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Abstract

The effects of boundary conditions on the vibration characteristics of a sandwich plate
with viscoelastic periodic cores were examined. The tangential, vertical, transverse, and
torsional springs were utilized to restrict the sandwich plate’s edge in order to model
a general boundary condition, bringing the benefit that the conventional free, clamped,
and simply supported boundary conditions became special cases in the proposed model
as these spring constants took extreme values. A theoretical model was established to
calculate the forced response and band structure of the periodic sandwich plate, providing
computational support for evaluating its vibration characteristics. The correctness of the
theoretical model was also validated by the finite element method. The results show that the
boundary spring stiffness has a significant effect on the band-gap frequencies and band-gap
width of the periodic sandwich plate. Increasing the boundary spring stiffness contributes
to achieving broader band gaps. In addition, the band-gap frequencies and band-gap width
are more sensitive to transverse spring stiffness than the tangential, vertical, and torsional
spring stiffnesses. Therefore, changing transverse spring stiffness is more effective for
adjusting the band gap property. This study may provide helpful guidance on vibration
and noise reduction design in engineering.

Keywords: band gap; viscoelastic periodic cores; periodic sandwich plate; vibration control;
elastic boundary condition

1. Introduction
Over the past two to three decades, emerging structures, including periodic struc-

tures [1,2], phononic crystals [3,4], and metamaterials [5], have gradually garnered
widespread attention from researchers. Periodic structures are composed of identical
structural units arranged in a certain periodic order. In traditional engineering, the design
of periodic structures usually focuses on mechanical performance. However, the emergence
and development of phononic crystals and metamaterials have further expanded the scope
of periodic structures. The periodicity of the structure gives it filtering characteristics [6],
meaning that vibrational waves within the band gap are unable to propagate freely and
are suppressed, while waves outside the band-gap frequency range can propagate nor-
mally. Due to the suppression of vibrations, the radiation noise within the bandgap is also
significantly reduced, making periodic structures a new method for controlling structural
vibrations and noise.
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The Bragg-scattering band-gap formation mechanism was the earliest discovered and
studied mechanism [7,8]. Its most straightforward understanding can be regarded as an
impedance mismatch caused by material or geometric discontinuities at specific positions in
the periodic structure. During wave propagation, the impedance mismatch causes energy
redistribution, with some of the energy being reflected and the remainder transmitted.
When waves are periodically reflected and transmitted, complex superposition, destructive,
and constructive interference effects occur among multiple reflected and transmitted waves,
causing specific frequencies to weaken gradually during forward propagation, resulting in
band-gap phenomena.

As beam structures are commonly used in engineering, when the study of periodic
structures transitions from discrete oscillators to continuous elastic systems, periodic beam
structures have been extensively researched [9–12]. In studies of periodic beams and plates,
initial focus was generally on one-dimensional periodic beams, with later extensions to
two-dimensional periodic plates as research matured [13–17]. Early research primarily
focused on widely used engineering structures, such as periodic support [18], periodic
added point masses [19], periodic stiffening [20], and periodic gratings [21]. With the
development of phononic crystals and acoustic metamaterials, a wider range of periodic
beam and plate types has emerged.

Materials with periodic variations have been widely studied in the context of periodic
beams and plates. Wen et al. investigated the bending vibrations of periodic thin beams
made of acrylic and aluminum materials, exploring the band-gap characteristics based on
Bragg scattering phononic crystal Euler beams [22]. Liu et al. transformed straight beams
into curved beams to analyze in-plane and out-of-plane vibration band gaps of periodic
curved beams, observing some differences compared to straight beams [23]. Based on
bending-vibration research, Fang et al. further considered torsional vibrations, studied
the energy band structure of bending–torsion coupled periodic beams, and analyzed the
influence of warp factors on the band gaps [24]. Yu et al. introduced elastic foundation
constraints at the base of the periodic beam structure, using transfer matrix methods to
analyze the wave number and traveling wave characteristics under elastic constraints, and
discovered low-frequency broadband band gaps when elastic parameters are appropriately
chosen [10]. Recently, Mattia et al. combined both Bragg scattering and local resonance
mechanisms of bandgap formation in a mono-coupled periodic beam and produced a
wider attenuation zone [25].

