Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = claudin 16

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 976 KiB  
Case Report
Familial MEN1 Syndrome with Atypical Renal Features and a Coexisting CLDN16 Variant: A Case Series
by Ioannis Petrakis, Eleni Drosataki, Dimitra Lygerou, Andreas Antonakis, Konstantina Kydonaki, Marinos Mitrakos, Christos Pleros, Maria Sfakiotaki, Paraskevi Xekouki and Kostas Stylianou
J. Clin. Med. 2025, 14(15), 5447; https://doi.org/10.3390/jcm14155447 (registering DOI) - 2 Aug 2025
Abstract
Background and Clinical Significance: Multiple Endocrine Neoplasia type 1 (MEN1) is a rare autosomal dominant disorder caused by mutations in the MEN1 gene. Although primarily characterized by endocrine tumors, renal manifestations remain underreported. Case Presentation: We report a three-generation family carrying a pathogenic [...] Read more.
Background and Clinical Significance: Multiple Endocrine Neoplasia type 1 (MEN1) is a rare autosomal dominant disorder caused by mutations in the MEN1 gene. Although primarily characterized by endocrine tumors, renal manifestations remain underreported. Case Presentation: We report a three-generation family carrying a pathogenic MEN1 mutation (c.1351-3_1359del) with a co-occurring Claudin 16 (CLDN16) variant (c.324+13C>G). Genetic testing included MLPA and whole-exome sequencing (WES), with bioinformatics analysis validating variant pathogenicity. All three patients exhibited primary hyperparathyroidism, hypercalcemia, hypercalciuria, early nephrocalcinosis, and renal hypomagnesemia. The CLDN16 variant, previously considered benign, co-segregated with hypomagnesemia and renal involvement, suggesting a potential modifying role. Conclusions: These findings support the need for comprehensive genetic screening in MEN1 patients with atypical renal presentations. Concomitant genetic variations can alter the principal phenotype. Full article
(This article belongs to the Section Nephrology & Urology)
18 pages, 5970 KiB  
Article
Isotonic Protein Solution Supplementation Enhances Growth Performance, Intestinal Immunity, and Beneficial Microbiota in Suckling Piglets
by Changliang Gong, Zhuohang Hao, Xinyi Liao, Robert J. Collier, Yao Xiao, Yongju Zhao and Xiaochuan Chen
Vet. Sci. 2025, 12(8), 715; https://doi.org/10.3390/vetsci12080715 - 30 Jul 2025
Viewed by 188
Abstract
Suckling is crucial for piglet intestinal development and gut health, as it improves resilience during the challenging weaning phase and promotes subsequent growth. IPS, comprising Na+/K+ ions, whey protein, and glucose, has been shown to have positive effects on animal [...] Read more.
Suckling is crucial for piglet intestinal development and gut health, as it improves resilience during the challenging weaning phase and promotes subsequent growth. IPS, comprising Na+/K+ ions, whey protein, and glucose, has been shown to have positive effects on animal growth and intestinal health. The objectives of this study were to assess the impact of IPS consumption on the growth performance, immunity, intestinal growth and development, and microbiota structure of suckling piglets. A total of 160 newborn piglets were randomly divided into control and IPS groups, with IPS supplementation starting from 2 to 8 days after birth and continuing until 3 days before weaning. The findings revealed that IPS boosted the body weight at 24 days by 3.6% (p < 0.05) and improved the body weight gain from 16 to 24 days by 15.7% (p < 0.05). Additionally, the jejunal villus height and villus height to crypt depth ratio in the IPS group were notably increased to 1.08 and 1.31 times (p < 0.05), respectively, compared to the control group. Furthermore, IPS elevated the plasma levels of IgA and IgM, reduced the plasma levels of blood urea nitrogen (BUN), and enhanced the content of secretory immunoglobulin A (SIgA) in the jejunal mucosa of suckling piglets. Furthermore, IPS upregulated the mRNA expression of tight junction proteins GLP-2, ZO-1, and Claudin-1 in jejunal tissue, while downregulating the regulatory genes in the Toll-like pathway, including MyD88 and TLR-4 (p < 0.05). The analysis of gut microbiota indicated that IPS altered the relative abundance of gut microbes, with an increase in beneficial bacteria like Alloprevotella and Bacteroides. In conclusion, this study demonstrates that IPS supplementation enhances weaning weight, growth performance, immune function, and intestinal development in piglets, supporting the integration of IPS supplementation in the management of pre-weaning piglets. Full article
Show Figures

