Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = clamped–clamped boundary conditions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 9708 KB  
Article
A Systematic Analysis of Physics-Informed Neural Networks for Two-Phase Flow with Capillarity: The Muskat–Leverett Problem
by Timur Imankulov, Alibek Kuljabekov, Samson Dawit Bekele, Zhumabek Zhantayev, Bakytzhan Assilbekov and Yerzhan Kenzhebek
Appl. Sci. 2025, 15(24), 13011; https://doi.org/10.3390/app152413011 - 10 Dec 2025
Viewed by 376
Abstract
This work develops and systematically evaluates a physics-informed neural network (PINN) solver for the fully coupled, time-dependent Muskat–Leverett system with capillarity modeled in the pressure equation. A single shallow–wide multilayer perceptron jointly predicts wetting pressure and water saturation; physical capillary pressure regularizes the [...] Read more.
This work develops and systematically evaluates a physics-informed neural network (PINN) solver for the fully coupled, time-dependent Muskat–Leverett system with capillarity modeled in the pressure equation. A single shallow–wide multilayer perceptron jointly predicts wetting pressure and water saturation; physical capillary pressure regularizes the saturation front, while a small numerical diffusion term in the saturation residual acts as a training stabilizer rather than a shock-capturing device. To guarantee admissible states in stiff regimes, we introduce a saturation soft-clamping head enforcing 0<Sw<1 and activate it selectively for stiff mobility ratios. Using IMPES solutions as reference, we perform a sensitivity study over network depth and width, interior collocation and boundary data density, mobility ratio, and injection pressure. Shallow-wide networks (10 layers × 50 neurons) consistently outperform deeper architectures, and increasing interior collocation points from 5000 to 50,000 reduces mean saturation error by about half, whereas additional boundary data have a much weaker effect. Accuracy is highest at an intermediate mobility ratio and improves monotonically with higher injection pressure, which sharpens yet better conditions the front. Across all regimes, pressure trains easily while saturation determines model selection, and the PINN serves as a physics-consistent surrogate for what-if studies in two-phase porous-media flow. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

17 pages, 3323 KB  
Article
Enhancing Torque Output for a Magnetic Actuation System for Robotic Spinal Distraction
by Yumei Li, Zikang Li, Ding Lu, Tairan Peng, Yunzhi Chen, Gang Fu, Zhenguo Nie and Fangyuan Wei
Sensors 2025, 25(20), 6497; https://doi.org/10.3390/s25206497 - 21 Oct 2025
Viewed by 712
Abstract
Magnetically controlled spinal growing rods, used for treating early-onset scoliosis (EOS), face a critical clinical limitation: insufficient distraction force. Compounding this issue is the inherent inability to directly monitor the mechanical output of such implants in vivo, which challenges their safety and efficacy. [...] Read more.
Magnetically controlled spinal growing rods, used for treating early-onset scoliosis (EOS), face a critical clinical limitation: insufficient distraction force. Compounding this issue is the inherent inability to directly monitor the mechanical output of such implants in vivo, which challenges their safety and efficacy. To overcome these limitations, optimizing the rotor’s maximum torque is essential. Furthermore, defining the “continuous rotation domain” establishes a vital safety boundary for stable operation, preventing loss of synchronization and loss of control, thus safeguarding the efficacy of future clinical control strategies. In this study, a transient finite element magnetic field simulation model of a circumferentially distributed permanent magnet–rotor system was established using ANSYS Maxwell (2024). The effects of the clamp angle between the driving magnets and the rotor, the number of pole pairs, the rotor’s outer diameter, and the rotational speed of the driving magnets on the rotor’s maximum torque were systematically analyzed, and the optimized continuous rotation domain of the rotor was determined. The results indicated that when the clamp angle was set at 120°, the number of pole pairs was one, the rotor outer diameter was 8 mm, the rotor achieved its maximum torque and exhibited the largest continuous rotation domain, while the rotational speed of the driving magnets had no effect on maximum torque. Following optimization, the maximum torque of the simulation increased by 201% compared with the pre-optimization condition, and the continuous rotation domain was significantly enlarged. To validate the simulation, a rotor torque measurement setup incorporating a torque sensor was constructed. Experimental results showed that the maximum torque improved from 30 N·mm before optimization to 90 N·mm after optimization, while the driving magnets maintained stable rotation throughout the process. Furthermore, a spinal growing rod test platform equipped with a pressure sensor was developed to evaluate actuator performance and measure the maximum distraction force. The optimized growing rod achieved a peak distraction force of 413 N, nearly double that of the commercial MAGEC system, which reached only 208 N. The simulation and experimental methodologies established in this study not only optimizes the device’s performance but also provides a viable pathway for in vivo performance prediction and monitoring, addressing a critical need in smart implantable technology. Full article
(This article belongs to the Special Issue Recent Advances in Medical Robots: Design and Applications)
Show Figures