Sorokin et al. extended the periodic coupled beam structure to a periodic coupled
plate structure [26], studying the band-gap properties of such plates under plane-wave
propagation, which in essence accounted for the influence of Poisson’s ratio within the
periodic coupled beam framework. Zhang further considered vibration modes along the
width of the plate [27], employing wave propagation methods to investigate the bandgap
characteristics of single-layer periodic coupled plates under simply supported boundary
conditions. It was found that, unlike periodic coupled beam structures, the presence of
modal shapes in the width direction results in distinct modal band gaps for each order,
with the overall structure’s band gap being the superposition of all modal band gaps.

For single-layer periodic coupled plates with finite width, the boundary conditions
are generally assumed to be simply supported, as studied by Zhang [27] and Wu et al. [28],
using wave propagation analysis and spectral finite element methods, respectively. How-
ever, in practical engineering, boundary conditions are diverse, and different boundary
conditions correspond to distinct wave propagation modes. Consequently, band-gap
characteristics under simply supported boundaries cannot fully represent the band-gap
distribution under other boundary conditions. The authors previously established an
analytical model for calculating the band structure and vibration transmission of periodic
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single-layer plates under elastic boundary conditions by combining Bloch–Floquet peri-
odic boundary conditions with transfer matrix methods [29]. Building on this model, the
influence of elastic boundary conditions on bandgap properties was discussed, thereby
enriching the understanding of band-gap characteristics of periodic single-layer plates.

For periodic coupled single-layer plates made of materials with periodic variations,
stress tends to concentrate at contact points between two different materials, and the
structure at these contact points cannot withstand large bending loads, which are weak
points for bending vibrations and prone to fracture, significantly reducing the bending
stiffness of the periodic coupled plate structure [30]. In contrast, periodic sandwich struc-
tures do not have this issue, as their surface layers are homogeneous, with only the core
layer periodically varying [31]. Additionally, multilayer composites, due to their excellent
mechanical performance, are widely used in aircraft and automobile skins, rocket and
missile fuselages, ship decks, and other engineering structures. Introducing periodicity
into multilayer composites leverages the band-gap characteristics of periodic structures to
reduce vibration levels and improve vibration performance.

Currently, research on the band gaps and vibration suppression properties of sand-
wich plates with periodically repeated cores is limited, resulting in a lack of systematic
understanding of their vibration characteristics and an incomplete analytical modeling
framework. Only a few studies are available in the literature [31–36]. Ruzzene et al. exam-
ined the band-gap properties of simply supported periodic sandwich panels containing
auxetic core materials [31,32], focusing on how the negative Poisson’s ratio affects the band
gaps. Earlier work by the authors investigated the band-gap characteristics of periodic
sandwich panels in free boundary conditions and validated their excellent vibration and
noise reduction properties through experimental methods [33]. Jiang et al. investigated
the effects of layer thickness and core component ratio of a periodic sandwich structure
with free boundary conditions on the band-gap properties [34]. They demonstrated that
lower-frequency band gaps can be better ensured with a thicker core layer and a higher
component ratio of soft core. Robin et al. extended the research to investigate the modal
characteristics of the sandwich structures with homogeneous cores and periodic cores [35].
Huchard et al. focused on the periodic sandwich structures’ design, characterization, and
modeling, and the experiment was also conducted in the laboratory to experimentally
determine the dissipation characteristics of the sandwich plate with periodic cores [36].
Many aspects of band-gap properties related to periodic sandwich panels remain to be
further explored and clarified. In recent years, other types of periodic sandwich structures
have also attracted some attention. Dou et al. extended the traditional periodic sandwich
structure to the carbon fiber-reinforced polymer composites laminate, and confirmed that
the band gap exists in the laminate structure [37]. In order to improve the band-gap perfor-
mance, various two-dimensional distributed embedded cores have been studied recently,
including plate-type resonators [15], composite rod cores [38], thin-wall tube cores [39],
S-shaped oscillators [40], pyramid lattice cores [41], and graded resonators. These studies
have expanded the research scope of the sandwich plate with periodic cores.