Figure 1

15 pages, 3262 KiB  
Article
Profiling Tight Junction Protein Expression in Brain Vascular Malformations
by Leire Pedrosa, Alejandra Mosteiro, Luis Reyes, Sergio Amaro, Sebastián Menéndez-Girón, Mateo Cortés Rivera, Carlos J. Domínguez, Anna M. Planas, Ramon Torné and Ana Rodríguez-Hernández
Int. J. Mol. Sci. 2025, 26(10), 4558; https://doi.org/10.3390/ijms26104558 - 9 May 2025
Viewed by 537
Abstract
Recent studies suggest that blood–brain barrier (BBB) disruption plays a key role in the clinical course and bleeding risk of brain arteriovenous malformations (bAVMs). The tight junctions (TJs) are complex endothelial transmembrane proteins with a significant physical contribution to BBB disruption. In this [...] Read more.
Recent studies suggest that blood–brain barrier (BBB) disruption plays a key role in the clinical course and bleeding risk of brain arteriovenous malformations (bAVMs). The tight junctions (TJs) are complex endothelial transmembrane proteins with a significant physical contribution to BBB disruption. In this study, we hypothesized that bAVMs display a different TJ pattern than other vascular malformations and normal brain tissue. We studied the expression of claudin-5 and occludin as essential factors for functional TJs. Human specimens of surgically resected cavernomas (CCMs) (n = 9), bAVMs (n = 17), and perilesional brain parenchyma (6 from CCMs and 16 from bAVM patients) were analyzed via immunofluorescence staining, transmission electron microscopy (TEM), and Western blot tests. Compared to perilesional parenchyma, bAVMs showed a significant decrease in TJ protein expression, and these alterations were more apparent in ruptured bAVMs than in unruptured bAVMs or CCMs. TEM images provided evidence of disrupted connectivity between endothelial cells of bAVMs. This is the first clinical investigation that studies the expression of TJs in human bAVMs and their surrounding parenchyma. Despite the limitations of the sample size, we found significant differences in the expression and composition of TJs in bAVMs when compared to surrounding parenchyma and other vascular lesions such as CCMs. These results add further evidence to the role of BBB disruption in the clinical course of bAVM. A deeper understanding of these mechanisms may lead to the development of new therapeutic targets and management strategies for bAVMs. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

12 pages, 1914 KiB  
Article
Dietary Glutamine Supplementation Enhances Growth Performance and Jejunum Development in Kele and Large White Hybrid Weaned Piglets
by Longjuan Tan, Yujie Cheng, Guowei Liu, Yiyu Zhang and Min Zhu
Agriculture 2025, 15(9), 924; https://doi.org/10.3390/agriculture15090924 - 24 Apr 2025
Viewed by 499
Abstract
Glutamine (Gln), a functional amino acid, is effective in reducing weaning stress in piglets. This study aims to assess the effects of dietary Gln supplementation on intestinal morphology and functionality, as well as the growth performance of Kele and Large White hybrid weaned [...] Read more.
Glutamine (Gln), a functional amino acid, is effective in reducing weaning stress in piglets. This study aims to assess the effects of dietary Gln supplementation on intestinal morphology and functionality, as well as the growth performance of Kele and Large White hybrid weaned piglets. Forty-eight piglets aged 30 days (Kele × Large White) were randomly divided into three groups: the control group, which received a basal diet supplemented with 2.45% alanine to maintain an isonitrogenous balance; the 1% Gln group, which received the basal diet with 1.0% Gln and 1.23% alanine; and the 2% Gln group, which was given the basal diet supplemented with 2.0% Gln. Intestinal samples from 16 piglets in the control and 1% Gln groups were collected randomly on day 29 of the experiment. The results show that, compared to the control group, the 1% Gln group experienced an increase in the average daily gain (ADG) and gain-to-feed ratio (G:F). In contrast, the 2% Gln group did not demonstrate significant differences in either the ADG or G:F compared to the control group. Additionally, there were no differences in feed intake among the groups. Notably, weaned piglets in both the 1% and 2% Gln supplementation groups had reduced diarrhea rates compared to those in the control group. Furthermore, 1% Gln supplementation significantly increased villus height in both the duodenum and jejunum and the ratio of villus height to crypt depth in weaned piglets. Subsequent analyses revealed that 1% Gln supplementation increased the mRNA expression of antioxidant genes, specifically catalase and superoxide dismutase. Additionally, the mRNA levels of the intestinal tight junction genes zonula occludens-1, Claudin 1, and Occludin in the jejuna of weaned piglets were found to be elevated. In summary, incorporating 1% Gln into the diet can significantly improve intestinal functionality and promote growth in Kele and Large White hybrid weaned piglets. Full article
(This article belongs to the Special Issue Intestinal Health and Immunomodulation in Swine)
Show Figures

