophus) in Chongqing, China
by Fuli Wang, Chengzhong Yang, Yalin Xiong, Qian Xiang, Xiaojuan Cui and Jianjun Peng
Animals 2025, 15(15), 2254; https://doi.org/10.3390/ani15152254 - 31 Jul 2025
Abstract
The tufted deer (Elaphodus cephalophus), a Near-Threatened (NT) species endemic to China and Myanmar, requires robust genetic data for effective conservation. However, the genetic landscape of key populations, such as those in Chongqing, remains poorly understood. This study aimed to comprehensively [...] Read more.
The tufted deer (Elaphodus cephalophus), a Near-Threatened (NT) species endemic to China and Myanmar, requires robust genetic data for effective conservation. However, the genetic landscape of key populations, such as those in Chongqing, remains poorly understood. This study aimed to comprehensively evaluate the genetic diversity, population structure, gene flow, and demographic history of tufted deer across this critical region. We analyzed mitochondrial DNA (mtDNA) from 46 non-invasively collected fecal samples from three distinct populations: Jinfo Mountain (JF, n = 13), Simian Mountain (SM, n = 21), and the Northeastern Mountainous region (NEM, n = 12). Genetic variation was assessed using the cytochrome b (Cyt b) and D-loop regions, with analyses including Fst, gene flow (Nm), neutrality tests, and Bayesian Skyline Plots (BSP). Our results revealed the highest genetic diversity in the SM population, establishing it as a genetic hub. In contrast, the JF population exhibited the lowest diversity and significant genetic differentiation (>0.23) from the SM and NEM populations, indicating profound isolation. Gene flow was substantial between SM and NEM but severely restricted for the JF population. Demographic analyses, including BSP, indicated a long history of demographic stability followed by a significant expansion beginning in the Middle to Late Pleistocene. We conclude that the SM/NEM metapopulation serves as the genetic core for the species in this region, while the highly isolated JF population constitutes a distinct and vulnerable Management Unit (MU). This historical demographic expansion is likely linked to climatic and environmental changes during the Pleistocene, rather than recent anthropogenic factors. These findings underscore the urgent need for a dual conservation strategy: targeted management for the isolated JF population and the establishment of ecological corridors to connect the Jinfo Mountain and Simian Mountain populations, ensuring the long-term persistence of this unique species. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

19 pages, 2222 KiB  
Article
Low Metabolic Variation in Environmentally Diverse Natural Populations of Temperate Lime Trees (Tilia cordata)
by Carl Barker, Paul Ashton and Matthew P. Davey
Metabolites 2025, 15(8), 509; https://doi.org/10.3390/metabo15080509 (registering DOI) - 31 Jul 2025
Abstract
Background: Population persistence for organisms to survive in a world with a rapidly changing climate will require either dispersal to suitable areas, evolutionary adaptation to altered conditions and/or sufficient phenotypic plasticity to withstand it. Given the slow growth and geographically isolated populations [...] Read more.
Background: Population persistence for organisms to survive in a world with a rapidly changing climate will require either dispersal to suitable areas, evolutionary adaptation to altered conditions and/or sufficient phenotypic plasticity to withstand it. Given the slow growth and geographically isolated populations of many tree species, there is a high likelihood of local adaption or the acclimation of functional traits in these populations across the UK. Objectives: Given the slow growth and often isolated populations of Tilia cordata (lime tree), we hypothesised that there is a high likelihood of local adaptation or the acclimation of metabolic traits in these populations across the UK. Our aim was to test if the functional metabolomic traits of Tilia cordata (lime tree), collected in situ from natural populations, varied within and between populations and to compare this to neutral allele variation in the population. Methods: We used a metabolic fingerprinting approach to obtain a snapshot of the metabolic status of leaves collected from T. cordata from six populations across the UK. Environmental metadata, longer-term functional traits (specific leaf area) and neutral allelic variation in the population were also measured to assess the plastic capacity and local adaptation of the species. Results: The metabolic fingerprints derived from leaf material collected and fixed in situ from individuals in six populations of T. cordata across its UK range were similar, despite contrasting environmental conditions during sampling. Neutral allele frequencies showed almost no significant group structure, indicating low differentiation between populations. The specific leaf area did vary between sites. Conclusions: The low metabolic variation between UK populations of T. cordata despite contrasting environmental conditions during sampling indicates high levels of phenotypic plasticity. Full article
(This article belongs to the Special Issue Metabolomics and Plant Defence, 2nd Edition)
Show Figures

Figure 1

20 pages, 2854 KiB  
Article
Trait-Based Modeling of Surface Cooling Dynamics in Olive Fruit Using Thermal Imaging and Mixed-Effects Analysis
by Eddy Plasquy, José M. Garcia, Maria C. Florido and Anneleen Verhasselt
Agriculture 2025, 15(15), 1647; https://doi.org/10.3390/agriculture15151647 - 30 Jul 2025
Abstract
Effective postharvest cooling of olive fruit is increasingly critical under rising harvest temperatures driven by climate change. This study models passive cooling dynamics using a trait-based, mixed-effects statistical framework. Ten olive groups—representing seven cultivars and different ripening or size stages—were subjected to controlled [...] Read more.
Effective postharvest cooling of olive fruit is increasingly critical under rising harvest temperatures driven by climate change. This study models passive cooling dynamics using a trait-based, mixed-effects statistical framework. Ten olive groups—representing seven cultivars and different ripening or size stages—were subjected to controlled cooling conditions. Surface temperature was recorded using infrared thermal imaging, and morphological and compositional traits were quantified. Temperature decay was modeled using Newton’s Law of Cooling, extended with a quadratic time term to capture nonlinear trajse thectories. A linear mixed-effects model was fitted to log-transformed, normalized temperature data, incorporating trait-by-time interactions and hierarchical random effects. The results confirmed that fruit weight, specific surface area (SSA), and specific heat capacity (SHC) are key drivers of cooling rate variability, consistent with theoretical expectations, but quantified here using a trait-based statistical model applied to olive fruit. The quadratic model consistently outperformed standard exponential models, revealing dynamic effects of traits on temperature decline. Residual variation at the group level pointed to additional unmeasured structural influences. This study demonstrates that olive fruit cooling behavior can be effectively predicted using interpretable, trait-dependent models. The findings offer a quantitative basis for optimizing postharvest cooling protocols and are particularly relevant for maintaining quality under high-temperature harvest conditions. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