For periodic single-layer composite panels, boundary conditions have a significant
influence on their band-gap characteristics [29]. This is also true for periodic sandwich
panels. Different boundary conditions result in distinct band structures and band-gap
distributions. In studies employing analytical methods [32], simply supported boundaries
are commonly used. In contrast, other boundary conditions are less studied due to modeling
complexities, and no comprehensive analytical theories have been established for them.
Therefore, it is necessary to investigate how boundary conditions affect the bandgap and
vibration properties of periodic sandwich panels. When considering the polymer material in
a periodic structure, including the viscoelastic effect could improve the band-gap estimation
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accuracy, and the theoretical model will be closer to reality. Thus, the viscoelastic effect of
acoustic metamaterial and phononic crystal has become an interesting topic [42–45].

Based on existing “Fourier series and supplementary function” assumptions for dis-
placement functions under elastic boundary conditions for single-layer plates [46], the
authors further refined these displacement assumptions in this work, proposing a new
displacement function suitable for sandwich panels with elastic boundaries. This solves the
challenge of modeling displacement functions of sandwich panels under elastic boundary
conditions. The boundary conditions considered include elastic support with general
boundary conditions, allowing for the derivation of analytical solutions not only for sim-
ply supported, but also for free, clamped, and sliding boundaries, among other common
boundary types. Furthermore, an analytical method for determining the band structure and
vibration response of periodic sandwich panels has been developed, providing a theoretical
basis for subsequent research. This not only offers guidance for vibration and noise control
in multilayer structures but also facilitates the study of the band-gap characteristics of more
complex multilayer periodic combinations.

2. Theory and Formulations
2.1. Structure Configuration and Basic Dynamic Theory

As shown in Figure 1, a model of a periodic sandwich plate is considered, which is
configured by upper and lower uniform surface layers and medial periodic viscoelastic
cores. Each element is composed of two sub-sandwich panels joining end to end, where
the cores are denoted as cores A and B.

Figure 1. Schematics of the periodic sandwich plate with elastic boundary conditions.

The two opposite sides of the periodic sandwich plate shown in Figure 1 are in elastic
boundary conditions, constrained by four sets of springs. As shown in Figure 2, the
tangential, vertical, and transverse vibration displacements of the structure are constrained
by three sets of linear springs, and the spring stiffnesses per unit length are denoted as kyu

(N/m2), kyv (N/m2), and kyw (N/m2), respectively. In addition, the rotational displacement
is constrained by one set of torsional springs, with the spring stiffness per unit length
denoted as kyθ (N). In order to make it more straightforward to understand the various
spring stiffness parameters, a notation table is given in Table 1 for quick reference.

Figure 2. Schematics and notations of the elastic boundary condition.
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Table 1. The notations of various spring stiffness parameters.

Notation Meaning Unit

kyu The tangential linear spring stiffness per unit length N/m2

kyv The vertical linear spring stiffness per unit length N/m2

kyw The transverse linear spring stiffness per unit length N/m2

kyθ The torsional spring stiffness per unit length N

To obtain the vibration calculation formula of the finite or infinite periodic sandwich
plate, the governing equations of a uniform sandwich panel, as shown in Figure 3, are first
considered. The coordinates and notations of the generalized displacements and forces in
the structure are illustrated in the figure to facilitate a better understanding of the basic
theory. The length, width, and thickness are denoted as a, b, and hi, respectively. The
in-plane and transverse displacements are denoted as ui, vi, and w, and the viscoelastic
core’s rotations with respect to axis y and axis x are denoted as γx and γy, respectively.
The vertical forces of the ith layer are denoted as Nix and Niy, and the tangential forces of
the ith layer are denoted as Tix and Tiy. The bending moments and shearing forces of the
sandwich panel are denoted as Mx, My, Qx, and Qy.

v3

h3
h2
h1

x
y

z

v1v2

w

γy

b

a

N1y
N3y

T1y

T3y

My Qy

u1u2u3
γx

Qx N1x
N3x

Mx

Figure 3. Coordinates and notations of the generalized displacements and forces in a sandwich plate.