Figure 1

16 pages, 2776 KiB  
Article
Agomelatine Mitigates Kidney Damage in Obese Insulin-Resistant Rats by Inhibiting Inflammation and Necroptosis via the TNF-α/NF-ĸB/p-RIPK3 Pathway
by Sasivimon Promsan, Nattavadee Pengrattanachot, Nichakorn Phengpol, Prempree Sutthasupha, La-ongdao Thongnak, Krit Jaikumkao and Anusorn Lungkaphin
Int. J. Mol. Sci. 2025, 26(5), 1940; https://doi.org/10.3390/ijms26051940 - 24 Feb 2025
Cited by 1 | Viewed by 866
Abstract
Obesity is a risk factor for chronic kidney disease. The expansion of adipose tissues in obesity induces insulin resistance and low-grade systemic inflammation, promoting kidney damage. Our previous studies have demonstrated that agomelatine (AGOM) exerts renoprotective effects in experimental models of obesity and [...] Read more.
Obesity is a risk factor for chronic kidney disease. The expansion of adipose tissues in obesity induces insulin resistance and low-grade systemic inflammation, promoting kidney damage. Our previous studies have demonstrated that agomelatine (AGOM) exerts renoprotective effects in experimental models of obesity and insulin resistance through various mechanisms, including the attenuation of ER stress and oxidative stress. This study aimed to further explore the effects of agomelatine on renal inflammation, insulin signaling, and necroptosis in obese, insulin-resistant rats. Obesity was induced in rats with a high-fat diet for 16 weeks, followed by 4 weeks of treatment with 20 mg kg−1 day−1 of AGOM or 10 mg kg−1 day−1 of pioglitazone (PIO). The results showed that insulin resistance was improved after treatment with AGOM and PIO, as demonstrated by the reduction in fasting plasma glucose, insulin, and HOMA-IR. Both treatments restored the levels of renal insulin signaling proteins. Moreover, AGOM inhibited TNFα, TNFR1, NF-ĸB, COX2, and IL1β, which attenuated the necroptosis-related proteins RIPK3 and MLKL. AGOM also prevented kidney DNA fragmentation, as detected by the TUNEL assay. In an obese condition, the level of the tight junction protein claudin-1 (CLDN1) was enhanced after being treated with AGOM. In conclusion, the novel mechanisms associated with AGOM and involved in limiting kidney injury were the inhibition of the TNFα/NF-ĸB/p-RIPK3 pathway and a reduction in inflammation and necroptosis. This suggested that AGOM could be an effective treatment for inhibiting kidney dysfunction in cases of obesity and insulin resistance. These findings open new avenues for the management of renal dysfunction, with implications for personalized medicine. Full article
Show Figures

