Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,533)

Search Parameters:
Keywords = climate change adaptation policy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1666 KB  
Review
Agroforestry as a Climate-Smart Economic Strategy: Carbon Benefits, Adaptation Pathways, and Global Evidence from Smallholder Systems
by Muhammad Asad Abbas, Suhail Asad, Jianqiang Zhang, Altyeb Ali Abaker Omer, Wajee ul Hassan, Muhammad Ameen, Chen Niu and Ya Li
Forests 2026, 17(2), 159; https://doi.org/10.3390/f17020159 (registering DOI) - 25 Jan 2026
Abstract
Smallholder agricultural systems in tropical and subtropical regions are threatened by climate change. This systematic review of 218 peer-reviewed studies (2000–2024) synthesizes evidence on agroforestry’s role as a climate-smart economic strategy across Africa, Asia, and Latin America. Using a PRISMA-guided approach, we evaluated [...] Read more.
Smallholder agricultural systems in tropical and subtropical regions are threatened by climate change. This systematic review of 218 peer-reviewed studies (2000–2024) synthesizes evidence on agroforestry’s role as a climate-smart economic strategy across Africa, Asia, and Latin America. Using a PRISMA-guided approach, we evaluated carbon sequestration pathways, biophysical adaptation benefits, and socioeconomic outcomes. Findings indicate that agroforestry systems can sequester 0.5–5 Mg C ha−1 yr−1 in biomass and soils. The results show that agroforestry has the potential to improve above- and below-ground carbon stocks, moderate microclimates, decrease erosion and improve functional biodiversity. The results, however, differ greatly depending on the type of system, ecology and practice. The socioeconomic advantages can be diversification of income and stability of the yield, and adoption is limited due to barriers related to the economy, lack of security in tenure, information asymmetry, and insufficient policy encouragement. We find that agroforestry is a multifunctional and climate resistant land-use approach, but the potential that agroforestry has cannot be fulfilled without context-specific policies, better extension services and inclusive carbon financing schemes. Full article
Show Figures

Figure 1

30 pages, 3470 KB  
Article
Integrated Coastal Zone Management in the Face of Climate Change: A Geospatial Framework for Erosion and Flood Risk Assessment
by Theodoros Chalazas, Dimitrios Chatzistratis, Valentini Stamatiadou, Isavela N. Monioudi, Stelios Katsanevakis and Adonis F. Velegrakis
Water 2026, 18(2), 284; https://doi.org/10.3390/w18020284 - 22 Jan 2026
Viewed by 15
Abstract
This study presents a comprehensive geospatial framework for assessing coastal vulnerability and ecosystem service distribution along the Greek coastline, one of the longest and most diverse in Europe. The framework integrates two complementary components: a Coastal Erosion Vulnerability Index applied to all identified [...] Read more.
This study presents a comprehensive geospatial framework for assessing coastal vulnerability and ecosystem service distribution along the Greek coastline, one of the longest and most diverse in Europe. The framework integrates two complementary components: a Coastal Erosion Vulnerability Index applied to all identified beach units, and Coastal Flood Risk Indexes focused on low-lying and urbanized coastal segments. Both indices draw on harmonized, open-access European datasets to represent environmental, geomorphological, and socio-economic dimensions of risk. The Coastal Erosion Vulnerability Index is developed through a multi-criteria approach that combines indicators of physical erodibility, such as historical shoreline retreat, projected erosion under climate change, offshore wave power, and the cover of seagrass meadows, with socio-economic exposure metrics, including land use composition, population density, and beach-based recreational values. Inclusive accessibility for wheelchair users is also integrated to highlight equity-relevant aspects of coastal services. The Coastal Flood Risk Indexes identify flood-prone areas by simulating inundation through a novel point-based, computationally efficient geospatial method, which propagates water inland from coastal entry points using Extreme Sea Level (ESL) projections for future scenarios, overcoming the limitations of static ‘bathtub’ approaches. Together, the indices offer a spatially explicit, scalable framework to inform coastal zone management, climate adaptation planning, and the prioritization of nature-based solutions. By integrating vulnerability mapping with ecosystem service valuation, the framework supports evidence-based decision-making while aligning with key European policy goals for resilience and sustainable coastal development. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

