Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,115)

Search Parameters:
Keywords = climate change policy-making

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4213 KB  
Article
Innovating Urban and Rural Planning Education for Climate Change Response: A Case of Taiwan’s Climate Change Adaptation Education and Teaching Alliance Program
by Qingmu Su and Hsueh-Sheng Chang
Sustainability 2026, 18(2), 886; https://doi.org/10.3390/su18020886 - 15 Jan 2026
Abstract
Global climate change has emerged as a critical challenge for human society in the 21st century. As hubs of population and economic activity, urban and rural areas are increasingly exposed to complex and compounded disaster risks. To systematically evaluate the role of educational [...] Read more.
Global climate change has emerged as a critical challenge for human society in the 21st century. As hubs of population and economic activity, urban and rural areas are increasingly exposed to complex and compounded disaster risks. To systematically evaluate the role of educational intervention in climate adaptability capacity building, this study employs a case study approach, focusing on the “Climate Change Adaptation Education and Teaching Alliance Program” launched in Taiwan in 2014. Through a comprehensive analysis of its institutional structure, curriculum, alliance network, and practical activities, the study explores the effectiveness of educational innovation in cultivating climate resilience talent. The study found that the program, through interdisciplinary collaboration and a practice-oriented teaching model, successfully integrated climate adaptability content into 57 courses, training a total of 2487 students. Project-based learning (PBL) and workshops significantly improved students’ systems thinking and practical abilities, and many of its findings were adopted by local governments. Based on these empirical results, the study proposes that urban and rural planning education should be promoted in the following ways: first, updating teaching materials to reflect regional climate characteristics and local needs; second, enhancing curriculum design by introducing core courses such as climate-resilient planning and promoting interdisciplinary collaboration; third, enriching hands-on learning through real project cases and participatory workshops; and fourth, deepening integration between education and practice by establishing multi-stakeholder partnerships supported by dedicated funding and digital platforms. Through such an innovative educational framework, we can prepare a new generation of professionals capable of supporting global sustainable development in the face of climate change. This study provides a replicable model of practice for education policymakers worldwide, particularly in promoting the integration of climate resilience education in developing countries, which can help accelerate the achievement of UN Sustainable Development Goals (SDG11) and foster interdisciplinary collaboration to address the global climate crisis. Full article
Show Figures

Figure 1

33 pages, 6779 KB  
Article
Effects of Elevated CO2 on Yield and Nutritional Quality of Kale and Spinach: A Meta-Analysis
by Jiata U. Ekele, Joseph O. Obaje, Susanne R. K. Zajitschek, Richard J. Webster, Fatima Perez de Heredia, Katie E. Lane, Abdulmannan Fadel and Rachael C. Symonds
Biology 2026, 15(2), 152; https://doi.org/10.3390/biology15020152 - 15 Jan 2026
Abstract
Elevated atmospheric CO2 is known to alter plant physiology, yet its specific effects on nutrient-rich leafy vegetables remain insufficiently quantified. This study aimed to examine how eCO2 influences yield and nutritional quality in kale (Brassica oleracea) and spinach ( [...] Read more.
Elevated atmospheric CO2 is known to alter plant physiology, yet its specific effects on nutrient-rich leafy vegetables remain insufficiently quantified. This study aimed to examine how eCO2 influences yield and nutritional quality in kale (Brassica oleracea) and spinach (Spinacia oleracea) through the first meta-analysis focused exclusively on these crops. Following the Collaboration for Environmental Evidence (CEE) guidelines, we systematically reviewed eligible studies and conducted a random-effects meta-analysis to evaluate overall and subgroup responses based on CO2 concentration, crop type and exposure duration. Effect sizes were calculated using Hedges’ g with 95% confidence intervals. The analysis showed that eCO2 significantly increased biomass in spinach (g = 1.21) and kale (g = 0.97). However, protein content declined in both crops (spinach: g = −0.76; kale: g = −0.61), and mineral concentrations, particularly calcium and magnesium, were reduced, with spinach exhibiting stronger nutrient losses overall. The variability in response across different CO2 concentrations and exposure times further underscores the complexity of eCO2 effects. These results highlight a trade-off between productivity and nutritional quality under future CO2 conditions. Addressing this challenge will require strategies such as targeted breeding programmes, biofortification, precision agriculture and improved sustainable agricultural practices to maintain nutrient density. This research provides critical evidence for policymakers and scientists to design sustainable food systems that safeguard public health in a changing climate. Full article
Show Figures