Figure 1

18 pages, 1740 KiB  
Article
Differential Expression of Proteins Involved in Skin Barrier Maintenance and Vitamin D Metabolism in Atopic Dermatitis: A Cross-Sectional, Exploratory Study
by Teresa Grieco, Giovanni Paolino, Elisa Moliterni, Camilla Chello, Alvise Sernicola, Colin Gerard Egan, Mariangela Morelli, Fabrizio Nannipieri, Santina Battaglia, Marina Accoto, Erika Tirotta, Silvia Trasciatti, Silvano Bonaretti, Giovanni Pellacani and Stefano Calvieri
Int. J. Mol. Sci. 2025, 26(1), 211; https://doi.org/10.3390/ijms26010211 - 30 Dec 2024
Cited by 2 | Viewed by 1333
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder influenced by proteins involved in skin barrier maintenance and vitamin D metabolism. Using an intra-patient design, this study compared protein expression in intra-lesional (IL) and peri-lesional (PL) skin biopsies from AD patients and examined [...] Read more.
Atopic dermatitis (AD) is a chronic inflammatory skin disorder influenced by proteins involved in skin barrier maintenance and vitamin D metabolism. Using an intra-patient design, this study compared protein expression in intra-lesional (IL) and peri-lesional (PL) skin biopsies from AD patients and examined associations between protein levels, vitamin D status, and clinical features. Forty-four biopsies from twenty-two AD patients were analyzed using antibody microarrays targeting twelve proteins. IL samples had significantly higher total protein levels than PL samples, with a mean difference of 77.7% (p < 0.001). Several proteins, including cathelicidin, cingulin, occludin, filaggrin, and the vitamin D receptor, were upregulated in IL samples. Patients with vitamin D levels below 30 ng/mL showed higher expression of CYP24A (p = 0.054), alpha-catenin (p = 0.043), and haptoglobin (p = 0.033). Increased EASI scores (≥16) were associated with elevated expression of CYP24A (p = 0.024), CYP27B (p = 0.044), filaggrin (p = 0.027), occludin (p = 0.049), and claudin-1 (p = 0.052). Multivariate regression analysis identified significant correlations between protein expression, skin prick test positivity, and low vitamin D levels. These findings suggest that proteins related to epithelial barrier function and vitamin D metabolism are highly upregulated in IL skin regions, offering potential therapeutic targets for improving both skin barrier function and overall disease severity in AD patients. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

2 pages, 195 KiB  
Correction
Correction: Toivio et al. Ketogenic Diet High in Saturated Fat Promotes Colonic Claudin Expression without Changes in Intestinal Permeability to Iohexol in Healthy Mice. Nutrients 2024, 16, 18
by Lotta Toivio, Hanna Launonen, Jere Lindén, Markku Lehto, Heikki Vapaatalo, Hanne Salmenkari and Riitta Korpela
Nutrients 2024, 16(20), 3471; https://doi.org/10.3390/nu16203471 - 14 Oct 2024
Viewed by 928
Abstract
Text Correction [...] Full article
(This article belongs to the Special Issue Dietary Nutrition on Gastrointestinal Health)
16 pages, 2346 KiB  
Article
Association of Blast Exposure in Military Breaching with Intestinal Permeability Blood Biomarkers Associated with Leaky Gut
by Qingkun Liu, Zhaoyu Wang, Shengnan Sun, Jeffrey Nemes, Lisa A. Brenner, Andrew Hoisington, Maciej Skotak, Christina R. LaValle, Yongchao Ge, Walter Carr and Fatemeh Haghighi
Int. J. Mol. Sci. 2024, 25(6), 3549; https://doi.org/10.3390/ijms25063549 - 21 Mar 2024
Cited by 9 | Viewed by 5082
Abstract
Injuries and subclinical effects from exposure to blasts are of significant concern in military operational settings, including tactical training, and are associated with self-reported concussion-like symptomology and physiological changes such as increased intestinal permeability (IP), which was investigated in this study. Time-series gene [...] Read more.
Injuries and subclinical effects from exposure to blasts are of significant concern in military operational settings, including tactical training, and are associated with self-reported concussion-like symptomology and physiological changes such as increased intestinal permeability (IP), which was investigated in this study. Time-series gene expression and IP biomarker data were generated from “breachers” exposed to controlled, low-level explosive blast during training. Samples from 30 male participants at pre-, post-, and follow-up blast exposure the next day were assayed via RNA-seq and ELISA. A battery of symptom data was also collected at each of these time points that acutely showed elevated symptom reporting related to headache, concentration, dizziness, and taking longer to think, dissipating ~16 h following blast exposure. Evidence for bacterial translocation into circulation following blast exposure was detected by significant stepwise increase in microbial diversity (measured via alpha-diversity p = 0.049). Alterations in levels of IP protein biomarkers (i.e., Zonulin, LBP, Claudin-3, I-FABP) assessed in a subset of these participants (n = 23) further evidenced blast exposure associates with IP. The observed symptom profile was consistent with mild traumatic brain injury and was further associated with changes in bacterial translocation and intestinal permeability, suggesting that IP may be linked to a decrease in cognitive functioning. These preliminary findings show for the first time within real-world military operational settings that exposures to blast can contribute to IP. Full article
Show Figures

