Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (715)

Search Parameters:
Keywords = climate disruption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 3909 KiB  
Article
Exploring How Climate Change Scenarios Shape the Future of Alboran Sea Fisheries
by Isabella Uzategui, Susana Garcia-Tiscar and Paloma Alcorlo
Water 2025, 17(15), 2313; https://doi.org/10.3390/w17152313 - 4 Aug 2025
Abstract
Climate change is disrupting marine ecosystems, necessitating a deeper understanding of environmental and fishing-related impacts on exploited species. This study examines the effects of physical factors (temperature, thermal anomalies, salinity, seabed conditions), biogeochemical elements (pH, oxygen levels, nutrients, primary production), and fishing pressure [...] Read more.
Climate change is disrupting marine ecosystems, necessitating a deeper understanding of environmental and fishing-related impacts on exploited species. This study examines the effects of physical factors (temperature, thermal anomalies, salinity, seabed conditions), biogeochemical elements (pH, oxygen levels, nutrients, primary production), and fishing pressure on the biomass of commercially important species in the Alboran Sea from 1999 to 2022. Data were sourced from the Copernicus observational program, focusing on the geographical sub-area 1 (GSA-1) zone across three depth ranges. Generalized Additive Models were applied for analysis. Rising temperatures and seasonal anomalies have largely negative effects, disrupting species’ physiological balance. Changes in water quality, including improved nutrient and oxygen concentrations, have yielded complex ecological responses. Fishing indices highlight the vulnerability of small pelagic fish to climate change and overfishing, underscoring their economic and ecological significance. These findings stress the urgent need for ecosystem-based management strategies that integrate climate change impacts to ensure sustainable marine resource management. Full article
(This article belongs to the Special Issue Impact of Climate Change on Marine Ecosystems)
Show Figures

Figure 1

21 pages, 1369 KiB  
Article
Optimizing Cold Food Supply Chains for Enhanced Food Availability Under Climate Variability
by David Hernandez-Cuellar, Krystel K. Castillo-Villar and Fernando Rey Castillo-Villar
Foods 2025, 14(15), 2725; https://doi.org/10.3390/foods14152725 - 4 Aug 2025
Abstract
Produce supply chains play a critical role in ensuring fruits and vegetables reach consumers efficiently, affordably, and at optimal freshness. In recent decades, hub-and-spoke network models have emerged as valuable tools for optimizing sustainable cold food supply chains. Traditional optimization efforts typically focus [...] Read more.
Produce supply chains play a critical role in ensuring fruits and vegetables reach consumers efficiently, affordably, and at optimal freshness. In recent decades, hub-and-spoke network models have emerged as valuable tools for optimizing sustainable cold food supply chains. Traditional optimization efforts typically focus on removing inefficiencies, minimizing lead times, refining inventory management, strengthening supplier relationships, and leveraging technological advancements for better visibility and control. However, the majority of models rely on deterministic approaches that overlook the inherent uncertainties of crop yields, which are further intensified by climate variability. Rising atmospheric CO2 concentrations, along with shifting temperature patterns and extreme weather events, have a substantial effect on crop productivity and availability. Such uncertainties can prompt distributors to seek alternative sources, increasing costs due to supply chain reconfiguration. This research introduces a stochastic hub-and-spoke network optimization model specifically designed to minimize transportation expenses by determining optimal distribution routes that explicitly account for climate variability effects on crop yields. A use case involving a cold food supply chain (CFSC) was carried out using several weather scenarios based on climate models and real soil data for California. Strawberries were selected as a representative crop, given California’s leading role in strawberry production. Simulation results show that scenarios characterized by increased rainfall during growing seasons result in increased yields, allowing distributors to reduce transportation costs by sourcing from nearby farms. Conversely, scenarios with reduced rainfall and lower yields require sourcing from more distant locations, thereby increasing transportation costs. Nonetheless, supply chain configurations may vary depending on the choice of climate models or weather prediction sources, highlighting the importance of regularly updating scenario inputs to ensure robust planning. This tool aids decision-making by planning climate-resilient supply chains, enhancing preparedness and responsiveness to future climate-related disruptions. Full article
(This article belongs to the Special Issue Climate Change and Emerging Food Safety Challenges)
Show Figures