Figure 1

26 pages, 1170 KB  
Article
Sustainable Financing Mechanism for Energy System Development Toward a Decarbonized Economy: Conceptual Model and Management Framework
by Artur Zaporozhets, Viktoriia Khaustova, Mykola Kyzym and Nataliia Trushkina
Energies 2026, 19(2), 422; https://doi.org/10.3390/en19020422 - 15 Jan 2026
Abstract
The development of energy systems toward a decarbonized economy is increasingly constrained not only by technological challenges, but also by deficiencies in the organization, coordination, and governability of sustainable financing. This study aims to substantiate an integrated conceptual model and a multi-level governance [...] Read more.
The development of energy systems toward a decarbonized economy is increasingly constrained not only by technological challenges, but also by deficiencies in the organization, coordination, and governability of sustainable financing. This study aims to substantiate an integrated conceptual model and a multi-level governance framework for the sustainable financing mechanism of energy system development under decarbonization, ensuring the alignment of financial instruments with transition strategies, performance indicators, and feedback mechanisms. The methodology combines a bibliometric analysis of Scopus-indexed journal publications with an examination of international statistical and analytical data produced by leading global organizations, complemented by systemic, institutional, and comparative analytical approaches. The bibliometric analysis was conducted in 2025 and covered peer-reviewed articles published during 2017–2025, while empirical financial indicators were synthesized for the most recent available period of 2022–2024 using comparable time-series data reported by international institutions. The results indicate that despite global energy investments reaching approximately $3 trillion in 2024—nearly $2 trillion of which was allocated to clean energy technologies—a persistent annual financing gap for climate change mitigation in the energy sector remains. Moreover, to remain consistent with the Net Zero trajectory, investments in clean energy must increase by approximately 1.7 times by 2030. The synthesis of contemporary research and empirical evidence reveals a predominance of studies focused on individual green and transition finance instruments, accompanied by persistent fragmentation between financial flows, governance structures, and measurable decarbonization outcomes. To address this gap, the paper proposes a conceptual model that interprets sustainable finance as a governed system rather than a collection of isolated instruments, together with a multi-level governance framework integrating strategic (policy), sectoral, and project-level decision-making with systems of key performance indicators, monitoring, and feedback. The findings demonstrate that the effectiveness of sustainable financing critically depends on the coherence between financial instruments, governance architectures, and decarbonization objectives, which ultimately determines the capacity to translate mobilized capital into tangible energy infrastructure modernization and measurable emissions reductions. The proposed approach provides a practical foundation for improving energy transition policies and investment strategies at both national and supranational levels. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