Figure 1

12 pages, 1334 KiB  
Article
Altered Expression of Intestinal Tight Junctions in Patients with Chronic Kidney Disease: A Pathogenetic Mechanism of Intestinal Hyperpermeability
by Georgia-Andriana Georgopoulou, Marios Papasotiriou, Pinelopi Bosgana, Anne-Lise de Lastic, Eleni-Evangelia Koufou, Evangelos Papachristou, Dimitrios S. Goumenos, Periklis Davlouros, Eleni Kourea, Vasiliki Zolota, Konstantinos Thomopoulos, Athanasia Mouzaki and Stelios F. Assimakopoulos
Biomedicines 2024, 12(2), 368; https://doi.org/10.3390/biomedicines12020368 - 5 Feb 2024
Cited by 6 | Viewed by 2140
Abstract
Background: Systemic inflammation in chronic kidney disease (CKD) is associated (as a cause or effect) with intestinal barrier dysfunction and increased gut permeability, with mechanisms not yet fully understood. This study investigated different parameters of the intestinal barrier in CKD patients, especially tight [...] Read more.
Background: Systemic inflammation in chronic kidney disease (CKD) is associated (as a cause or effect) with intestinal barrier dysfunction and increased gut permeability, with mechanisms not yet fully understood. This study investigated different parameters of the intestinal barrier in CKD patients, especially tight junction (TJ) proteins and their possible association with systemic endotoxemia and inflammation. Methods: Thirty-three patients with stage I–IV CKD (n = 17) or end-stage kidney disease (ESKD) (n = 16) and 11 healthy controls underwent duodenal biopsy. Samples were examined histologically, the presence of CD3+ T-lymphocytes and the expression of occludin and claudin-1 in the intestinal epithelium was evaluated by means of immunohistochemistry, circulating endotoxin concentrations were determined by means of ELISA and the concentrations of the cytokines IL-1β, IL-6, IL-8, IL-10 and TNF-α in serum were measured using flow cytometry. Results: Patients with stage I–IV CKD or ESKD had significantly higher serum endotoxin, IL-6, IL-8 and IL-10 levels compared to controls. Intestinal occludin and claudin-1 were significantly decreased, and their expression was inversely correlated with systemic endotoxemia. Regarding occludin, a specific expression pattern was observed, with a gradually increasing loss of its expression from the crypt to the tip of the villi. Conclusion: The expression of occludin and claudin-1 in enterocytes is significantly reduced in patients with CKD, contributing to systemic endotoxemia and inflammatory responses in these patients. Full article
Show Figures

Figure 1

15 pages, 3008 KiB  
Article
Effects of Acute Cold Stress after Intermittent Cold Stimulation on Immune-Related Molecules, Intestinal Barrier Genes, and Heat Shock Proteins in Broiler Ileum
by Xiaotao Liu, Shuang Li, Ning Zhao, Lu Xing, Rixin Gong, Tingting Li, Shijie Zhang, Jianhong Li and Jun Bao
Animals 2022, 12(23), 3260; https://doi.org/10.3390/ani12233260 - 23 Nov 2022
Cited by 10 | Viewed by 2566
Abstract
Cold stress will have a negative impact on animal welfare and health. In order to explore the effect of intermittent cold stimulation training on the cold resistance of broilers. Immune-related and intestinal barrier genes were detected before and after acute cold stress (ACS), [...] Read more.
Cold stress will have a negative impact on animal welfare and health. In order to explore the effect of intermittent cold stimulation training on the cold resistance of broilers. Immune-related and intestinal barrier genes were detected before and after acute cold stress (ACS), aiming to find an optimal cold stimulation training method. A total of 240 1-day-old Ross broilers (Gallus) were divided into three groups (G1, G2, and G3), each with 5 replicates (16 chickens each replicate). The broilers of G1 were raised at normal temperature, while the broilers of G2 and G3 were treated with cold stimulation at 3 °C lower than the G1 for 3 h and 6 h from 15 to 35 d, respectively, at one-day intervals. At 50 d, the ambient temperature for all groups was reduced to 10 °C for six hours. The results demonstrated that before ACS, IL6, IL17, TLR21, and HSP40 mRNA levels in G3 were apparently down-regulated (p < 0.05), while IL8 and Claudin-1 mRNA levels were significantly up-regulated compared with G1 (p < 0.05). After ACS, IL2, IL6, and IL8 expression levels in G3 were lower than those in G2 (p < 0.05). Compared to G2, Claudin-1, HSP90 mRNA levels, HSP40, and HSP70 protein levels were increased in G3 (p < 0.05). The mRNA levels of TLR5, Mucin2, and Claudin-1 in G2 and IL6, IL8, and TLR4 in G3 were down-regulated after ACS, while IL2, IL6, and IL17 mRNA levels in G2 and HSP40 protein levels in G3 were up-regulated after ACS (p < 0.05). Comprehensive investigation shows that cold stimulation at 3 °C lower than the normal feeding temperature for six hours at one day intervals can enhanced immune function and maintain the stability of intestinal barrier function to lessen the adverse effects on ACS in broilers. Full article
(This article belongs to the Collection Body Condition and Productivity, Health and Welfare)
Show Figures