The two surface layers are made of elastic material, while the core layer is made
of viscoelastic material. Several models have been established to estimate the damp-
ing properties of viscoelastic materials, among which the most commonly used include
the Kelvin-Voigt model [47,48], the Maxwell model [49], and the generalized Maxwell
model [50]. The Kelvin–Voigt model consists of an elastic spring and a viscous damper
connected in parallel, and is suitable for describing delayed strain under constant stress.
The Maxwell model is represented by an elastic spring and a viscous damper connected in
series, which can be used to describe stress relaxation. The generalized Maxwell model,
also known as the Maxwell–Wiechert model, is assembled by multiple Maxwell elements
connected in parallel and can be used to assess most of the realistic stress relaxation and
frequency-dependent behavior.

Compared to the surface layer, the core layer typically has a significantly smaller
modulus. Thus, the shearing effect is considered, and the normal deformation is neglected
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to simplify the theoretical model. Therefore, the strain energy Ei
pot and kinematic energy

Ei
kin of each layer (i = 1, 2, 3) can be expressed as

Ei
pot =

1
2

Bi
∫ ∫ [

u2
ix + 2υiuixviy + v2

iy + υia
(
uiy + vix

)2
]
dxdy

+
1
2

Di
∫ ∫ [

w2
xx + 2υiwxxwyy + w2

yy + 2(1 − υi)w2
xy

]
dxdy

(i = 1, 3)

E2
pot =

1
2

Gh
∫ ∫ (

γ2
x + γ2

y

)
dxdy

, (1)

and 
Ei

kin =
1
2
∫ ∫ [

mi

( .
u2

i +
.
v2

i +
.

w2
)
+ Ji

( .
w2

x +
.

w2
y

)]
dxdy (i = 1, 3)

E2
kin =

1
2
∫ ∫ [

m2

( .
u2

2 +
.
v2

2 +
.

w2
)
+ J2

(
.
θ

2
2 +

.
φ

2
2

)]
dxdy

, (2)

where γx = (u3 − u1 − dwx)/h2, γy =
(
v3 − v1 − dwy

)
/h2, d = h2 + (h1 + h3)/2, mi = ρihi,

Ji = ρih3
i /12, θ2 = [u1 − u3 − (h1 + h3)wx/2]/h2, and φ2 =

[
v1 − v3 − (h1 + h3)wy/2

]
/h2.

In Equations (1) and (2), Bi = Eihi/
(
1 − υ2

i
)
, Di = Eih3

i /12
(
1 − υ2

i
)
, υia = (1 − υi)/2,

Gh = G2/h2, where Ei, Gi, ρi, and υi are the Young’s modulus, shear modulus, density, and
Poisson’s ratio of each layer, respectively. For modeling convenience purposes, the core’s
viscosity is considered in terms of complex modulus with E2 = E2s(1 + jη), where E2s is
the storage modulus and η is the damping loss factor, representing the ratio of the loss
modulus to the storage modulus. This damping representation method is similar to the
Kelvin-Voigt model, where η is equivalent to ωτ, with τ indicating the retardation time in
the Kelvin-Voigt model [51,52].

By using Hamilton’s principle, the equations of motion for the homogeneous sandwich
panel given in Figure 3 can be given as

L11 L12 L13 L14 L15

L21 L22 L23 L24 L25

L31 L32 L33 L34 L35

L41 L42 L43 L44 L45

L51 L52 L53 L54 L55




u1

v1

u3

v3

w

 =


0
0
0
0
fz

, (3)

where Lij (i, j = 1, . . . , 5) can be obtained in the theoretical derivation process and are
given in detail in Equations (A1)–(A14) in Appendix A. The generalized forces at the cross
sections of x = 0, a can be expressed as

N1x = B1
(
u1x + υ1v1y

)
, T1x = υ1aB1

(
v1x + u1y

)
, N3x = B3

(
u3x + υ3v3y

)
, T3x = υ3aB3

(
v3x + u3y

)
Qx = −(D1 + D3)wxxx − [D1(2 − υ1) + D3(2 − υ3)]wxyy +

(
−Ghdu1 + Ghdu3 + d2Ghwx

)
Mx = (D1 + D3)wxx + (D1υ1 + D3υ3)wyy

, (4)

and those at the cross sections of y = 0, b can be expressed as
N1y = B1

(
v1y + υ1u1x

)
, T1y = υ1aB1

(
u1y + v1x

)
, N3y = B3

(
v3y + υ3u3x

)
, T3y = υ3aB3

(
u3y + v3x

)
Qy = −(D1 + D3)wyyy − [D1(2 − υ1) + D3(2 − υ3)]wxxy +

(
−Ghdv1 + Ghdv3 + d2Ghwy

)
My = (D1 + D3)wyy + (D1υ1 + D3υ3)wxx

, (5)