24 pages, 1938 KB  
Article
The Swedish Forest-Based Sector in Turbulent Times
by Ragnar Jonsson
Forests 2026, 17(1), 141; https://doi.org/10.3390/f17010141 - 21 Jan 2026
Viewed by 62
Abstract
The European forest-based sector faces a perfect storm of demographic, geopolitical, climatic, and policy-driven challenges. These multipronged, oftentimes interlinked factors are particularly consequential for export-oriented, forest-rich economies like Sweden. This study provides a qualitative scenario analysis to assess potential futures for the Swedish [...] Read more.
The European forest-based sector faces a perfect storm of demographic, geopolitical, climatic, and policy-driven challenges. These multipronged, oftentimes interlinked factors are particularly consequential for export-oriented, forest-rich economies like Sweden. This study provides a qualitative scenario analysis to assess potential futures for the Swedish forest sector towards 2050, focusing on the impacts of key drivers: geopolitical alignment, European Union (EU) policy implementation, economic and demographic trends, technological progress, and climate change. Two critical uncertainties—Europe’s geopolitical positioning and the policy balance between wood use and forest conservation—form the axes for four contrasting scenarios. Results indicate that, across all futures, volume-based manufacturing in Sweden is expected to stagnate or decline due to high costs and weak EU demand, with bulk production shifting to the Global South. Long-term viability hinges on a strategic shift to high-value segments (e.g., specialty packaging solutions, biochemicals, construction components) and the adoption of advanced technologies. Concurrently, the sector must adapt to increased forest disturbances and diversify tree species, despite industry processes being optimized for current conifers. The study concludes that without a decisive transition from commodity production to innovative, value-added strategies, the Swedish forest sector’s competitiveness and resilience are at serious risk. Full article
Show Figures

Figure 1

32 pages, 2929 KB  
Article
Policy Plateau and Structural Regime Shift: Hybrid Forecasting of the EU Decarbonisation Gap Toward 2030 Targets
by Oksana Liashenko, Kostiantyn Pavlov, Olena Pavlova, Olga Demianiuk, Robert Chmura, Bożena Sowa and Tetiana Vlasenko
Sustainability 2026, 18(2), 1114; https://doi.org/10.3390/su18021114 - 21 Jan 2026
Viewed by 86
Abstract
This study investigates the structural evolution and projected trajectory of greenhouse gas (GHG) emissions across the EU27 from 1990 to 2030, with a particular focus on their implications for the effectiveness of European climate policy. Drawing on official sectoral data and employing a [...] Read more.
This study investigates the structural evolution and projected trajectory of greenhouse gas (GHG) emissions across the EU27 from 1990 to 2030, with a particular focus on their implications for the effectiveness of European climate policy. Drawing on official sectoral data and employing a multi-method framework combining time series modelling (ARIMA), machine learning (Random Forest), regime-switching analysis, and segmented linear regression, we assess past dynamics, detect structural shifts, and forecast future trends. Empirical findings, based on Markov-switching models and segmented regression analysis, indicate a statistically significant regime change around 2014, marking a transition to a new emissions pattern characterised by a deceleration in reduction rates. While the energy sector experienced the most significant decline, agriculture and industry have gained relative prominence, underscoring their growing strategic importance as targets for policy interventions. Hybrid ARIMA–ML forecasts indicate that, under current trajectories, the EU is unlikely to meet its 2030 Fit for 55 targets without adaptive and sector-specific interventions, with a projected shortfall of 12–15 percentage points relative to 1990 levels, excluding LULUCF. The results underscore critical weaknesses in the EU’s climate policy architecture and reveal a clear need for transformative recalibration. Without accelerated action and strengthened governance mechanisms, the post-2014 regime risks entrenching a plateau in emissions reductions, jeopardising long-term climate objectives. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