Figure 1

20 pages, 621 KiB  
Article
Support Needs of Agrarian Women to Build Household Livelihood Resilience: A Case Study of the Mekong River Delta, Vietnam
by Tran T. N. Tran, Tanh T. N. Nguyen, Elizabeth C. Ashton and Sharon M. Aka
Climate 2025, 13(8), 163; https://doi.org/10.3390/cli13080163 - 1 Aug 2025
Viewed by 167
Abstract
Agrarian women are at the forefront of rural livelihoods increasingly affected by the frequency and severity of climate change impacts. However, their household livelihood resilience (HLR) remains limited due to gender-blind policies, scarce sex-disaggregated data, and inadequate consideration of gender-specific needs in resilience-building [...] Read more.
Agrarian women are at the forefront of rural livelihoods increasingly affected by the frequency and severity of climate change impacts. However, their household livelihood resilience (HLR) remains limited due to gender-blind policies, scarce sex-disaggregated data, and inadequate consideration of gender-specific needs in resilience-building efforts. Grounded in participatory feminist research, this study employed a multi-method qualitative approach, including semi-structured interviews and oral history narratives, with 60 women in two climate-vulnerable provinces. Data were analyzed through thematic coding, CATWOE (Customers, Actors, Transformation, Worldview, Owners, Environmental Constraints) analysis, and descriptive statistics. The findings identify nine major climate-related events disrupting livelihoods and reveal a limited understanding of HLR as a long-term, transformative concept. Adaptation strategies remain short-term and focused on immediate survival. Barriers to HLR include financial constraints, limited access to agricultural resources and technology, and entrenched gender norms restricting women’s leadership and decision-making. While local governments, women’s associations, and community networks provide some support, gaps in accessibility and adequacy persist. Participants expressed the need for financial assistance, vocational training, agricultural technologies, and stronger peer networks. Strengthening HLR among agrarian women requires gender-sensitive policies, investment in local support systems, and community-led initiatives. Empowering agrarian women as agents of change is critical for fostering resilient rural livelihoods and achieving inclusive, sustainable development. Full article
Show Figures

Graphical abstract

23 pages, 5773 KiB  
Article
Climate Activism in Our Part of The World and Methodological Insights on How to Study It
by Rezvaneh Erfani
Youth 2025, 5(3), 80; https://doi.org/10.3390/youth5030080 (registering DOI) - 1 Aug 2025
Viewed by 87
Abstract
This paper presents an ethnographically informed analysis of research in Cairo and Sharm El-Sheikh (Egypt) surrounding the 2022 United Nations Framework Convention on Climate Change (UNFCCC) Conference of Parties (COP27) summit. I discuss the geopolitics and geopolitical disruptions of researching activism and activist [...] Read more.
This paper presents an ethnographically informed analysis of research in Cairo and Sharm El-Sheikh (Egypt) surrounding the 2022 United Nations Framework Convention on Climate Change (UNFCCC) Conference of Parties (COP27) summit. I discuss the geopolitics and geopolitical disruptions of researching activism and activist lives in politically sensitive environments. As shown here, developing new methodological interventions plays a crucial role in understanding contextual methodological limitations, dealing with logistical challenges, and building authentic relationships with research participants. Here, I introduce counter-interviews as a methodological strategy to build trust and invest in researcher–participant relationships. This article draws on participant observation, conversations with environmental and climate activists and non-activists in Cairo prior to and after COP27 and in Sharm El-Sheikh during the second week of the summit, reflective field notes, and 20 semi-structured interviews conducted online between February and August 2023. Here, I use the term “environmental non-activism” to draw attention to the sensitivity, complexity, and fragility of political or apolitical environmental and climate action in an authoritarian context where any form of collective action is highly monitored, regulated, and sometimes criminalized by the state. The main argument of this paper is that examining interlocking power dynamics that shape and reshape the activist space in relation to the state is a requirement for understanding and researching the complexities and specificities of climate activism and non-activism in authoritarian contexts. Along with this argument, this paper invites climate education researchers to reevaluate what non-movements and non-activists in the Global South offer to their analyses of possible alternatives, socio-political change, and politics of hope (and to the broader field of activism in educational research, where commitment to disruption, refusal, and subversion play a key role. Full article
(This article belongs to the Special Issue Politics of Disruption: Youth Climate Activisms and Education)
Show Figures