Figure 1

25 pages, 4172 KB  
Article
Cost-Efficient Injection Mold Design: A Holistic Approach to Leveraging Additive Manufacturing’s Design Freedom Through Topology Optimization
by Julian Redeker, Hagen Watschke, Simon Wurzbacher, Josias Kayser, Karl Hilbig, Thomas Vietor, Okan Sezek and Christoph Gayer
Appl. Sci. 2025, 15(20), 10923; https://doi.org/10.3390/app152010923 - 11 Oct 2025
Viewed by 1009
Abstract
Additive manufacturing offers significant design freedom for injection mold tooling, particularly in optimizing cooling performance and reducing mass. This study presents a holistic framework for the topology optimization of mold inserts considering design for additive manufacturing principles, integrating essential boundary conditions from the [...] Read more.
Additive manufacturing offers significant design freedom for injection mold tooling, particularly in optimizing cooling performance and reducing mass. This study presents a holistic framework for the topology optimization of mold inserts considering design for additive manufacturing principles, integrating essential boundary conditions from the mold making, injection molding process, and post-processing operations. A slider component with conformal cooling channels serves as the case study. Using simulation-driven design and finite element analysis, two design variants, based on conventional and modified design spaces, were evaluated. Mechanical loads from clamping and the injection process were considered, with safety factors applied to reflect industrial misuse scenarios. The topology optimization process was implemented using Altair OptiStruct and validated through displacement and stress analyses. The results show savings in both mass and costs of up to 60% while maintaining structural integrity under operational and misuse conditions. The maximum displacements—only a 4 µm increase compared to the reference—remained within DIN ISO 20457 tolerances, and stresses did not exceed 170 MPa under operational conditions, confirming industrial applicability. This study concludes with a proposed framework for integrating topology optimization into mold design workflows. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

22 pages, 7945 KB  
Article
Numerical Investigation on Residual Stress and Distortion in Welded Joints of Offshore Platform Structures
by Jérémy Musolino, Xing-Hua Shi and Bai-Qiao Chen
J. Mar. Sci. Eng. 2025, 13(10), 1941; https://doi.org/10.3390/jmse13101941 - 10 Oct 2025
Viewed by 612
Abstract
Offshore platforms need to be made, from the start of their construction, to withstand the extreme environmental conditions they will be facing. This study investigates the welding-induced residual stress and distortion in a Y-shaped tubular joint extracted from an offshore wind turbine jacket [...] Read more.
Offshore platforms need to be made, from the start of their construction, to withstand the extreme environmental conditions they will be facing. This study investigates the welding-induced residual stress and distortion in a Y-shaped tubular joint extracted from an offshore wind turbine jacket substructure. While similar joints are commonly used in offshore platforms, their welding behavior remains underexplored in the existing literature. The joint configuration is representative of critical load-bearing connections commonly used in offshore platforms exposed to harsh marine environments. A finite element model has been developed to simulate the welding process in a typical offshore tubular joint through thermal and mechanical simulation. Validation of the model has been achieved with results against reference experimental data, with temperature and distortion errors of 3.9 and 5.3%, respectively. Residual stress and distortions were analyzed along predefined paths in vertical, transverse, and longitudinal directions. A mesh sensitivity study was conducted to balance computational efficiency and result accuracy. Furthermore, clamped and free displacement boundary conditions are analyzed, demonstrating reduced deformation and stress for the second case. Full article
Show Figures