20 pages, 1201 KB  
Article
Climate Change Dynamics in the High-Andean Communities of Peru: Social Imaginaries and Adaptation Practices of Agricultural Producers
by Fermin Francisco Chaiña-Chura, Liz Janet Marroquín-Carlo, Edith Liz Ruelas-Ccama, Germán Belizario-Quispe, Dante Atilio Salas-Avila, Wenceslao Quispe-Borda, Beatriz Vilma Mamani-Maron and Edgar Quispe-Mamani
Environments 2026, 13(1), 60; https://doi.org/10.3390/environments13010060 - 21 Jan 2026
Viewed by 94
Abstract
Climate change constitutes a growing challenge for high-Andean communities worldwide, whose livelihoods depend directly on agriculture, livestock farming, and the stability of local ecosystems. In this context, the study seeks to understand the construction of social imaginaries among agricultural producers regarding the dynamics [...] Read more.
Climate change constitutes a growing challenge for high-Andean communities worldwide, whose livelihoods depend directly on agriculture, livestock farming, and the stability of local ecosystems. In this context, the study seeks to understand the construction of social imaginaries among agricultural producers regarding the dynamics of climate variability, with the aim of analyzing both the vulnerabilities and adaptive capacities that emerge in their everyday practices. Based on a qualitative approach, supported by 32 interviews with key informants from 16 communities, 04 focus groups, and documentary analysis, field data were collected and processed using Atlas.ti software. The testimonies of community members from Cojata, Puno–Peru, revealed social imaginaries and collective responses linked to this phenomenon. The findings show feelings of concern and uncertainty, diverse interpretations of climate change dynamics, reconfiguration of cultural meanings, and the deployment of hybrid adaptation strategies that combine ancestral knowledge with contemporary resources. Overall, these findings show that social imaginaries play a central role in how communities face the climate crisis, revealing both the persistence of structural inequalities and the need to strengthen intercultural territorial policies that recognize local knowledge, promote communal cooperation, and foster a horizon of resilience and climate justice. Full article
Show Figures

Figure 1

23 pages, 1715 KB  
Article
From Identification to Guiding Action: A Systematic Heuristic to Prioritise Drivers of Change for Water Management
by Jo Mummery and Leonie J. Pearson
Water 2026, 18(2), 278; https://doi.org/10.3390/w18020278 - 21 Jan 2026
Viewed by 72
Abstract
Global water management faces a critical challenge: whilst scholarly consensus recognises that multiple, interacting drivers fundamentally shape water availability and management capacity, operational governance frameworks fail to systematically incorporate this understanding. This disconnect is particularly acute in public good contexts where incomplete knowledge, [...] Read more.
Global water management faces a critical challenge: whilst scholarly consensus recognises that multiple, interacting drivers fundamentally shape water availability and management capacity, operational governance frameworks fail to systematically incorporate this understanding. This disconnect is particularly acute in public good contexts where incomplete knowledge, diverse stakeholder values, and statutory planning mandates create distinct challenges. Using Australia’s Murray–Darling Basin as a pilot case, this research develops and demonstrates a rapid, policy-relevant heuristic for identifying, prioritising, and incorporating drivers of change in complex socio-ecological water systems. Through structured participatory deliberation with 70 experts spanning research, policy, industry, and community sectors across three sequential workshops and 15 semi-structured interviews, we systematically identified key drivers across environmental, governance, economic, social, and legacy dimensions. A risk and sensitivity assessment framework enabled prioritisation based on impact, vulnerability, and urgency. Climate change, drought, water quality events, and cumulative impacts emerged as the highest-priority future drivers, with climate change acting as a threat multiplier, whilst governance drivers show declining relative significance. Using these methodological innovations, we synthesise the I-PLAN heuristic: five interdependent dimensions (Integrative Knowledge, Prioritisation for Management, Linkages between Drivers, Adaptive Agendas, and Normative Collaboration) that provide water planners with a transferable, operational tool for driver identification and bridging to planning and management in data-sparse contexts. Full article
Show Figures