Figure 1

38 pages, 4443 KiB  
Review
The Role of Plant Growth-Promoting Bacteria in Soil Restoration: A Strategy to Promote Agricultural Sustainability
by Mario Maciel-Rodríguez, Francisco David Moreno-Valencia and Miguel Plascencia-Espinosa
Microorganisms 2025, 13(8), 1799; https://doi.org/10.3390/microorganisms13081799 - 1 Aug 2025
Viewed by 353
Abstract
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant [...] Read more.
Soil degradation resulting from intensive agricultural practices, the excessive use of agrochemicals, and climate-induced stresses has significantly impaired soil fertility, disrupted microbial diversity, and reduced crop productivity. Plant growth-promoting bacteria (PGPB) represent a sustainable biological approach to restoring degraded soils by modulating plant physiology and soil function through diverse molecular mechanisms. PGPB synthesizes indole-3-acetic acid (IAA) to stimulate root development and nutrient uptake and produce ACC deaminase, which lowers ethylene accumulation under stress, mitigating growth inhibition. They also enhance nutrient availability by releasing phosphate-solubilizing enzymes and siderophores that improve iron acquisition. In parallel, PGPB activates jasmonate and salicylate pathways, priming a systemic resistance to biotic and abiotic stress. Through quorum sensing, biofilm formation, and biosynthetic gene clusters encoding antibiotics, lipopeptides, and VOCs, PGPB strengthen rhizosphere colonization and suppress pathogens. These interactions contribute to microbial community recovery, an improved soil structure, and enhanced nutrient cycling. This review synthesizes current evidence on the molecular and physiological mechanisms by which PGPB enhance soil restoration in degraded agroecosystems, highlighting their role beyond biofertilization as key agents in ecological rehabilitation. It examines advances in nutrient mobilization, stress mitigation, and signaling pathways, based on the literature retrieved from major scientific databases, focusing on studies published in the last decade. Full article
Show Figures

Figure 1

18 pages, 1587 KiB  
Article
Urban Mangroves Under Threat: Metagenomic Analysis Reveals a Surge in Human and Plant Pathogenic Fungi
by Juliana Britto Martins de Oliveira, Mariana Barbieri, Dario Corrêa-Junior, Matheus Schmitt, Luana Lessa R. Santos, Ana C. Bahia, Cláudio Ernesto Taveira Parente and Susana Frases
Pathogens 2025, 14(8), 759; https://doi.org/10.3390/pathogens14080759 (registering DOI) - 1 Aug 2025
Viewed by 177
Abstract
Coastal ecosystems are increasingly threatened by climate change and anthropogenic pressures, which can disrupt microbial communities and favor the emergence of pathogenic organisms. In this study, we applied metagenomic analysis to characterize fungal communities in sediment samples from an urban mangrove subjected to [...] Read more.
Coastal ecosystems are increasingly threatened by climate change and anthropogenic pressures, which can disrupt microbial communities and favor the emergence of pathogenic organisms. In this study, we applied metagenomic analysis to characterize fungal communities in sediment samples from an urban mangrove subjected to environmental stress. The results revealed a fungal community with reduced richness—28% lower than expected for similar ecosystems—likely linked to physicochemical changes such as heavy metal accumulation, acidic pH, and eutrophication, all typical of urbanized coastal areas. Notably, we detected an increase in potentially pathogenic genera, including Candida, Aspergillus, and Pseudoascochyta, alongside a decrease in key saprotrophic genera such as Fusarium and Thelebolus, indicating a shift in ecological function. The fungal assemblage was dominated by the phyla Ascomycota and Basidiomycota, and despite adverse conditions, symbiotic mycorrhizal fungi remained present, suggesting partial resilience. A considerable fraction of unclassified fungal taxa also points to underexplored microbial diversity with potential ecological or health significance. Importantly, this study does not aim to compare pristine and contaminated environments, but rather to provide a sanitary alert by identifying the presence and potential proliferation of pathogenic fungi in a degraded mangrove system. These findings highlight the sensitivity of mangrove fungal communities to environmental disturbance and reinforce the value of metagenomic approaches for monitoring ecosystem health. Incorporating fungal metagenomic surveillance into environmental management strategies is essential to better understand biodiversity loss, ecological resilience, and potential public health risks in degraded coastal environments. Full article
(This article belongs to the Section Fungal Pathogens)
Show Figures