Figure 1

28 pages, 3522 KB  
Article
Exact Analytical Solutions for Static Response of Helical Single-Walled Carbon Nanotubes Using Nonlocal Euler–Bernoulli Beam Theory
by Ali Murtaza Dalgıç, Mertol Tüfekci, İnci Pir and Ekrem Tüfekci
Nanomaterials 2025, 15(19), 1461; https://doi.org/10.3390/nano15191461 - 23 Sep 2025
Cited by 2 | Viewed by 539
Abstract
This study presents an exact analytical investigation into the static response of helical single-walled carbon nanotube (SWCNT) beams based on Eringen’s differential nonlocal elasticity theory, which captures nanoscale effects arising from interatomic interactions. A key contribution of this work is the derivation of [...] Read more.
This study presents an exact analytical investigation into the static response of helical single-walled carbon nanotube (SWCNT) beams based on Eringen’s differential nonlocal elasticity theory, which captures nanoscale effects arising from interatomic interactions. A key contribution of this work is the derivation of the governing equations for helical SWCNT beams, based on the nonlocal Euler–Bernoulli theory, followed by their exact analytical solution using the initial value method. To the best of the authors’ knowledge, this represents the first closed-form formulation for such complex nanostructures using this theoretical framework of nonlocal elasticity theory. The analysis considers both cantilevered and clamped–clamped boundary conditions, under various concentrated force and moment loadings applied at the ends and midpoint of the helical beam. Displacements and rotational components are expressed in the Frenet frame, enabling direction-specific evaluation of the deformation behaviour. Parametric studies are conducted to investigate the influence of geometric parameters—such as the winding angle (α) and aspect ratio (R/d) and the nonlocal parameter (R/γ). Results show that nonlocal elasticity theory consistently predicts higher displacements and rotations than the classical local theory, revealing its importance for accurate modelling of nanoscale structures. The proposed analytical framework serves as a benchmark reference for the modelling and design of nanoscale helical structures such as nano-springs, actuators, and flexible nanodevices. Full article
Show Figures

Figure 1

26 pages, 7959 KB  
Article
Effect of Boundary Conditions on Vibration Characteristics of a Sandwich Plate with Viscoelastic Periodic Cores
by Zhiwei Guo, Meiping Sheng and Kai Zhang
Machines 2025, 13(9), 863; https://doi.org/10.3390/machines13090863 - 17 Sep 2025
Viewed by 590
Abstract
The effects of boundary conditions on the vibration characteristics of a sandwich plate with viscoelastic periodic cores were examined. The tangential, vertical, transverse, and torsional springs were utilized to restrict the sandwich plate’s edge in order to model a general boundary condition, bringing [...] Read more.
The effects of boundary conditions on the vibration characteristics of a sandwich plate with viscoelastic periodic cores were examined. The tangential, vertical, transverse, and torsional springs were utilized to restrict the sandwich plate’s edge in order to model a general boundary condition, bringing the benefit that the conventional free, clamped, and simply supported boundary conditions became special cases in the proposed model as these spring constants took extreme values. A theoretical model was established to calculate the forced response and band structure of the periodic sandwich plate, providing computational support for evaluating its vibration characteristics. The correctness of the theoretical model was also validated by the finite element method. The results show that the boundary spring stiffness has a significant effect on the band-gap frequencies and band-gap width of the periodic sandwich plate. Increasing the boundary spring stiffness contributes to achieving broader band gaps. In addition, the band-gap frequencies and band-gap width are more sensitive to transverse spring stiffness than the tangential, vertical, and torsional spring stiffnesses. Therefore, changing transverse spring stiffness is more effective for adjusting the band gap property. This study may provide helpful guidance on vibration and noise reduction design in engineering. Full article
Show Figures