Figure 1

8 pages, 208 KB  
Editorial
Editorial for the Special Issue: Nature-Based Solutions to Extreme Wildfires
by Adrián Regos
Fire 2026, 9(1), 47; https://doi.org/10.3390/fire9010047 - 21 Jan 2026
Viewed by 99
Abstract
Extreme wildfires are becoming increasingly frequent and severe across many regions worldwide, driven by climate change, land-use transitions, and long-standing fire-suppression legacies. In this context, Nature-based Solutions (NbS)—defined as actions that work with ecological processes to address societal challenges while providing biodiversity and [...] Read more.
Extreme wildfires are becoming increasingly frequent and severe across many regions worldwide, driven by climate change, land-use transitions, and long-standing fire-suppression legacies. In this context, Nature-based Solutions (NbS)—defined as actions that work with ecological processes to address societal challenges while providing biodiversity and socio-economic benefits—offer a promising yet underdeveloped pathway for enhancing wildfire resilience. This Special Issue brings together eleven contributions spanning empirical ecology, landscape configuration, simulation modelling, spatial optimisation, ecosystem service analysis, governance assessment, and community-based innovation. Collectively, these studies demonstrate that restoring ecological fire regimes, promoting multifunctional landscapes, and integrating advanced decision support tools can substantially reduce wildfire hazard while sustaining ecosystem functions. They also reveal significant governance barriers, including fragmented policies, limited investment in prevention, and challenges in incorporating social demands into territorial planning. By synthesising these insights, this editorial identifies several strategic priorities for advancing NbS in fire-prone landscapes: mainstreaming prevention within governance frameworks, strengthening the science–practice interface, investing in long-term socio-ecological monitoring, managing trade-offs transparently, and empowering local communities. Together, the findings highlight that effective NbS emerge from the alignment of ecological, technological, institutional, and social dimensions, offering a coherent pathway toward more resilient, biodiverse, and fire-adaptive landscapes. Full article
26 pages, 2235 KB  
Article
Climate-Resilient Reinforcement Learning Control of Hybrid Ventilation in Mediterranean Offices Under Future Climate Scenarios
by Hussein Krayem, Jaafar Younes and Nesreen Ghaddar
Sustainability 2026, 18(2), 1037; https://doi.org/10.3390/su18021037 - 20 Jan 2026
Viewed by 105
Abstract
This study develops an explainable reinforcement learning (RL) control framework for hybrid ventilation in Mediterranean office buildings to enhance thermal comfort, energy efficiency, and long-term climate resilience. A working environment was created Using EnergyPlus to represent an office test cell equipped with natural [...] Read more.
This study develops an explainable reinforcement learning (RL) control framework for hybrid ventilation in Mediterranean office buildings to enhance thermal comfort, energy efficiency, and long-term climate resilience. A working environment was created Using EnergyPlus to represent an office test cell equipped with natural ventilation and air conditioning. The RL controller, based on Proximal Policy Optimization (PPO), was trained exclusively on present-day Typical Meteorological Year (TMY) data from Beirut and subsequently evaluated, without retraining, under future 2050 and 2080 climate projections (SSP1-2.6 and SSP5-8.5) generated using the Belcher morphing technique, in order to quantify robustness under projected climate stressors. Results showed that the RL control achieved consistent, though moderate, annual HVAC energy reductions (6–9%), and a reduction in indoor overheating degree (IOD) by about 35.66% compared to rule-based control, while maintaining comfort and increasing natural ventilation hours. The Climate Change Overheating Resistivity (CCOR) improved by 24.32%, demonstrating the controller’s resilience under warming conditions. Explainability was achieved through Kernel SHAP, which revealed physically coherent feature influences consistent with thermal comfort logic. The findings confirmed that physics-informed RL can autonomously learn and sustain effective ventilation control, remaining transparent, reliable, and robust under future climates. This framework establishes a foundation for adaptive and interpretable RL-based hybrid ventilation control, enabling long-lived office buildings in Mediterranean climates to reduce cooling energy demand and mitigate overheating risks under future climate change. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