32 pages, 2775 KB  
Review
AIoT at the Frontline of Climate Change Management: Enabling Resilient, Adaptive, and Sustainable Smart Cities
by Claudia Banciu and Adrian Florea
Climate 2026, 14(1), 19; https://doi.org/10.3390/cli14010019 - 15 Jan 2026
Abstract
The convergence of Artificial Intelligence (AI) and the Internet of Things (IoT), known as Artificial Intelligence of Things (AIoT), has emerged as a transformative paradigm for enabling intelligent, data-driven, and context-aware decision-making in urban environments to reduce the carbon footprint of mobility and [...] Read more.
The convergence of Artificial Intelligence (AI) and the Internet of Things (IoT), known as Artificial Intelligence of Things (AIoT), has emerged as a transformative paradigm for enabling intelligent, data-driven, and context-aware decision-making in urban environments to reduce the carbon footprint of mobility and industry. This review examines the conceptual foundations, and state-of-the-art developments of AIoT, with a particular emphasis on its applications in smart cities and its relevance to climate change management. AIoT integrates sensing, connectivity, and intelligent analytics to provide optimized solutions in transportation systems, energy management, waste collection, and environmental monitoring, directly influencing urban sustainability. Beyond urban efficiency, AIoT can play a critical role in addressing the global challenges and management of climate change by (a) precise measurements and autonomously remote monitoring; (b) real-time optimization in renewable energy distribution; and (c) developing prediction models for early warning of climate disasters. This paper performs a literature review and bibliometric analysis to identify the current landscape of AIoT research in smart city contexts. Over 1885 articles from Web of Sciences and over 1854 from Scopus databases, published between 1993 and January 2026, were analyzed. The results reveal a strong and accelerating growth in research activity, with publication output doubling in the most recent two years compared to 2023. Waste management and air quality monitoring have emerged as leading application domains, where AIoT-based optimization and predictive models demonstrate measurable improvements in operational efficiency and environmental impact. Altogether, these support faster and more effective decisions for reducing greenhouse gas emissions and ensuring the sustainable use of resources. The reviewed studies reveal rapid advancements in edge intelligence, federated learning, and secure data sharing through the integration of AIoT with blockchain technologies. However, significant challenges remain regarding scalability, interoperability, privacy, ethical governance, and the effective translation of research outcomes into policy and citizen-oriented tools such as climate applications, insurance models, and disaster alert systems. By synthesizing current research trends, this article highlights the potential of AIoT to support sustainable, resilient, and citizen-centric smart city ecosystems while identifying both critical gaps and promising directions for future investigations. Full article
Show Figures

Figure 1

41 pages, 2683 KB  
Article
Multilevel Governance of Urban Climate Adaptation in the European Union: An Overview
by Grazia Brunetta and Martina Caputo
Urban Sci. 2026, 10(1), 50; https://doi.org/10.3390/urbansci10010050 - 14 Jan 2026
Viewed by 27
Abstract
Europe is warming faster than the global average, making climate change adaptation a central concern for urban policy and planning. This article develops and applies an analytical framework to assess the maturity of multilevel adaptation governance across European Union Member States as of [...] Read more.
Europe is warming faster than the global average, making climate change adaptation a central concern for urban policy and planning. This article develops and applies an analytical framework to assess the maturity of multilevel adaptation governance across European Union Member States as of 2025. Governance is operationalised through eight dimensions: (i) National Adaptation Strategies/Plans; (ii) Regional Adaptation Plans; (iii) Local Adaptation Plans; (iv) Sectoral Adaptation Plans; (v) integration in National Urban Policies; (vi) adaptive content in Long-Term Strategies; (vii) adaptation relevance in climate laws; and (viii) participation in the Covenant of Mayors. The results reveal pronounced heterogeneity: many Member States have up-to-date national strategies but display incomplete territorial diffusion, weak legal anchoring, or limited urban policy standards. By linking auditable rules to urban-facing instruments, this study offers a practical tool for benchmarking governance capacities, prioritising reforms, and tracking progress towards integrated, multilevel adaptation systems that support resilient urban development across the European Union. Full article
Show Figures