2.2. Forced Response

A finite periodic sandwich plate with I + 1 sub sandwich panels in elastic boundary
conditions is shown in Figure 4 for forced response calculation purposes. The sub sandwich
panels consist of repeated cores A and B, and a harmonic force f0 ejωt is applied at sub
sandwich panel 0.
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Figure 4. A finite periodic sandwich plate.

To represent the displacements of the periodic sandwich plate, a complex admissible
function of displacements is used in the paper by extending the admissible displacement
function proposed by Li et al. [46] for a single-layer thin plate. The in-plane and transverse
displacements of the ith sub sandwich plate can be expressed as

u1i(xi, yi) =
∞
∑

m=0

∞
∑

n=0
U1imn cos λimxi cos λinyi +

2
∑

l=1

[
ζ l

ib(yi)
∞
∑

m=0
cl

1ium cos λimxi + ζ l
ia(xi)

∞
∑

n=0
dl

1iun cos λinyi

]
v1i(xi, yi) =

∞
∑

m=0

∞
∑

n=0
V1imn cos λimxi cos λinyi +

2
∑

l=1

[
ζ l

ib(yi)
∞
∑

m=0
cl

1ivm cos λimxi + ζ l
ia(xi)

∞
∑

n=0
dl

1ivn cos λinyi

]
u3i(xi, yi) =

∞
∑

m=0

∞
∑

n=0
U3imn cos λimxi cos λinyi +

2
∑

l=1

[
ζ l

ib(yi)
∞
∑

m=0
cl

3ium cos λimxi + ζ l
ia(xi)

∞
∑

n=0
dl

3iun cos λinyi

]
v3i(xi, yi) =

∞
∑

m=0

∞
∑

n=0
V3imn cos λimxi cos λinyi +

2
∑

l=1

[
ζ l

ib(yi)
∞
∑

m=0
cl

3ivm cos λimxi + ζ l
ia(xi)

∞
∑

n=0
dl

3ivn cos λinyi

]
wi(xi, yi) =

∞
∑

m=0

∞
∑

n=0
Wimn cos λimxi cos λinyi +

4
∑

l=1

[
ξ l

ib(yi)
∞
∑

m=0
cl

iwm cos λimxi + ξ l
ia(xi)

∞
∑

n=0
dl

iwn cos λinyi

]
, (6)

where the first part of each displacement function is the main component that contributes
to the displacement, and the second part is a supplementary component that addresses
the discontinuities of the derivatives at the plate’s edges. In Equation (6), λim = mπ/ai

and λin = nπ/bi. The terms U1imn, V1imn, U3imn, V3imn, Wimn, cl
1ium, dl

1iun, cl
1ivm, dl

1ivn, cl
3ium,

dl
3iun, cl

3ivm, dl
3ivn, cl

iwm, and dl
iwn are unknown variables, which can be determined by calcu-

lating governing differential equations and boundary equations. The admissible function
of displacements listed in Equation (6) can be used to satisfy various boundary conditions,
including but not limited to free, clamped, simply supported, slipping, continuous, pe-
riodic, and elastic boundary conditions. The terms ξ l

ia(xi), ξ l
ib(yi), ζ l

ia(xi), and ζ l
ib(yi) in

Equation (6) can be chosen as

ξis(χi) =
[

ξ1
is(χi) ξ2

is(χi) ξ3
is(χi) ξ4

is(χi)
]T

=
[

sin
(

πχi
2si

)
cos

(
πχi
2si

)
sin

(
3πχi
2si

)
cos

(
3πχi
2si

) ]T (7)

and
ζis(χi) = Aξis(χi), (8)

where A =

[
1 0 0 0
0 1 0 0

]
, χi represents xi or yi, and s represents a or b.