Figure 1

21 pages, 5059 KB  
Article
Experimental and Numerical Validation of an Extended FFR Model for Out-of-Plane Vibrations in Discontinuous Flexible Structures
by Sherif M. Koda, Masami Matsubara, Ahmed M. R. Fath El-Bab and Ayman A. Nada
Appl. Syst. Innov. 2025, 8(5), 118; https://doi.org/10.3390/asi8050118 - 22 Aug 2025
Viewed by 1005
Abstract
Toward the innovative design of tunable structures for energy generation, this paper presents an extended Floating Frame of Reference (FFR) formulation capable of modeling slope discontinuities in flexible multibody systems—overcoming a key limitation of conventional FFR methods that assume slope continuity. The model [...] Read more.
Toward the innovative design of tunable structures for energy generation, this paper presents an extended Floating Frame of Reference (FFR) formulation capable of modeling slope discontinuities in flexible multibody systems—overcoming a key limitation of conventional FFR methods that assume slope continuity. The model is validated using a spatial double-pendulum structure composed of circular beam elements, representative of out-of-plane energy harvesting systems. To investigate the influence of boundary constraints on dynamic behavior, three electromagnetic clamping configurations—Fixed–Free–Free (XFF), Fixed–Free–Fixed (XFX), and Free–Fixed–Free (FXF)—are implemented. Tri-axial accelerometer measurements are analyzed via Fast Fourier Transform (FFT), revealing natural frequencies spanning from 38.87 Hz (lower frequency range) to 149.01 Hz (higher frequency range). For the lower frequency range, the FFR results (38.76 Hz) show a close match with the experimental prediction (38.87 Hz) and ANSYS simulation (36.49 Hz), yielding 0.28% error between FFR and experiments and 5.85% between FFR and ANSYS. For the higher frequency range, the FFR model (148.17 Hz) achieves 0.56% error with experiments (149.01 Hz) and 0.85% with ANSYS (146.91 Hz). These high correlation percentages validate the robustness and accuracy of the proposed FFR formulation. The study further shows that altering boundary conditions enables effective frequency tuning in discontinuous structures—an essential feature for the optimization of application-specific systems such as wave energy converters. This validated framework offers a versatile and reliable tool for the design of vibration-sensitive devices with geometric discontinuities. Full article
(This article belongs to the Section Control and Systems Engineering)
Show Figures

Figure 1

23 pages, 7920 KB  
Article
Dynamic Behavior of a Rotationally Restrained Pipe Conveying Gas-Liquid Two-Phase Flow
by Guangming Fu, Huilin Jiao, Aixia Zhang, Xiao Wang, Boying Wang, Baojiang Sun and Jian Su
J. Mar. Sci. Eng. 2025, 13(8), 1524; https://doi.org/10.3390/jmse13081524 - 8 Aug 2025
Viewed by 523
Abstract
This study explores the dynamic behavior of a vertical pipe conveying gas-liquid two-phase flow with rotationally restrained boundaries, employing the generalized integral transform technique (GITT). The rotationally restrained boundary conditions are more realistic for practical engineering applications in comparison to the classical simply-supported [...] Read more.
This study explores the dynamic behavior of a vertical pipe conveying gas-liquid two-phase flow with rotationally restrained boundaries, employing the generalized integral transform technique (GITT). The rotationally restrained boundary conditions are more realistic for practical engineering applications in comparison to the classical simply-supported and clamped boundary conditions, which can be viewed as limiting scenarios of the rotationally restrained boundary conditions when rotational stiffness approaches zero and infinity, respectively. Utilizing the small-deflection Euler-Bernoulli beam theory, the governing equation of motion for the deflection of the pipe is transformed into an infinite set of coupled ordinary differential equations, which is then numerically solved following truncation at a finite order NW. The proposed integral transform solution was initially validated against extant literature results. Numerical findings demonstrate that as the gas volume fraction increases, there is a reduction in both the first-order critical flow velocity and the vibration frequency of the pipe conveying two-phase flow. Conversely, as the rotational stiffness factor enhances, both the first-order critical velocity and vibration frequency increase, resulting in improved stability of the pipe. The impact of the bottom-end rotational stiffness factor r2 on the dynamic stability of the pipe is more pronounced compared to the top-end rotational factor r1. The variation in two-phase flow parameters is closely associated with the damping and stiffness matrices. Modifying the gas volume fraction in the two-phase flow alters the distribution of centrifugal and Coriolis forces within the pipeline system, thereby affecting the pipeline’s natural frequency. The results illustrate that an increase in the gas volume fraction leads to a decrease in both the pipeline’s critical velocity and vibration frequency, culminating in reduced stability. The findings suggest that both the gas volume fraction and boundary rotational stiffness exert a significant influence on the dynamic behavior and stability of the pipe conveying gas-liquid two-phase flow. Full article
Show Figures