Figure 1

18 pages, 1503 KB  
Systematic Review
Cunninghamia lanceolata Resource Distribution Research, Hotspots and Trends via Bibliometric Analysis
by Huaxue Wu, Jie Huan, Zhoujian He, Liqiong Jiang and Peng Zhu
Plants 2026, 15(2), 255; https://doi.org/10.3390/plants15020255 - 14 Jan 2026
Viewed by 32
Abstract
Chinese fir [Cunninghamia lanceolata (Lamb.) Hook.] is a fast-growing species widely utilized in construction, industrial raw materials. Owing to its broad application scope, research on Chinese fir is fragmented across multiple disciplines, making it difficult to grasp the overall research context and [...] Read more.
Chinese fir [Cunninghamia lanceolata (Lamb.) Hook.] is a fast-growing species widely utilized in construction, industrial raw materials. Owing to its broad application scope, research on Chinese fir is fragmented across multiple disciplines, making it difficult to grasp the overall research context and trends. Following the PRISMA guidelines, we retrieved articles related to Chinese fir published between 1942 and 2024 from Chinese databases (i.e., CNKI, Wanfang Data, and VIP Chinese Journal Database) and the Web of Science Core Collection (WOSCC). After removing duplicate and irrelevant records, a total of 7174 valid records were retained, including 5862 from Chinese databases and 1312 from WOSCC. The PRISMA-screened literature was imported into CiteSpace V.6.2.R4 for bibliometric analysis. Through keyword clustering, burst detection, and timeline mapping, we focused on analyzing the domestic resource distribution, research hotspots, and evolutionary trends of Chinese fir research. The results showed that research publications on Chinese fir have increased year by year, and international research started earlier and is more in-depth, while Chinese research covers a wider scope. Both follow two stages (germination and growth). Chinese research focuses on basic application areas such as seedling cultivation and plantation management; international research emphasizes ecological functions and biomass development. Global research exhibits convergence in the field of eco-environmental interactions; specifically, both domestic and international studies investigate the impacts of climate change (e.g., drought and global warming) and nitrogen deposition on the growth and functional evolution of Chinese fir. This study provides references for researchers, forestry policymakers, and planters. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

28 pages, 4532 KB  
Article
Green Transition Risks in the Construction Sector: A Qualitative Analysis of European Green Deal Policy Documents
by Muhammad Mubasher, Alok Rawat, Emlyn Witt and Simo Ilomets
Sustainability 2026, 18(2), 822; https://doi.org/10.3390/su18020822 - 14 Jan 2026
Viewed by 56
Abstract
The construction sector is central to achieving the objectives of the European Green Deal (EGD). While existing research on transition risks predominantly focuses on project- or firm-level challenges, less is known about the transition risks implied by high-level EU policy documents. This study [...] Read more.
The construction sector is central to achieving the objectives of the European Green Deal (EGD). While existing research on transition risks predominantly focuses on project- or firm-level challenges, less is known about the transition risks implied by high-level EU policy documents. This study addresses this gap by systematically analysing 101 EGD-related policy and guidance documents published between 2019 and February 2025. A mixed human–AI content analysis approach was applied, combining human expert manual coding with automated validation using large language models (Kimi K2 and GLM 4.6). The final dataset contains 2752 coded risk references organised into eight main categories and twenty-six subcategories. Results show that transition risks are most frequently associated with environmental, economic, and legislative domains, with Climate Change Impact, Cost of Transition, Pollution, Investment Risks, and Implementation Variability emerging as the most prominent risks across the corpus. Technological and social risks appear less frequently but highlight important systemic and contextual vulnerabilities. Overall, analysis of the EGD policy texts reveals the green transition as being constrained not only by environmental pressures but also by financial feasibility and execution capacity. The study provides a structured, policy-level risk profile of the EGD and demonstrates the value of hybrid human–LLM analysis for large-scale policy content analysis and interpretation. These insights support policymakers and industry stakeholders to anticipate structural uncertainties that may affect the construction sector’s transition toward a low-carbon, circular economy. Full article
Show Figures

Figure 1

22 pages, 2581 KB  
Article
Cassava Response to Weather Variability in Eastern Africa
by Zsuzsanna Bacsi and Dawit Dandano Jarso
Agriculture 2026, 16(2), 209; https://doi.org/10.3390/agriculture16020209 - 13 Jan 2026
Viewed by 135
Abstract
Cassava is one of the most important crops in global food security. It is the second most important staple crop in Africa. Its significance is enhanced by the fact that it very well tolerates droughts, and therefore it may be a prospective response [...] Read more.
Cassava is one of the most important crops in global food security. It is the second most important staple crop in Africa. Its significance is enhanced by the fact that it very well tolerates droughts, and therefore it may be a prospective response to climate change in hot and dry areas. The potentials of cassava are under-utilized in Eastern Africa, and there is a lack of research studies regarding climate impacts on cassava yields in this region. The present research focuses on cassava production in Eastern Africa, analyzing the relationship of cassava yields, harvested areas, temperature, and precipitation from 1961 to 2023. The statistical analysis applies panel regression for the 63 years of time series, for the 15 most important cassava producing countries of Eastern Africa. Findings show that while the impacts of rainfall are insignificant on yields, the effects of temperature are significantly positive, indicating yield and area increases with warming climate. An expansion of the cassava growing area and the expanding rural population contributed to decreasing yields, probably because of the expansion of smallholder subsistence farming, suffering from to limitations in other farming resources. Therefore, even if climate change may benefit cassava production, other factors create severe limitations on improving yields. However, the positive response of the crop to rising temperatures is a clear sign that it is a useful choice for food security under climate change and would deserve more support from agricultural policymakers in Eastern Africa. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