22 pages, 7217 KB  
Article
Climate-Driven Habitat Shifts in Brown Algal Forests: Insights from the Adriatic Sea
by Daša Donša, Danijel Ivajnšič, Lovrenc Lipej, Domen Trkov, Borut Mavrič, Valentina Pitacco, Ana Fortič, Ana Lokovšek, Milijan Šiško and Martina Orlando-Bonaca
J. Mar. Sci. Eng. 2026, 14(2), 196; https://doi.org/10.3390/jmse14020196 - 17 Jan 2026
Viewed by 266
Abstract
Brown algal forests (Cystoseira sensu lato) are key habitat-forming components of temperate rocky coasts but have experienced widespread decline across the Mediterranean Sea. This study investigates the current distribution and potential future shifts in brown algal forests across the Adriatic Sea under [...] Read more.
Brown algal forests (Cystoseira sensu lato) are key habitat-forming components of temperate rocky coasts but have experienced widespread decline across the Mediterranean Sea. This study investigates the current distribution and potential future shifts in brown algal forests across the Adriatic Sea under ongoing climate change. We combined non-destructive field-based mapping along the Slovenian coastline with remote-sensing products and spatial environmental predictors to model basin-wide habitat suitability. A multiscale geographically weighted regression (MGWR) framework was applied to account for spatial non-stationarity and to explicitly capture the fact that environmental drivers of habitat suitability operate at different spatial scales—an assumption that global models such as GAM or standard GWR cannot adequately address. Habitat suitability maps were generated for present-day conditions and projected under mid- and late-century climate scenarios. The results reveal pronounced latitudinal gradients, identify areas of ongoing canopy decline in the northern Adriatic, and highlight parts of the southern Adriatic as potential climate refugia. Overall, the study demonstrates a likely north–south contraction of suitable habitat for brown algal forests and underscores the value of multiscale spatial modelling for informing marine spatial planning, conservation prioritization, and climate-adaptive restoration under European policy frameworks. Full article
Show Figures

Figure 1

27 pages, 6715 KB  
Article
Study on the Lagged Response Mechanism of Vegetation Productivity Under Atypical Anthropogenic Disturbances Based on XGBoost-SHAP
by Jingdong Sun, Longhuan Wang, Shaodong Huang, Yujie Li and Jia Wang
Remote Sens. 2026, 18(2), 300; https://doi.org/10.3390/rs18020300 - 16 Jan 2026
Viewed by 219
Abstract
The abrupt COVID-19 lockdown in early 2020 offered a unique natural experiment to examine vegetation productivity responses to sudden declines in human activity. Although vegetation often responds to environmental changes with time lags, how such lags operate under short-term, intensive disturbances remains unclear. [...] Read more.
The abrupt COVID-19 lockdown in early 2020 offered a unique natural experiment to examine vegetation productivity responses to sudden declines in human activity. Although vegetation often responds to environmental changes with time lags, how such lags operate under short-term, intensive disturbances remains unclear. This study combined multi-source environmental data with an interpretable machine learning framework (XGBoost-SHAP) to analyze spatiotemporal variations in net primary productivity (NPP) across the Beijing-Tianjin-Hebei region during the strict lockdown (March–May) and recovery (June–August) periods, using 2017–2019 as a baseline. Results indicate that: (1) NPP showed a significant increase during lockdown, with 88.4% of pixels showing positive changes, especially in central urban areas. During recovery, vegetation responses weakened (65.31% positive) and became more spatially heterogeneous. (2) Integrating lagged environmental variables improved model performance (R2 increased by an average of 0.071). SHAP analysis identified climatic factors (temperature, precipitation, radiation) as dominant drivers of NPP, while aerosol optical depth (AOD) and nighttime light (NTL) had minimal influence and weak lagged effects. Importantly, under lockdown, vegetation exhibited stronger immediate responses to concurrent temperature, precipitation, and radiation (SHAP contribution increased by approximately 7.05% compared to the baseline), whereas lagged effects seen in baseline conditions were substantially reduced. Compared to the lockdown period, anthropogenic disturbances during the recovery phase showed a direct weakening of their impact (decreasing by 6.01%). However, the air quality improvements resulting from the spring lockdown exhibited a significant cross-seasonal lag effect. (3) Spatially, NPP response times showed an “urban-immediate, mountainous-delayed” pattern, reflecting both the ecological memory of mountain systems and the rapid adjustment capacity of urban vegetation. These findings demonstrate that short-term removal of anthropogenic disturbances shifted vegetation responses toward greater immediacy and sensitivity to environmental conditions. This offers new insights into a “green window period” for ecological management and supports evidence-based, adaptive regional climate and ecosystem policies. Full article
Show Figures