Figure 1

21 pages, 4377 KB  
Article
Superelasticity in Shape Memory Alloys—Experimental and Numerical Investigations of the Clamping Effect
by Jakub Bryła and Adam Martowicz
Materials 2025, 18(14), 3333; https://doi.org/10.3390/ma18143333 - 15 Jul 2025
Viewed by 1054
Abstract
Loading and clamping schemes significantly influence the behavior of shape memory alloys, specifically, the course of their solid-state transformations. This paper presents experimental and numerical findings regarding the nonlinear response of samples of the above-mentioned type of smart materials observed during tensile tests. [...] Read more.
Loading and clamping schemes significantly influence the behavior of shape memory alloys, specifically, the course of their solid-state transformations. This paper presents experimental and numerical findings regarding the nonlinear response of samples of the above-mentioned type of smart materials observed during tensile tests. Hysteretic properties were studied to elucidate the superelastic behavior of the tested and modeled samples. The conducted tensile tests considered two configurations of grips, i.e., the standard one, where the jaws transversely clamp a specimen, and the customized bollard grip solution, which the authors developed to reduce local stress concentration in a specimen. The characteristic impact of the boundary conditions on the solid phase transformation in shape memory alloys, present due to the specific clamping scheme, was studied using a thermal camera and extensometer. Martensitic transformation and the plateau region in the nonlinear stress–strain characteristics were observed. The results of the numerical simulation converged to the experimental outcomes. This study explains the complex nature of the phase changes in shape memory alloys under specific boundary conditions induced by a given clamping scheme. In particular, variation in the martensitic transformation course is identified as resulting from the stress distribution observed in the specimen’s clamping area. Full article
(This article belongs to the Special Issue Technology and Applications of Shape Memory Materials)
Show Figures

Figure 1

15 pages, 6842 KB  
Article
Finite Element Analysis of Post-Buckling Failure in Stiffened Panels: A Comparative Approach
by Jakiya Sultana and Gyula Varga
Machines 2025, 13(5), 373; https://doi.org/10.3390/machines13050373 - 29 Apr 2025
Cited by 3 | Viewed by 1077
Abstract
Stiffened panels are extensively used in aerospace applications, particularly in wing and fuselage sections, due to their favorable strength-to-weight ratio under in-plane loading conditions. This research employs the commercial finite element software Ansys-19 to analysis the critical buckling and ultimate collapse load of [...] Read more.
Stiffened panels are extensively used in aerospace applications, particularly in wing and fuselage sections, due to their favorable strength-to-weight ratio under in-plane loading conditions. This research employs the commercial finite element software Ansys-19 to analysis the critical buckling and ultimate collapse load of an aluminum stiffened panel having a dimension of 1244 mm (Length) × 957 mm (width) × 3.5 mm (thickness), with three stiffener blades located 280 mm away from each other. Both the critical buckling load and post-buckling ultimate failure load of the panel are validated against the experimental data found in the available literature, where the edges towards the length are clamped and simply supported, and the other two edges are free. For nonlinear buckling analysis, a plasticity power law is adopted with a small geometric imperfection of 0.4% at the middle of the panel. After the numerical validation, the investigation is further carried out considering four different lateral pressures, specifically 0.013 MPa, 0.065 MPa, 0.085 MPa, and 0.13 MPa, along with the compressive loading boundary conditions. It was found that even though the pressure application of 0.013 MPa did not significantly impact the critical buckling load of the panel, the ultimate collapse load was reduced by 18.5%. In general, the ultimate collapse load of the panel was severely affected by the presence of lateral pressure while edge compressing. Three opening shapes—namely, square, circular, and rectangular/hemispherical—were also investigated to understand the behavior of the panel with openings. It was found that the openings significantly affected the critical buckling load and ultimate collapse load of the stiffened panel, with the lateral pressure also contributing to this effect. Finally, in critical areas with higher lateral pressure load, a titanium panel can be a good alternative to the aluminum panel since it can provide almost twice to thrice better buckling stability and ultimate collapse load to the panels with a weight nearly 1.6 times higher than aluminum. These findings highlight the significance of precision manufacturing, particularly in improving and optimizing the structural efficiency of stiffened panels in aerospace industries. Full article
Show Figures