27 pages, 410 KB  
Review
Learning to Be Human: Forming and Implementing National Blends of Transformative and Holistic Education to Address 21st Century Challenges and Complement AI
by Margaret Sinclair
Educ. Sci. 2026, 16(1), 107; https://doi.org/10.3390/educsci16010107 - 12 Jan 2026
Viewed by 59
Abstract
The paper introduces ‘transformative’ curriculum initiatives such as education for sustainable development (ESD) and global citizenship education (GCED), which address ‘macro’ challenges such as climate change, together with ‘holistic’ approaches to student learning such as ‘social and emotional learning’ (SEL) and education for [...] Read more.
The paper introduces ‘transformative’ curriculum initiatives such as education for sustainable development (ESD) and global citizenship education (GCED), which address ‘macro’ challenges such as climate change, together with ‘holistic’ approaches to student learning such as ‘social and emotional learning’ (SEL) and education for ‘life skills’, ‘21st century skills’, ‘transversal competencies’, AI-related ethics, and ‘health and well-being.’ These are reflected in Section 6 of the 2023 UNESCO Recommendation on Education for Peace, Human Rights and Sustainable Development. It is suggested that such broad goals put forward at global policy level may serve as inspiration for national context-specific programming, while also needing better integration of national insights and cultural differences into global discourse. The paper aims to provide insights to education policy-makers responsible for national curriculum, textbooks and other learning resources, teacher training and examination processes, helping them to promote the human values, integrity and sense of agency needed by students in a time of multiple global and personal challenges. This requires an innovative approach to curricula for established school subjects and can be included in curricula being developed for AI literacy and related ethics. Research into the integration of transformative and holistic dimensions into curricula, materials, teacher preparation, and assessment is needed, as well as ongoing monitoring and feedback. AI-supported networking and resource sharing at local, national and international level can support implementation of transformative and holistic learning, to maintain and strengthen the human dimensions of learning. Full article
20 pages, 733 KB  
Review
Treated Wastewater as an Irrigation Source in South Africa: A Review of Suitability, Environmental Impacts, and Potential Public Health Risks
by Itumeleng Kgobokanang Jacob Kekana, Pholosho Mmateko Kgopa and Kingsley Kwabena Ayisi
Water 2026, 18(2), 194; https://doi.org/10.3390/w18020194 - 12 Jan 2026
Viewed by 129
Abstract
Availability of irrigation water during growing seasons in the Republic of South Africa (RSA) remains a significant concern. Persistent droughts and unpredictable rainfall patterns attributed to climate change, coupled with an increasing population, have exacerbated irrigation water scarcity. Globally, treated wastewater has been [...] Read more.
Availability of irrigation water during growing seasons in the Republic of South Africa (RSA) remains a significant concern. Persistent droughts and unpredictable rainfall patterns attributed to climate change, coupled with an increasing population, have exacerbated irrigation water scarcity. Globally, treated wastewater has been utilised as an irrigation water source; however, despite global advances in the usage of treated wastewater, its suitability for irrigation in RSA remains a contentious issue. Considering this uncertainty, this review article aims to unravel the South African scenario on the suitability of treated wastewater for irrigation purposes and highlights the potential environmental impacts and public health risks. The review synthesised literature in the last two decades (2000–present) using Web of Science, ScienceDirect, ResearchGate, and Google Scholar databases. Findings reveal that treated wastewater can serve as a viable irrigation source in the country, enhancing various soil parameters, including nutritional pool, organic carbon, and fertility status. However, elevated levels of salts, heavy metals, and microplastics in treated wastewater resulting from insufficient treatment of wastewater processes may present significant challenges. These contaminants might induce saline conditions and increase heavy metals and microplastics in soil systems and water bodies, thereby posing a threat to public health and potentially causing ecological risks. Based on the reviewed literature, irrigation with treated wastewater should be implemented on a localised and pilot basis. This review aims to influence policy-making decisions regarding wastewater treatment plant structure and management. Stricter monitoring and compliance policies, revision of irrigation water standards to include emerging contaminants such as microplastics, and intensive investment in wastewater treatment plants in the country are recommended. With improved policies, management, and treatment efficiency, treated wastewater can be a dependable, sustainable, and practical irrigation water source in the country with minimal public health risks. Full article
(This article belongs to the Special Issue Sustainable Agricultural Water Management Under Climate Change)
Show Figures