Graphical abstract

31 pages, 9338 KB  
Review
Biotechnological Strategies to Enhance Maize Resilience Under Climate Change
by Kyung-Hee Kim, Donghwa Park and Byung-Moo Lee
Biology 2026, 15(2), 161; https://doi.org/10.3390/biology15020161 - 16 Jan 2026
Viewed by 290
Abstract
Maize (Zea mays L.), a vital crop for global food and economic security, faces intensifying biotic and abiotic stresses driven by climate change, including drought, heat, and erratic rainfall. This review synthesizes emerging biotechnology-driven strategies designed to enhance maize resilience under these [...] Read more.
Maize (Zea mays L.), a vital crop for global food and economic security, faces intensifying biotic and abiotic stresses driven by climate change, including drought, heat, and erratic rainfall. This review synthesizes emerging biotechnology-driven strategies designed to enhance maize resilience under these shifting environmental conditions. We present an integrated framework that encompasses CRISPR/Cas9 and next-generation genome editing, Genomic Selection (GS), Environmental Genomic Selection (EGS), and multi-omics platforms—spanning transcriptomics, proteomics, metabolomics, and epigenomics. These approaches have significantly deepened our understanding of complex stress-adaptive traits and genotype-by-environment interactions, revealing precise targets for breeding climate-resilient cultivars. Furthermore, we highlight enabling technologies such as high-throughput phenotyping, artificial intelligence (AI), and nanoparticle-based gene delivery—including novel in planta and transformation-free protocols—that are accelerating translational breeding. Despite these technical breakthroughs, barriers such as genotype-dependent transformation efficiency, regulatory landscapes, and implementation costs in resource-limited settings remain. Bridging the gap between laboratory innovation and field deployment will require coordinated policy support and global collaboration. By integrating molecular breakthroughs with practical deployment strategies, this review offers a comprehensive roadmap for developing sustainable, climate-resilient maize varieties to meet future agricultural demands. Full article
Show Figures