Figure 1

21 pages, 10315 KB  
Article
Seismic Response of Variable Section Column with a Change in Its Boundary Conditions
by Alexandre de Macêdo Wahrhaftig, Moshe Eisenberger, Castro Baptista Elias and Luiz Antônio Malheiros Filho
Buildings 2025, 15(9), 1456; https://doi.org/10.3390/buildings15091456 - 25 Apr 2025
Cited by 1 | Viewed by 955
Abstract
The end conditions of columns constitute an important design parameter as they change their stiffness. The degree of restraint of the column modifies its fundamental frequency and mode of vibration. The rotational stiffness at its ends may transform from zero (hinged) to infinite [...] Read more.
The end conditions of columns constitute an important design parameter as they change their stiffness. The degree of restraint of the column modifies its fundamental frequency and mode of vibration. The rotational stiffness at its ends may transform from zero (hinged) to infinite (clamped). For intermediate values, the rotational movement is partially restricted, and it is classified as semi-rigid. In this work, the seismic response for a linearly variable section column and with gradual change in the rotational fixity is studied. A parametric solution is developed using the Rayleigh method, derived for cases of non-prismatic columns, and considering the axially distributed force along the column height. The obtained generalized stiffness and mass are used to perform approximate seismic evaluation at low effort and examine the influence of the changes to the structure. The analysis indicated that with a spring coefficient of 5 EI/l, the displacement drops by 50%, meaning that this range can produce significant influence on the structural response. The relationship between the top load and the column self-weight equal to 0.3 defines the limit for the hinged–hinged boundary condition to exist. As research recommendations, analysis of columns with variable cross-sections and different shapes, different distributed loadings, applying the rotational spring for both ends and over the shape functions, and analysis of buildings by an equivalent system are suggested. Experimental activity is indicated as a possibility for future investigations. Full article
Show Figures

Figure 1

21 pages, 7487 KB  
Article
Free- and Forced-Vibration Characteristic Analysis of a Double-Layered Cylindrical Shell with General Boundary Conditions
by Jianghai Wu, Hongzhen Zhu and Yong Duan
J. Mar. Sci. Eng. 2025, 13(4), 641; https://doi.org/10.3390/jmse13040641 - 24 Mar 2025
Cited by 2 | Viewed by 1048
Abstract
The double-layered cylindrical shell represents a key structural configuration for underwater vehicles, where its vibration behavior remains a primary concern in engineering design and analysis. This study develops a spectral element method (SEM) for dynamic modeling of multi-component shell systems by extending the [...] Read more.
The double-layered cylindrical shell represents a key structural configuration for underwater vehicles, where its vibration behavior remains a primary concern in engineering design and analysis. This study develops a spectral element method (SEM) for dynamic modeling of multi-component shell systems by extending the vibrational governing equations of conical shells. The methodology is validated through finite element method (FEM) case studies on both conical shells and double-layered cylindrical configurations. Parametric investigations examine ribbed substructures and solid rib plates within the cylindrical shell assembly, while artificial spring techniques model arbitrary boundary conditions—with validation against classical benchmarks confirming their effectiveness for elastic constraints. Numerical demonstrations reveal the following: rib and plate thickness variations exhibit a negligible impact on low-frequency vibrational responses; the natural frequency sensitivity peaks when the elastic boundary stiffness approaches the inherent dynamic stiffness of the shell’s base configuration, while extreme stiffness values approximate clamped or free boundary conditions with engineering significance. The proposed SEM framework demonstrates a superior computational efficiency and accuracy compared to conventional FEM approaches. These findings deliver practical guidance for marine structural engineering, particularly in the boundary condition specifications and performance optimization of composite shell systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