Figure 1

43 pages, 5996 KB  
Article
Dynamic and Balanced Monitoring of the Path to Carbon Neutrality Among European Union Countries: The DETA Framework for Energy Transition Assessment
by Magdalena Tutak, Jarosław Brodny and Wieslaw Wes Grebski
Energies 2026, 19(2), 358; https://doi.org/10.3390/en19020358 - 11 Jan 2026
Viewed by 113
Abstract
This paper addresses the highly important and timely issue of the energy transition, a topic of particular relevance within the European Union (EU), which has long been a global leader in pursuing climate neutrality. The article proposes a novel framework for monitoring energy [...] Read more.
This paper addresses the highly important and timely issue of the energy transition, a topic of particular relevance within the European Union (EU), which has long been a global leader in pursuing climate neutrality. The article proposes a novel framework for monitoring energy transition progress and its temporal dynamics across the EU countries, adopting a decade-long analytical horizon. The research employs the Dynamic Energy Transition Assessment (DETA) method, which is structured around five key pillars of the energy transition: (1) decarbonization and the shift toward clean energy; (2) energy security and system resilience; (3) energy justice, health impacts, and affordability; (4) energy efficiency and energy management; (5) development, innovation, and modernization of energy infrastructure. Applying this method enabled the study to meet its central objective: evaluating the level of development of these pillars, analyzing the balance among them, and examining both the direction and speed of changes over time. This dynamic approach integrates three core components of transformation processes, state, quality (coherence), and pace of change, offering an innovative combination of structural and temporal perspectives. The originality of this framework lies in its ability to capture the multidimensional and evolving nature of the energy transition. The study is based on 19 indicators, with indicator weights determined through Entropy and Criteria Importance Through Intercriteria Correlation (CRITIC) analytical methods, while pillar weights were assigned using the AHP method in alignment with EU strategic priorities. The findings reveal substantial variation and dynamism in the implementation of energy transition processes across the EU countries. Denmark, Sweden, Germany, France, Portugal, and Spain demonstrate the highest performance in terms of both quality and dynamism, whereas Malta, Cyprus, and Luxembourg perform the weakest. The proposed methodology and the resulting assessment of the level, quality, and dynamics of transformation processes offer broad practical applications. In particular, they can support the monitoring of progress toward EU climate and energy policy goals and inform management and decision-making aimed at achieving a resilient, sustainable, and equitable energy transition. Full article
Show Figures