Figure 1

25 pages, 2666 KiB  
Article
Hormonal Balance in Relation to Expression of Selected Genes Connected with Hormone Biosynthesis and Signalling—The Effect of Deacclimation Process in Oilseed Rape
by Magdalena Rys, Jan Bocianowski, Michał Dziurka, Barbara Jurczyk, Julia Stachurska, Piotr Waligórski and Anna Janeczko
Int. J. Mol. Sci. 2025, 26(15), 7408; https://doi.org/10.3390/ijms26157408 (registering DOI) - 1 Aug 2025
Viewed by 123
Abstract
Global climate change is causing increasing fluctuations in winter temperatures, including episodes of warm conditions above 9 °C. Such events disrupt cold acclimation in plants and can induce deacclimation, reducing frost tolerance and altering, among other things, hormonal regulation. This study investigated hormonal [...] Read more.
Global climate change is causing increasing fluctuations in winter temperatures, including episodes of warm conditions above 9 °C. Such events disrupt cold acclimation in plants and can induce deacclimation, reducing frost tolerance and altering, among other things, hormonal regulation. This study investigated hormonal and molecular changes associated with cold acclimation and deacclimation in oilseed rape (Brassica napus L.) cultivars Kuga and Thure. Plants were grown under different conditions: non-acclimated (17 °C for three weeks), cold-acclimated (4 °C for three weeks), and deacclimated (16/9 °C day/night for one week). Detailed hormone analysis included auxins, gibberellins, cytokinins, stress-related hormones, and the expression of hormone-related genes (BnABF2, BnAOS, BnARF1, BnARR6, BnICS1, BnRGA, and BnWRKY57). Hormone concentrations in leaves changed dynamically in response to deacclimation with increased amounts of growth-promoting hormones and decreased amounts of stress hormones. Additionally, alterations in gene expression during deacclimation, such as in BnABF2 and BnICS1, may function as protective mechanisms to help maintain or regain frost tolerance during reacclimation when temperatures decline again after the warm period. These findings improve the understanding of hormonal and molecular responses involved in the deacclimation of oilseed rape. Full article
(This article belongs to the Special Issue Plant Hormone Signaling)
Show Figures

Figure 1

47 pages, 1179 KiB  
Article
Rethinking Sustainable Operations: A Multi-Level Integration of Circularity, Localization, and Digital Resilience in Manufacturing Systems
by Antonius Setyadi, Suharno Pawirosumarto and Alana Damaris
Sustainability 2025, 17(15), 6929; https://doi.org/10.3390/su17156929 - 30 Jul 2025
Viewed by 393
Abstract
The escalating climate crisis and global disruptions have prompted a critical re-evaluation of operations management within manufacturing and supply systems. This conceptual article addresses the theoretical and strategic gap in aligning resilience and sustainability by proposing an Integrated Sustainable Operational Strategy (ISOS) framework. [...] Read more.
The escalating climate crisis and global disruptions have prompted a critical re-evaluation of operations management within manufacturing and supply systems. This conceptual article addresses the theoretical and strategic gap in aligning resilience and sustainability by proposing an Integrated Sustainable Operational Strategy (ISOS) framework. Drawing on systems theory, circular economy principles, and sustainability science, the framework synthesizes multiple operational domains—circularity, localization, digital adaptation, and workforce flexibility—across macro (policy), meso (organizational), and micro (process) levels. This study constructs a conceptual model that explains the interdependencies and trade-offs among strategic operational responses in the Anthropocene era. Supported by multi-level logic and a synthesis of domain constructs, the model provides a foundation for empirical investigation and strategic planning. Key propositions for future research are developed, focusing on causal relationships and boundary conditions. The novelty of ISOS lies in its simultaneous integration of three strategic pillars—circularity, localization, and digital resilience—within a unified, multi-scalar architecture that bridges fragmented operational theories. The article advances theory by redefining operational excellence through regenerative logic and adaptive capacity, responding directly to SDG 9 (industry innovation), SDG 12 (responsible consumption and production), and SDG 13 (climate action). This integrative framework offers both theoretical insight and practical guidance for transforming operations into catalysts of sustainable transition. Full article
Show Figures