Figure 1

15 pages, 5247 KiB  
Article
Cell Junction and Vesicle Trafficking-Mediated Melanosome/Melanin Transfer Are Involved in the Dynamic Transformation of Goldfish Carassius auratus Skin Color
by Lili Liu, Xiaowen Wang, Rong Zhang, Huijuan Li and Hua Zhu
Int. J. Mol. Sci. 2022, 23(20), 12214; https://doi.org/10.3390/ijms232012214 - 13 Oct 2022
Cited by 4 | Viewed by 2301
Abstract
Goldfish are one of the most popular models for studying the genetic diversity of skin color. Transcriptome sequencing (RNA-seq) and whole genome bisulfate sequencing (WGBS) of skin tissues from the third filial (F3) cyan (CN), black (BK), and white (WH) goldfish were conducted [...] Read more.
Goldfish are one of the most popular models for studying the genetic diversity of skin color. Transcriptome sequencing (RNA-seq) and whole genome bisulfate sequencing (WGBS) of skin tissues from the third filial (F3) cyan (CN), black (BK), and white (WH) goldfish were conducted to analyze the molecular mechanism of color transformation in fish. The RNA-seq yielded 56 Gb of clean data and 56,627 transcripts from nine skin samples. The DEGs (differentially expressed genes) were enriched in cell junction cellular components and the tight junction pathway. Ninety-five homologs of the claudin family were predicted and 16 claudins were identified in correlation with skin color transformation. WGBS yielded 1079 Gb of clean data from 15 samples. Both the DEGs and the DMRs (differentially methylated regions) in the BK_CN group were found to be enriched in cytoskeleton reorganization and vesicle trafficking. Masson staining and TEM (transmission electron microscopy) confirmed the varied distribution and processes of melanosome/melanin in skin tissues. Our results suggested that cytoskeleton reorganization, cell junction, and the vesicle trafficking system played key roles in the transfer of the melanosome/melanin, and it was the extracellular translocation rather than the biosynthesis or metabolism of the melanin process that resulted in the color transformation of cyan goldfish. The data will facilitate the understanding of the molecular mechanisms underlying dynamic skin color transformation in goldfish. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

21 pages, 4113 KiB  
Article
Zinc Supplementation Partially Decreases the Harmful Effects of a Cafeteria Diet in Rats but Does Not Prevent Intestinal Dysbiosis
by Samia Squizani, Jeferson Jantsch, Fernanda da Silva Rodrigues, Matheus Filipe Braga, Sarah Eller, Tiago Franco de Oliveira, Alexandre Kleber Silveira, José Cláudio Fonseca Moreira, Marcia Giovenardi, Marilene Porawski and Renata Padilha Guedes
Nutrients 2022, 14(19), 3921; https://doi.org/10.3390/nu14193921 - 22 Sep 2022
Cited by 11 | Viewed by 3889
Abstract
Zinc (Zn) plays an important role in metabolic homeostasis and may modulate neurological impairment related to obesity. The present study aimed to evaluate the effect of Zn supplementation on the intestinal microbiota, fatty acid profile, and neurofunctional parameters in obese male Wistar rats. [...] Read more.
Zinc (Zn) plays an important role in metabolic homeostasis and may modulate neurological impairment related to obesity. The present study aimed to evaluate the effect of Zn supplementation on the intestinal microbiota, fatty acid profile, and neurofunctional parameters in obese male Wistar rats. Rats were fed a cafeteria diet (CAF), composed of ultra-processed and highly caloric and palatable foods, for 20 weeks to induce obesity. From week 16, Zn supplementation was started (10 mg/kg/day). At the end of the experiment, we evaluated the colon morphology, composition of gut microbiota, intestinal fatty acids, integrity of the intestinal barrier and blood–brain barrier (BBB), and neuroplasticity markers in the cerebral cortex and hippocampus. Obese rats showed dysbiosis, morphological changes, short-chain fatty acid (SCFA) reduction, and increased saturated fatty acids in the colon. BBB may also be compromised in CAF-fed animals, as claudin-5 expression is reduced in the cerebral cortex. In addition, synaptophysin was decreased in the hippocampus, which may affect synaptic function. Our findings showed that Zn could not protect obese animals from intestinal dysbiosis. However, an increase in acetate levels was observed, which suggests a partial beneficial effect of Zn. Thus, Zn supplementation may not be sufficient to protect from obesity-related dysfunctions. Full article
(This article belongs to the Special Issue Ultra-Processed Foods, Diet Quality and Human Health)
Show Figures