Figure 1

29 pages, 15074 KB  
Review
Optimizing Urban Green Space Ecosystem Services for Resilient and Sustainable Cities: Research Landscape, Evolutionary Trajectories, and Future Directions
by Junhui Sun, Jun Xia and Luling Qu
Forests 2026, 17(1), 97; https://doi.org/10.3390/f17010097 - 11 Jan 2026
Viewed by 127
Abstract
Urban forests and green spaces are increasingly promoted as Nature-Based Solutions (NbS) to mitigate climate risks, enhance human well-being, and support resilient and sustainable cities. Focusing on the theme of optimizing urban green space ecosystem services to foster resilient and sustainable cities, this [...] Read more.
Urban forests and green spaces are increasingly promoted as Nature-Based Solutions (NbS) to mitigate climate risks, enhance human well-being, and support resilient and sustainable cities. Focusing on the theme of optimizing urban green space ecosystem services to foster resilient and sustainable cities, this study systematically analyzes 861 relevant publications indexed in the Web of Science Core Collection from 2005 to 2025. Using bibliometric analysis and scientific knowledge mapping methods, the research examines publication characteristics, spatial distribution patterns, collaboration networks, knowledge bases, research hotspots, and thematic evolution trajectories. The results reveal a rapid upward trend in this field over the past two decades, with the gradual formation of a multidisciplinary knowledge system centered on environmental science and urban research. China, the United States, and several European countries have emerged as key nodes in global knowledge production and collaboration networks. Keyword co-occurrence and cluster analyses indicate that research themes are mainly concentrated in four clusters: (1) ecological foundations and green process orientation, (2) nature-based solutions and blue–green infrastructure configuration, (3) social needs and environmental justice, and (4) macro-level policies and the sustainable development agenda. Overall, the field has evolved from a focus on ecological processes and individual service functions toward a comprehensive transition emphasizing climate resilience, human well-being, and multi-actor governance. Based on these findings, this study constructs a knowledge ecosystem framework encompassing knowledge base, knowledge structure, research hotspots, frontier trends, and future pathways. It further identifies prospective research directions, including climate change adaptation, integrated planning of blue–green infrastructure, refined monitoring driven by remote sensing and spatial big data, and the embedding of urban green space ecosystem services into the Sustainable Development Goals and multi-level governance systems. These insights provide data support and decision-making references for deepening theoretical understanding of Urban Green Space Ecosystem Services (UGSES), improving urban green infrastructure planning, and enhancing urban resilience governance capacity. Full article
(This article belongs to the Special Issue Sustainable Urban Forests and Green Environments in a Changing World)
Show Figures

Figure 1

21 pages, 1154 KB  
Article
The Dynamics Between Green Innovation and Environmental Quality in the UAE: New Evidence from Wavelet Correlation Methods
by Yahya Sayed Omar and Ahmad Bassam Alzubi
Sustainability 2026, 18(2), 713; https://doi.org/10.3390/su18020713 - 10 Jan 2026
Viewed by 137
Abstract
Environmental sustainability has emerged as a global imperative in the context of accelerating climate change, rapid industrialization, and increasing ecological stress. Ecological quality is necessary for countries to pursue because of its overall benefits to the entire ecosystem. Therefore, due to the significant [...] Read more.
Environmental sustainability has emerged as a global imperative in the context of accelerating climate change, rapid industrialization, and increasing ecological stress. Ecological quality is necessary for countries to pursue because of its overall benefits to the entire ecosystem. Therefore, due to the significant role that the United Arab Emirates (UAE) plays in the global environment, this research examines the role of Green Innovation (GI), Financial Globalization (FG), Economic Growth (GDP), and Foreign Direct Investment (FDI) in influencing Environmental Quality (EQ) in the UAE from 1991–2022. The UAE is well known for these economic indices. Furthermore, this study employed the innovative Quantile Augmented Dickey–Fuller (QADF) test, Wavelet Quantile Regression (WQR), Wavelet Quantile Correlation (WQC), and Quantile-on-Quantile Granger Causality (QQGC). WQR is able to identify connections between series over a range of quantiles and periods. WQC evaluates the co-movement between variables at different quantile levels and across several scales. The QQGC captures the causal effect of the regressors on EQ. These methods are quite advanced compared to other traditional econometric methods. Based on the outcome of the WQR and WQC methods, evidence shows that GI contributes to EQ across all quantiles in the short, medium, and long term, while FG, GDP, and FDI reduces EQ across all quantiles in the short, medium, and long term. The QQGC results also affirm causality among the variables, implying that GI, FG, GDP, and FDI can predict EQ across all quantiles. This research recommends that the UAE should improve on its environmental policies both domestically and internationally by making them more stringent, and continue to promote clean energy investments. Full article
(This article belongs to the Special Issue Environmental Economics in Sustainable Social Policy Development)
Show Figures