Figure 1

19 pages, 2239 KiB  
Article
Winter Thermal Resilience of Lightweight and Ground-Coupled Mediumweight Buildings: An Experimental Study During Heating Outages
by Marta Gortych and Tadeusz Kuczyński
Energies 2025, 18(15), 4022; https://doi.org/10.3390/en18154022 - 29 Jul 2025
Viewed by 228
Abstract
Thermal resilience is critical for building safety in cold climates during heating outages. This study presents full-scale experimental data from two residential buildings in Poland, tested during the winter of 2024–2025 under both typical and extreme outdoor conditions. The buildings—a lightweight timber-frame structure [...] Read more.
Thermal resilience is critical for building safety in cold climates during heating outages. This study presents full-scale experimental data from two residential buildings in Poland, tested during the winter of 2024–2025 under both typical and extreme outdoor conditions. The buildings—a lightweight timber-frame structure and a mediumweight masonry structure with ground coupling—were exposed to multi-day heating blackouts, and their thermal responses were monitored at a high temporal resolution. Several resilience indicators were used, including the resistance time (RT), degree of disruption (DoD), and hours of safety threshold (HST). Additionally, two time-based metrics—the time to threshold (Tx) and temperature at X-hours (T(tx))—were introduced to improve classification in long-duration scenarios. The weighted unmet thermal performance (WUMTP) index was also implemented and validated using experimental data. The results show that thermal mass and ground coupling significantly improved passive resilience, enabling the mediumweight building to maintain temperatures above 15 °C for over 60 h without heating. This study provides new empirical evidence of passive survivability in blackout conditions and supports the development of time-sensitive assessment tools for cold climates. The findings may inform future updates to building codes and retrofit guidelines. Full article
Show Figures

Figure 1

16 pages, 3781 KiB  
Article
Review of NFPA 780 Standard Compliance for Improved Lightning Protection in Indonesia’s Oil and Gas Industry
by Bryan Denov and Reynaldo Zoro
Energies 2025, 18(15), 4002; https://doi.org/10.3390/en18154002 - 28 Jul 2025
Viewed by 361
Abstract
Lightning represents a critical danger to facilities such as oil tank farms, with the potential to cause major explosive incidents. To address this risk, Indonesia’s oil and gas industry has adopted the NFPA 780 Standard for lightning protection systems. However, tank explosions and [...] Read more.
Lightning represents a critical danger to facilities such as oil tank farms, with the potential to cause major explosive incidents. To address this risk, Indonesia’s oil and gas industry has adopted the NFPA 780 Standard for lightning protection systems. However, tank explosions and refinery disruptions caused by lightning strikes continue to occur annually, highlighting the need to reassess the standard’s self-protection criteria, particularly in Indonesia’s tropical climate. The NFPA 780 standard was primarily developed based on lightning characteristics in subtropical regions. This study evaluates its effectiveness in tropical environments, where lightning parameters such as peak currents, frequencies, and ground flash densities differ significantly. By analyzing specific incidents of tank explosions in Indonesia, the research reveals that compliance with the NFPA 780 standard alone may not be adequate to protect critical infrastructure. To address these challenges, this study proposes a novel approach to lightning protection by designing solutions tailored to the unique characteristics of tropical climates. By incorporating local lightning parameters, the proposed measures aim to enhance safety and resilience in oil and gas facilities. This research provides a framework for adapting international standards to regional needs, improving the effectiveness of lightning protection in tropical environments. Full article
(This article belongs to the Topic EMC and Reliability of Power Networks)
Show Figures