Figure 1

9 pages, 760 KiB  
Article
High Expression of Claudin-4 Is Associated with Synchronous Tumors in Patients with Early Gastric Cancer
by Won Shik Kim, Hayeon Kim, Moon Kyung Joo, Byung Il Choi, Ah Young Yoo, Jong-Jae Park, Beom Jae Lee, Seung Han Kim and Hoon Jai Chun
J. Clin. Med. 2022, 11(12), 3550; https://doi.org/10.3390/jcm11123550 - 20 Jun 2022
Cited by 5 | Viewed by 2568
Abstract
Claudin (CLDN) is a tight junction protein found in human epithelial cells and its altered expression is known to be associated with the progression of gastric cancer. We aimed to investigate the differential expression of CLDN-4 in early gastric cancer (EGC) according to [...] Read more.
Claudin (CLDN) is a tight junction protein found in human epithelial cells and its altered expression is known to be associated with the progression of gastric cancer. We aimed to investigate the differential expression of CLDN-4 in early gastric cancer (EGC) according to its clinicopathological characteristics. We enrolled 53 patients with EGC who underwent surgical gastric resection from January 2007 to December 2018. The staining intensity of the tumor cells was scored as 0–3, and the percentage of staining was scored as 0–5; high expression was defined if the intensity plus percentage score was 7 or 8, and low expression was defined if the score was 0–6. Among the 53 patients, 16 (30.2%) showed low CLDN-4 expression, while 37 (69.8%) had high CLDN-4 expression. High CLDN-4 expression was significantly associated with intestinal-type EGC (low: 12.5% vs. high: 56.8%, p = 0.003), open-type atrophic change (low: 60.0% vs. high: 90.9%, p = 0.011), and the presence of synchronous tumors (0 vs. 32.4%, p = 0.010), and all 12 EGCs with synchronous tumors showed high CLDN-4 expression. However, expression of CLDN-3, a typical intestinal phenotype CLDN, was neither correlated with CLDN-4 expression nor associated with synchronous tumors. Taken together, high CLDN-4 expression may be considered as an auxiliary tool for screening synchronous tumors in patients with EGC. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