Figure 1

44 pages, 1840 KB  
Review
Pathways to Net Zero and Climate Resilience in Existing Australian Office Buildings: A Systematic Review
by Darren Kelly, Akthar Kalam and Shasha Wang
Buildings 2026, 16(2), 373; https://doi.org/10.3390/buildings16020373 - 15 Jan 2026
Viewed by 184
Abstract
Existing office buildings in Australia contribute to 24% of the nation’s electricity consumption and 10% of greenhouse gas emissions, with energy use projected to rise by 84%. Meeting the 2050 sustainability target and United Nations (UN) 17 Sustainable Development Goals (SDGs) requires improving [...] Read more.
Existing office buildings in Australia contribute to 24% of the nation’s electricity consumption and 10% of greenhouse gas emissions, with energy use projected to rise by 84%. Meeting the 2050 sustainability target and United Nations (UN) 17 Sustainable Development Goals (SDGs) requires improving sustainability within existing office buildings. This systematic review examines net zero energy and climate resilience strategies in these buildings by analysing 74 studies from scholarly literature, government reports, and industry publications. The literature search was conducted across Scopus, Google Scholar, and Web of Science databases, with the final search in early 2025. Studies were selected based on keywords and research parameters. A narrative synthesis identified key technologies, evaluating the integration of net zero principles with climate resilience to enhance energy efficiency through HVAC modifications. Technologies like heat pumps, energy recovery ventilators, thermal energy storage, and phase change materials (PCMs) have been identified as crucial in reducing HVAC energy usage intensity (EUI). Lighting control and plug load management advancements are examined for reducing electricity demand. This review highlights the gap between academic research and practical applications, emphasising the need for comprehensive field studies to provide long-term performance data. Current regulatory frameworks influencing the net zero transition are discussed, with recommendations for policy actions and future research. This study links net zero performance with climate adaptation objectives for existing office buildings and provides recommendations for future research, retrofit planning, and policy development. Full article
(This article belongs to the Special Issue Climate Resilient Buildings: 2nd Edition)
Show Figures

Figure 1

17 pages, 3431 KB  
Review
Conservation and Sustainable Development of Rice Landraces for Enhancing Resilience to Climate Change, with a Case Study of ‘Pantiange Heigu’ in China
by Shuyan Kou, Zhulamu Ci, Weihua Liu, Zhigang Wu, Huipin Peng, Pingrong Yuan, Cheng Jiang, Huahui Li, Elsayed Mansour and Ping Huang
Life 2026, 16(1), 143; https://doi.org/10.3390/life16010143 - 15 Jan 2026
Viewed by 151
Abstract
Climate change poses a threat to global rice production by increasing the frequency and intensity of extreme weather events. The widespread cultivation of genetically uniform modern varieties has narrowed the genetic base of rice, increasing its vulnerability to these increased pressures. Rice landraces [...] Read more.
Climate change poses a threat to global rice production by increasing the frequency and intensity of extreme weather events. The widespread cultivation of genetically uniform modern varieties has narrowed the genetic base of rice, increasing its vulnerability to these increased pressures. Rice landraces are traditional rice varieties that have been cultivated by farming communities for centuries and are considered crucial resources of genetic diversity. These landraces are adapted to a wide range of agro-ecological environments and exhibit valuable traits that provide tolerance to various biotic stresses, including drought, salinity, nutrient-deficient soils, and the increasing severity of climate-related temperature extremes. In addition, many landraces possess diverse alleles associated with resistance to biotic stresses, including pests and diseases. In addition, rice landraces exhibit great grain quality characters including high levels of essential amino acids, antioxidants, flavonoids, vitamins, and micronutrients. Hence, their preservation is vital for maintaining agricultural biodiversity and enhancing nutritional security, especially in vulnerable and resource-limited regions. However, rice landraces are increasingly threatened by genetic erosion due to widespread adoption of modern high-yielding varieties, habitat loss, and changing farming practices. This review discusses the roles of rice landraces in developing resilient and climate-smart rice cultivars. Moreover, the Pantiange Heigu landrace, cultivated at one of the highest altitudes globally in Yunnan Province, China, has been used as a case study for integrated conservation by demonstrating the successful combination of in situ and ex situ strategies, community engagement, policy support, and value-added development to sustainably preserve genetic diversity under challenging environmental and socio-economic challenges. Finally, this study explores the importance of employing advanced genomic technologies with supportive policies and economic encouragements to enhance conservation and sustainable development of rice landraces as a strategic imperative for global food security. By preserving and enhancing the utilization of rice landraces, the agricultural community can strengthen the genetic base of rice, improve crop resilience, and contribute substantially to global food security and sustainable agricultural development in the face of environmental and socio-economic challenges. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