16 pages, 3034 KiB  
Article
Interannual Variability in Precipitation Modulates Grazing-Induced Vertical Translocation of Soil Organic Carbon in a Semi-Arid Steppe
by Siyu Liu, Xiaobing Li, Mengyuan Li, Xiang Li, Dongliang Dang, Kai Wang, Huashun Dou and Xin Lyu
Agronomy 2025, 15(8), 1839; https://doi.org/10.3390/agronomy15081839 - 29 Jul 2025
Viewed by 93
Abstract
Grazing affects soil organic carbon (SOC) through plant removal, livestock trampling, and manure deposition. However, the impact of grazing on SOC is also influenced by multiple factors such as climate, soil properties, and management approaches. Despite extensive research, the mechanisms by which grazing [...] Read more.
Grazing affects soil organic carbon (SOC) through plant removal, livestock trampling, and manure deposition. However, the impact of grazing on SOC is also influenced by multiple factors such as climate, soil properties, and management approaches. Despite extensive research, the mechanisms by which grazing intensity influences SOC density in grasslands remain incompletely understood. This study examines the effects of varying grazing intensities on SOC density (0–30 cm) dynamics in temperate grasslands of northern China using field surveys and experimental analyses in a typical steppe ecosystem of Inner Mongolia. Results show that moderate grazing (3.8 sheep units/ha/yr) led to substantial consumption of aboveground plant biomass. Relative to the ungrazed control (0 sheep units/ha/yr), aboveground plant biomass was reduced by 40.5%, 36.2%, and 50.6% in the years 2016, 2019, and 2020, respectively. Compensatory growth failed to fully offset biomass loss, and there were significant reductions in vegetation carbon storage and cover (p < 0.05). Reduced vegetation cover increased bare soil exposure and accelerated topsoil drying and erosion. This degradation promoted the downward migration of SOC from surface layers. Quantitative analysis revealed that moderate grazing significantly reduced surface soil (0–10 cm) organic carbon density by 13.4% compared to the ungrazed control while significantly increasing SOC density in the subsurface layer (10–30 cm). Increased precipitation could mitigate the SOC transfer and enhance overall SOC accumulation. However, it might negatively affect certain labile SOC fractions. Elucidating the mechanisms of SOC variation under different grazing intensities and precipitation regimes in semi-arid grasslands could improve our understanding of carbon dynamics in response to environmental stressors. These insights will aid in predicting how grazing systems influence grassland carbon cycling under global climate change. Full article
Show Figures

Figure 1

36 pages, 539 KiB  
Review
Genomic Adaptation, Environmental Challenges, and Sustainable Yak Husbandry in High-Altitude Pastoral Systems
by Saima Naz, Ahmad Manan Mustafa Chatha, Qudrat Ullah, Muhammad Farooq, Tariq Jamil, Raja Danish Muner and Azka Kiran
Vet. Sci. 2025, 12(8), 714; https://doi.org/10.3390/vetsci12080714 - 29 Jul 2025
Viewed by 116
Abstract
The yak (Bos grunniens) is a key species in high-altitude rangelands of Asia. Despite their ecological and economic importance, yak production faces persistent challenges, including low milk yields, vulnerability to climate changes, emerging diseases, and a lack of systematic breeding programs. [...] Read more.
The yak (Bos grunniens) is a key species in high-altitude rangelands of Asia. Despite their ecological and economic importance, yak production faces persistent challenges, including low milk yields, vulnerability to climate changes, emerging diseases, and a lack of systematic breeding programs. This review presents the genomic, physiological, and environmental dimensions of yak biology and husbandry. Genes such as EPAS1, which encodes hypoxia-inducible transcription factors, underpin physiological adaptations, including enlarged cardiopulmonary structures, elevated erythrocyte concentrations, and specialized thermoregulatory mechanisms that enable their survival at elevations of 3000 m and above. Copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) present promising markers for improving milk and meat production, disease resistance, and metabolic efficiency. F1 and F2 generations of yak–cattle hybrids show superior growth and milk yields, but reproductive barriers, such as natural mating or artificial insemination, and environmental factors limit the success of these hybrids beyond second generation. Infectious diseases, such as bovine viral diarrhea and antimicrobial-resistant and biofilm-forming Enterococcus and E. coli, pose risks to herd health and food safety. Rising ambient temperatures, declining forage biomass, and increased disease prevalence due to climate changes risk yak economic performance and welfare. Addressing these challenges by nutritional, environmental, and genetic interventions will safeguard yak pastoralism. This review describes the genes associated with different yak traits and provides an overview of the genetic adaptations of yaks (Bos grunniens) to environmental stresses at high altitudes and emphasizes the need for conservation and improvement strategies for sustainable husbandry of these yaks. Full article
Show Figures

Figure 1

Back to TopTop