13 pages, 2290 KiB  
Article
An Atlas of the Quantitative Protein Expression of Anti-Epileptic-Drug Transporters, Metabolizing Enzymes and Tight Junctions at the Blood–Brain Barrier in Epileptic Patients
by Risa Sato, Kotaro Ohmori, Mina Umetsu, Masaki Takao, Mitsutoshi Tano, Gerald Grant, Brenda Porter, Anthony Bet, Tetsuya Terasaki and Yasuo Uchida
Pharmaceutics 2021, 13(12), 2122; https://doi.org/10.3390/pharmaceutics13122122 - 9 Dec 2021
Cited by 12 | Viewed by 3702
Abstract
The purpose of the present study was to quantitatively elucidate the levels of protein expression of anti-epileptic-drug (AED) transporters, metabolizing enzymes and tight junction molecules at the blood–brain barrier (BBB) in the focal site of epilepsy patients using accurate SWATH (sequential window acquisition [...] Read more.
The purpose of the present study was to quantitatively elucidate the levels of protein expression of anti-epileptic-drug (AED) transporters, metabolizing enzymes and tight junction molecules at the blood–brain barrier (BBB) in the focal site of epilepsy patients using accurate SWATH (sequential window acquisition of all theoretical fragment ion spectra) proteomics. Brain capillaries were isolated from focal sites in six epilepsy patients and five normal brains; tryptic digests were produced and subjected to SWATH analysis. MDR1 and BCRP were significantly downregulated in the epilepsy group compared to the normal group. Out of 16 AED-metabolizing enzymes detected, the protein expression levels of GSTP1, GSTO1, CYP2E1, ALDH1A1, ALDH6A1, ALDH7A1, ALDH9A1 and ADH5 were significantly 2.13-, 6.23-, 2.16-, 2.80-, 1.73-, 1.67-, 2.47- and 2.23-fold greater in the brain capillaries of epileptic patients than those of normal brains, respectively. The protein expression levels of Claudin-5, ZO-1, Catenin alpha-1, beta-1 and delta-1 were significantly lower, 1.97-, 2.51-, 2.44-, 1.90- and 1.63-fold, in the brain capillaries of epileptic patients compared to those of normal brains, respectively. Consistent with these observations, leakage of blood proteins was also observed. These results provide for a better understanding of the therapeutic effect of AEDs and molecular mechanisms of AED resistance in epileptic patients. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Graphical abstract

11 pages, 2677 KiB  
Article
Haloperidol Attenuates Lung Endothelial Cell Permeability In Vitro and In Vivo
by Marco A. Colamonici, Yulia Epshtein, Weiguo Chen and Jeffrey R. Jacobson
Cells 2021, 10(9), 2186; https://doi.org/10.3390/cells10092186 - 25 Aug 2021
Cited by 5 | Viewed by 3316
Abstract
We previously reported that claudin-5, a tight junctional protein, mediates lung vascular permeability in a murine model of acute lung injury (ALI) induced by lipopolysaccharide (LPS). Recently, it has been reported that haloperidol, an antipsychotic medication, dose-dependently increases expression of claudin-5 in vitro [...] Read more.
We previously reported that claudin-5, a tight junctional protein, mediates lung vascular permeability in a murine model of acute lung injury (ALI) induced by lipopolysaccharide (LPS). Recently, it has been reported that haloperidol, an antipsychotic medication, dose-dependently increases expression of claudin-5 in vitro and in vivo, in brain endothelium. Notably, claudin-5 is highly expressed in both brain and lung tissues. However, the effects of haloperidol on EC barrier function are unknown. We hypothesized that haloperidol increases lung EC claudin-5 expression and attenuates agonist-induced lung EC barrier disruption. Human pulmonary artery ECs were pretreated with haloperidol at variable concentrations (0.1–10 μM) for 24 h. Cell lysates were subjected to Western blotting for claudin-5, in addition to occludin and zona occludens-1 (ZO-1), two other tight junctional proteins. To assess effects on barrier function, EC monolayers were pretreated for 24 h with haloperidol (10 µM) or vehicle prior to treatment with thrombin (1 U/mL), with measurements of transendothelial electrical resistance (TER) recorded as a real-time assessment of barrier integrity. In separate experiments, EC monolayers grown in Transwell inserts were pretreated with haloperidol (10 µM) prior to stimulation with thrombin (1 U/mL, 1 h) and measurement of FITC-dextran flux. Haloperidol significantly increased claudin-5, occludin, and ZO-1 expression levels. Measurements of TER and FITC-dextran Transwell flux confirmed a significant attenuation of thrombin-induced barrier disruption associated with haloperidol treatment. Finally, mice pretreated with haloperidol (4 mg/kg, IP) prior to the intratracheal administration of LPS (1.25 mg/kg, 16 h) had increased lung claudin-5 expression with decreased lung injury as assessed by bronchoalveolar lavage (BAL) fluid protein content, total cell counts, and inflammatory cytokines, in addition to lung histology. Our data confirm that haloperidol results in increased claudin-5 expression levels and demonstrates lung vascular-protective effects both in vitro and in vivo in a murine ALI model. These findings suggest that haloperidol may represent a novel therapy for the prevention or treatment of ALI and warrants further investigation in this context. Full article
(This article belongs to the Collection The Endothelial Cell in Lung Inflammation)
Show Figures

Figure 1

Back to TopTop