12 pages, 9734 KB  
Article
The Vulnerability of Chinese Theaceae Species Under Future Climate Change
by Xuzhe Zhao, Junfeng Tang, Jiang Zhu, Lan Yao, Xunru Ai, Hongxia Xu, Guofei Ma, Jun Jiang, Huiliang Yu and Zunwei Ke
Biology 2026, 15(2), 151; https://doi.org/10.3390/biology15020151 - 15 Jan 2026
Viewed by 127
Abstract
Assessing the vulnerability of species to climate change is currently one of the hot issues in ecology and conservation biology. Although species sensitivity and adaptability play a crucial role in determining species vulnerability to climate change, most studies have only focused on habitat [...] Read more.
Assessing the vulnerability of species to climate change is currently one of the hot issues in ecology and conservation biology. Although species sensitivity and adaptability play a crucial role in determining species vulnerability to climate change, most studies have only focused on habitat exposure, hindering a comprehensive understanding of species vulnerability to climate change and the implementation of effective conservation actions and policies. Here, we performed a comprehensive evaluation of the species sensitivity, habitat exposure and vulnerability of 122 Chinese Theaceae species and the spatial distribution patterns of their sensitivity, habitat exposure and vulnerability, as well as the effectiveness of China’s protected area network in protecting these species under future climate change. Our analyses suggest that species vulnerability was mainly determined by species sensitivity rather than habitat exposure. In addition, these species generally exhibit a high sensitivity and vulnerability to temperature-related variables, such as the annual mean temperature and temperature annual range, while exhibiting a high exposure to precipitation variables, such as total annual precipitation and precipitation seasonality. Furthermore, our analyses show that the high-vulnerability areas are mainly distributed in western and eastern China. However, no more than 17% of the high-vulnerability areas would be covered by China’s protected area network and no more than 15% of the median- and low-vulnerability areas would be covered by China’s protected area network. These findings can contribute to a new understanding of the vulnerability of the 122 Chinese Theaceae species to future climate change and guide effective conservation prioritizing in a rapidly changing climate. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

15 pages, 2183 KB  
Article
Analysis of Annual Water Level Variability in the Mead and Powell Reservoirs of the Colorado River
by Ognjen Bonacci, Ana Žaknić-Ćatović and Tanja Roje-Bonacci
Water 2026, 18(2), 224; https://doi.org/10.3390/w18020224 - 14 Jan 2026
Viewed by 169
Abstract
This analysis examines long-term changes in water levels of the Mead and Glen Canyon reservoirs on the Colorado River. Both reservoirs display clear declining trends in water levels, particularly after 2003. The causes include a combination of climate change, megadrought, increased water consumption, [...] Read more.
This analysis examines long-term changes in water levels of the Mead and Glen Canyon reservoirs on the Colorado River. Both reservoirs display clear declining trends in water levels, particularly after 2003. The causes include a combination of climate change, megadrought, increased water consumption, and alterations in the hydrological regime. Lake Mead exhibits a stronger and more concerning decline than Lake Powell, including extreme drought conditions over the past three years. The Rescaled Adjusted Partial Sums (RAPS) analysis identifies three statistically distinct subperiods, with an unambiguous decline in the most recent period. The day-to-day (DTD) method indicates reduced day-to-day water level variability in Lake Mead following the commissioning of the Powell reservoir, confirming its regulating influence. The Standardized Hydrological Index (SHI) indicates an accelerating intensification of drought conditions over the past 20 years. Regression analysis confirms a strong relationship between the water levels of the two reservoirs, along with significantly increased water losses in the more recent period. The literature suggests that climate projections are highly unfavorable, with further reductions in Colorado River discharge expected. The study underscores the urgent need to adapt water-management policies and align consumption with the new hydrological realities. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

Back to TopTop