Figure 1

0 pages, 6492 KB  
Article
Scenario-Based Projections and Assessments of Future Terrestrial Water Storage Imbalance in China
by Renke Ji, Yingwei Ge, Hao Qin, Jing Zhang, Jingjing Liu and Chao Wang
Water 2026, 18(2), 169; https://doi.org/10.3390/w18020169 - 8 Jan 2026
Viewed by 149
Abstract
The combined effects of climate change and socio-economic development have intensified the risk of water supply–demand imbalance in China. To project future trends, this study develops a multi-scenario coupled prediction framework integrating climate, socio-economic, and human activity drivers, combining data-driven and physically based [...] Read more.
The combined effects of climate change and socio-economic development have intensified the risk of water supply–demand imbalance in China. To project future trends, this study develops a multi-scenario coupled prediction framework integrating climate, socio-economic, and human activity drivers, combining data-driven and physically based modeling approaches to assess terrestrial water storage imbalance in nine major river basins under six representative SSP–RCP scenarios through the end of the 21st century. Using ISIMIP multi-model runoff outputs along with GDP and population projections, agricultural, industrial, and domestic water demands were estimated. A Water Conflict Index was proposed by integrating the Water Supply–Demand Stress Index and the Standardized Hydrological Runoff Index to identify high-risk basins. Results show that under high-emission scenarios, the WCI in the Yellow River, Hai River, and Northwest Rivers remains high, peaking during 2040–2069, while low-emission scenarios significantly alleviate stress in most basins. Water allocation inequity is mainly driven by insufficient supply in arid northern regions and limited redistribution capacity in resource-rich southern basins. Targeted strategies are recommended for different risk types, including inter-basin water transfer, optimization of water use structure and pricing policies, and the development of resilient management systems, providing scenario-based quantitative support for future water security and policy-making in China. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

21 pages, 860 KB  
Article
Pragmatic Framing of Sustainability in UN and UNESCO Leadership Speeches
by Faiza Mohamed Tabib, Nibal Al Muallem, Maher Ibrahim Tawdrous, Khaled Younis Alderbashi and Moustafa Kamal Moussa
Sustainability 2026, 18(2), 632; https://doi.org/10.3390/su18020632 - 8 Jan 2026
Viewed by 181
Abstract
Leadership speeches delivered within the United Nations and UNESCO play an active role in shaping global policy discourse. As widely circulated texts, they influence how policymakers understand sustainability, responsibility, and education by defining global challenges, allocating responsibility, and communicating shared priorities. This study [...] Read more.
Leadership speeches delivered within the United Nations and UNESCO play an active role in shaping global policy discourse. As widely circulated texts, they influence how policymakers understand sustainability, responsibility, and education by defining global challenges, allocating responsibility, and communicating shared priorities. This study examines how these concepts are articulated in selected leadership speeches delivered between 2022 and 2025. The analysis adopts a pragmatic framing approach informed by non-linear pragmatic theory. It focuses on six interrelated dimensions: problem definition, causal responsibility, treatment responsibility, value framing, future-oriented framing, and education-specific framing. The findings show that sustainability is consistently framed as a complex ethical challenge linked to climate change, social inequality, and global injustice. Responsibility is presented as shared but uneven, with greater obligations assigned to high-income countries, international institutions, and education systems. Education is addressed both directly, through references to curriculum reform, teacher preparation, and higher education leadership, and indirectly as a means of supporting climate resilience, ethical technological development, and global citizenship. Overall, the study demonstrates that leadership speeches function as influential discursive sites through which sustainability narratives are advanced and priorities for Education for Sustainable Development are communicated, highlighting the value of pragmatic framing for research on international sustainability communication. Full article
Show Figures

Figure 1

Back to TopTop