Figure 1

29 pages, 2060 KiB  
Review
Integrated Management Practices Foster Soil Health, Productivity, and Agroecosystem Resilience
by Xiongwei Liang, Shaopeng Yu, Yongfu Ju, Yingning Wang and Dawei Yin
Agronomy 2025, 15(8), 1816; https://doi.org/10.3390/agronomy15081816 - 27 Jul 2025
Viewed by 415
Abstract
Sustainable farmland management is vital for global food security and for mitigating environmental degradation and climate change. While individual practices such as crop rotation and no-tillage are well-documented, this review synthesizes current evidence to illuminate the critical synergistic effects of integrating four key [...] Read more.
Sustainable farmland management is vital for global food security and for mitigating environmental degradation and climate change. While individual practices such as crop rotation and no-tillage are well-documented, this review synthesizes current evidence to illuminate the critical synergistic effects of integrating four key strategies: crop rotation, conservation tillage, organic amendments, and soil microbiome management. Crop rotation enhances nutrient cycling and disrupts pest cycles, while conservation tillage preserves soil structure, reduces erosion, and promotes carbon sequestration. Organic amendments replenish soil organic matter and stimulate biological activity, and a healthy soil microbiome boosts plant resilience to stress and enhances nutrient acquisition through key functional groups like arbuscular mycorrhizal fungi (AMFs). Critically, the integration of these practices yields amplified benefits that far exceed their individual contributions. Integrated management systems not only significantly increase crop yields (by up to 15–30%) and soil organic carbon but also deliver profound global ecosystem services, with a potential to sequester 2.17 billion tons of CO2 and reduce soil erosion by 2.41 billion tons annually. Despite challenges such as initial yield variability, leveraging these synergies through precision agriculture represents the future direction for the field. This review concludes that a holistic, systems-level approach is essential for building regenerative and climate-resilient agroecosystems. Full article
(This article belongs to the Special Issue Advances in Tillage Methods to Improve the Yield and Quality of Crops)
Show Figures

Figure 1

29 pages, 4258 KiB  
Review
Corrosion Performance of Atmospheric Corrosion Resistant Steel Bridges in the Current Climate: A Performance Review
by Nafiseh Ebrahimi, Melina Roshanfar, Mojtaba Momeni and Olga Naboka
Materials 2025, 18(15), 3510; https://doi.org/10.3390/ma18153510 - 26 Jul 2025
Viewed by 481
Abstract
Weathering steel (WS) is widely used in bridge construction due to its high corrosion resistance, durability, and low maintenance requirements. This paper reviews the performance of WS bridges in Canadian climates, focusing on the formation of protective patina, influencing factors, and long-term maintenance [...] Read more.
Weathering steel (WS) is widely used in bridge construction due to its high corrosion resistance, durability, and low maintenance requirements. This paper reviews the performance of WS bridges in Canadian climates, focusing on the formation of protective patina, influencing factors, and long-term maintenance strategies. The protective patina, composed of stable iron oxyhydroxides, develops over time under favorable wet–dry cycles but can be disrupted by environmental aggressors such as chlorides, sulfur dioxide, and prolonged moisture exposure. Key alloying elements like Cu, Cr, Ni, and Nb enhance corrosion resistance, while design considerations—such as drainage optimization and avoidance of crevices—are critical for performance. The study highlights the vulnerability of WS bridges to microenvironments, including de-icing salt exposure, coastal humidity, and debris accumulation. Regular inspections and maintenance, such as debris removal, drainage system upkeep, and targeted cleaning, are essential to mitigate corrosion risks. Climate change exacerbates challenges, with rising temperatures, altered precipitation patterns, and ocean acidification accelerating corrosion in coastal regions. Future research directions include optimizing WS compositions with advanced alloys (e.g., rare earth elements) and integrating climate-resilient design practices. This review highlights the need for a holistic approach combining material science, proactive maintenance, and adaptive design to ensure the longevity of WS bridges in evolving environmental conditions. Full article
Show Figures

Figure 1

12 pages, 1322 KiB  
Article
Recovery Following a Drought-Induced Population Decline in an Exudivorous Forest Mammal
by Ross L. Goldingay
Forests 2025, 16(8), 1230; https://doi.org/10.3390/f16081230 - 26 Jul 2025
Viewed by 159
Abstract
The likely increase in the frequency and severity of droughts with climate warming will pose an enormous challenge for the conservation of forest biodiversity. Documenting the response of species to recent droughts can inform future conservation actions. Mammals that breed and mature slowly [...] Read more.
The likely increase in the frequency and severity of droughts with climate warming will pose an enormous challenge for the conservation of forest biodiversity. Documenting the response of species to recent droughts can inform future conservation actions. Mammals that breed and mature slowly may be especially vulnerable to drought-induced disruption to breeding. The yellow-bellied glider (Petaurus australis, Shaw) is a threatened low-density, arboreal marsupial of eastern Australia. Following a severe drought in 2019, one population had declined by 48% by 2021. The present study investigated whether this population had recovered 3–4 years (2022 and 2023) after that drought. Audio surveys of this highly vocal species were conducted at 42 sites, sampling > 1000 h per year, and producing recordings of 2038–2856 call sequences. The probability of occupancy varied little across the two survey years (0.92–0.97). Local abundance in 2023 had returned to pre-drought levels (45% of occupied sites had ≥3 individuals compared to 6% in 2021). These findings show a recovery from a drought-induced decline required at least 3 years, in keeping with the slow life history traits of this species. This study highlights the importance of considering a species’ life history strategy when evaluating its sensitivity to drought. Full article
(This article belongs to the Section Forest Biodiversity)
Show Figures