22 pages, 355 KB  
Article
Exponential Stability for a Degenerate/Singular Beam-Type Equation in Non-Divergence Form
by Mohammad Akil, Genni Fragnelli and Amine Sbai
Axioms 2025, 14(3), 159; https://doi.org/10.3390/axioms14030159 - 23 Feb 2025
Cited by 1 | Viewed by 515
Abstract
The paper deals with the stability of a degenerate/singular beam equation in non-divergence form. In particular, we assume that the degeneracy and the singularity are at the same boundary point and we impose clamped conditions where the degeneracy occurs and dissipative conditions at [...] Read more.
The paper deals with the stability of a degenerate/singular beam equation in non-divergence form. In particular, we assume that the degeneracy and the singularity are at the same boundary point and we impose clamped conditions where the degeneracy occurs and dissipative conditions at the other endpoint. Using the energy method, we provide some conditions to obtain the stability for the considered problem. Full article
(This article belongs to the Special Issue Advances in Dynamical Systems and Control)
23 pages, 8778 KB  
Article
A Novel Approach to the Design of Distributed Dynamic Vibration Absorbers for Plates Subjected to Classical and Elastic Edge Conditions
by Yuan Du, Yuhang Tang, Chenyu Fan, Yucheng Zou, Zhen Bao and Yong Ma
J. Mar. Sci. Eng. 2025, 13(3), 401; https://doi.org/10.3390/jmse13030401 - 21 Feb 2025
Viewed by 1195
Abstract
Plate structures are the main components of offshore platforms and ships in engineering applications. The vibration control of the low-frequency mode of plate structures has always been a meaningful research object in marine science and engineering. Due to their low cost and good [...] Read more.
Plate structures are the main components of offshore platforms and ships in engineering applications. The vibration control of the low-frequency mode of plate structures has always been a meaningful research object in marine science and engineering. Due to their low cost and good performance, dynamic vibration absorbers are widely used. To enhance the design efficiency of dynamic vibration absorbers, a mathematical model was developed for plates with dynamic vibration absorbers under different boundary constraints. To overcome the discontinuity of the displacement function, auxiliary series were introduced. In addition, the efficiency of resolving the plate structure’s equivalent mass was significantly improved compared with when using FEM software Abaqus 6.14. The validity of the proposed mathematical model was confirmed in comparison with related studies, the FEM results, and the experimental results. Considering the mathematical model and design approach proposed in the current paper, more research on the vibration control of plates subjected to clamped and elastic boundary conditions should be performed. The mathematical model and findings in the design process may have positive implications for the control of the vibration of plate structures in marine science and engineering. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 3867 KB  
Article
Vibration Control of AFG Beam with Moving Load in Thermal Environment
by Xi Xu and Yuewu Wang
Materials 2025, 18(3), 725; https://doi.org/10.3390/ma18030725 - 6 Feb 2025
Cited by 1 | Viewed by 957
Abstract
Forced vibrations resulting from moving loads, along with efficient vibration control, are essential in transportation engineering, earthquake engineering, and aerospace engineering. In this study, the vibrational response of an axially functionally graded (AFG) beam subjected to a moving harmonic load within a thermal [...] Read more.
Forced vibrations resulting from moving loads, along with efficient vibration control, are essential in transportation engineering, earthquake engineering, and aerospace engineering. In this study, the vibrational response of an axially functionally graded (AFG) beam subjected to a moving harmonic load within a thermal environment was investigated. The primary aim was to explore the potential of controlling this vibration by incorporating a nonlinear energy sink (NES). A model for the AFG beam, with clamped–clamped boundary conditions, was developed using Euler–Bernoulli beam theory and the Lagrange method, accounting for the effects of the thermal environment and the moving load. The numerical simulations were performed using the Newmark method to solve the governing equations. The results demonstrated the effectiveness of the NES in mitigating the vibrational response of the beam under thermal and dynamic loading conditions. The effective reduction of maximum deflection caused by moving loads was set as the optimization objective to identify the most optimal parameters of the NES. The results were presented through a series of parameter analyses, revealing that the nonlinear damper can quickly dissipate the beam’s energy when the loads exit the structure. Furthermore, a properly designed NES can result in a 2.4-fold increase in suppression efficiency. Full article
(This article belongs to the Special Issue Functionally Graded Graphene Nanocomposite Materials and Structures)
Show Figures

Figure 1

Back to TopTop