Figure 1

9 pages, 2733 KiB  
Data Descriptor
Investigating Mid-Latitude Lower Ionospheric Responses to Energetic Electron Precipitation: A Case Study
by Aleksandra Kolarski, Vladimir A. Srećković, Zoran R. Mijić and Filip Arnaut
Data 2025, 10(8), 121; https://doi.org/10.3390/data10080121 - 26 Jul 2025
Viewed by 203
Abstract
Localized ionization enhancements (LIEs) in altitude range corresponding to the D-region ionosphere, disrupting Very-Low-Frequency (VLF) signal propagation. This case study focuses on Lightning-induced Electron Precipitation (LEP), analyzing amplitude and phase variations in VLF signals recorded in Belgrade, Serbia, from worldwide transmitters. Due to [...] Read more.
Localized ionization enhancements (LIEs) in altitude range corresponding to the D-region ionosphere, disrupting Very-Low-Frequency (VLF) signal propagation. This case study focuses on Lightning-induced Electron Precipitation (LEP), analyzing amplitude and phase variations in VLF signals recorded in Belgrade, Serbia, from worldwide transmitters. Due to the localized, transient nature of Energetic Electron Precipitation (EEP) events and the path-dependence of VLF responses, research relies on event-specific case studies to model reflection height and sharpness via numerical simulations. Findings show LIEs are typically under 1000 × 500 km, with varying internal structure. Accumulated case studies and corresponding data across diverse conditions contribute to a broader understanding of ionospheric dynamics and space weather effects. These findings enhance regional modeling, support aerosol–electricity climate research, and underscore the value of VLF-based ionospheric monitoring and collaboration in Europe. Full article
(This article belongs to the Section Spatial Data Science and Digital Earth)
Show Figures

Figure 1

17 pages, 657 KiB  
Article
Toward Sustainable Mental Health: Development and Validation of the Brief Anxiety Scale for Climate Change (BACC) in South Korea
by Hyunjin Kim, Sooyun Jung, Boyoung Kang, Yongjun Lee, Hye-Young Jin and Kee-Hong Choi
Sustainability 2025, 17(15), 6671; https://doi.org/10.3390/su17156671 - 22 Jul 2025
Viewed by 336
Abstract
Climate change disrupts lives globally and poses significant challenges to mental health. Although several scales assess climate anxiety, many either conflate symptoms with coping responses or fail to adequately capture the core symptomatology of anxiety. Hence, this study aimed to develop and validate [...] Read more.
Climate change disrupts lives globally and poses significant challenges to mental health. Although several scales assess climate anxiety, many either conflate symptoms with coping responses or fail to adequately capture the core symptomatology of anxiety. Hence, this study aimed to develop and validate the Brief Anxiety Scale for Climate Change (BACC), a self-report measure designed to assess symptoms of climate anxiety. A preliminary pool of 21 items was generated based on the diagnostic criteria for generalized anxiety disorder and climate-related stress. Study 1 (n = 300) explored the factor structure via an exploratory factor analysis while Study 2 (n = 400) independently validated the structure via a confirmatory factor analysis (CFA). Analyses of the internal consistency, content validity, and discriminant validity helped refine the scale to a final 13-item version with two factors: cognitive and functional impairment. The CFA results indicated that all the fit indices met the recommended thresholds, and the final version demonstrated excellent internal consistency (Cronbach’s α = 0.92). Additionally, latent correlations revealed that climate anxiety was moderately associated with generalized anxiety and depression. The BACC was developed to identify individuals in the community who experience climate anxiety beyond an adaptive level, thereby promoting sustainable mental health in the context of climate change. These findings suggest that the BACC is a promising tool for assessing climate anxiety. With better identification, mental health professionals, community practitioners, and policymakers can utilize the scale to develop climate-sensitive public health programs and tailored intervention strategies. Full article
Show Figures

Figure 1

Back to TopTop