The first- to fourth-order derivatives of ξis(χi) can be derived as{
ξ
(1)
is (χi) = Bis1Bis0ξis(χi), ξ

(2)
is (χi) = Bis2ξis(χi)

ξ
(3)
is (χi) = Bis3Bis0ξis(χi), ξ

(4)
is (χi) = Bis4ξis(χi)

, (9)
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where Bis0 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

, Bis1 = π
2si

diag(1 ,−1, 3, −3), Bis2 = −B2
is1, Bis3 = −B3

is1,

and Bis4 = B4
is1.

For derivation convenience, ξis(χi) can be expanded in cosine series form as

ξis(χi) =
∞

∑
r=0

τr cos λisrχi, (10)

where τr is given as

τr =
[
τ1

r τ2
r τ3

r τ4
r

]T
=


[

2
π

2
π

2
3π − 2

3π

]T
r = 0[

4
(1−4r2)π

4(−1)r

(1−4r2)π
12

(9−4r2)π
12(−1)r+1

(9−4r2)π

]T
r ̸= 0

, (11)

Substituting Equation (10) into Equation (9) gives
ξ
(1)
is (χi) =

∞
∑

r=0
αis1r cos λisrχi, ξ

(2)
is (χi) =

∞
∑

r=0
αis2r cos λisrχi

ξ
(3)
is (χi) =

∞
∑

r=0
αis3r cos λisrχi, ξ

(4)
is (χi) =

∞
∑

r=0
αis4r cos λisrχi

, (12)

where αisjr =
[
α1

isjr α2
isjr α3

isjr α4
isjr

]T
(s = a, b; j = 1, 2, 3, 4) can be given as

αis1r = Bis1Bis0αis0r, αis2r = Bis2αis0r, αis3r = Bis3Bis0αis0r, αis4r = Bis4αis0r, in which
αis0r = τr.

Substituting Equation (12) into Equation (8) gives

ζ
(j)
is (χi) =

∞

∑
r=0

βisjr cos λisrχi (j = 1, 2, 3, 4), (13)

where βisjr = Aαisjr.
Following the above basic theoretical derivation of the admissible displacement func-

tion, the boundary equations of the periodic sandwich plate were examined. As shown
in Figure 5, there are three types of boundary conditions, including elastic boundary
conditions (EBC) at yi = 0 and yi = bi, free boundary conditions (FBC) at x0 = 0 and
xI = aI, and continuous boundary conditions (CBC) at the connection of two neighboring
sub-sandwich panels.

Figure 5. Boundary conditions in a finite periodic sandwich plate.

2.2.1. EBC of the Finite Periodic Sandwich Plate

At positions yi = 0 and yi = bi (i = 0, 1, · · ·, I), each sub sandwich panel is constrained
by linear and torsional elastic springs. Thus, the boundary equations can be expressed as
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(yi = 0) :



kyvv1i(xi, 0) = N1iy(xi, 0)
kyuu1i(xi, 0) = T1iy(xi, 0)
kyvv3i(xi, 0) = N3iy(xi, 0)
kyuu3i(xi, 0) = T3iy(xi, 0)
kywwi(xi, 0) = Qiy(xi, 0)
kyθθiy(xi, 0) = Miy(xi, 0)

(yi = b) :



−kyvv1i(xi, bi) = N1iy(xi, bi)

−kyuu1i(xi, bi) = T1iy(xi, bi)

−kyvv3i(xi, bi) = N3iy(xi, bi)

−kyuu3i(xi, bi) = T3iy(xi, bi)

−kywwi(xi, bi) = Qiy(xi, bi)

−kyθθiy(xi, bi) = Miy(xi, bi)

. (14)

2.2.2. FBC of the Finite Periodic Sandwich Plate

At the left end of sub sandwich panel #0 and right end of sub sandwich panel #I, the
structure is in free boundary conditions, the corresponding generalized forces should be
zero at positions x0 = 0 and xI = aI, which gives

(x0 = 0) :



N10x(0, yi) = 0
T10x(0, yi) = 0
N30x(0, yi) = 0
T30x(0, yi) = 0
Q0x(0, yi) = 0
M0x(0, yi) = 0

(xI = aI) :



N1Ix(aI, yi) = 0
T1Ix(aI, yi) = 0
N3Ix(aI, yi) = 0
T3Ix(aI, yi) = 0
QIx(aI, yi) = 0
MIx(aI, yi) = 0

. (15)

2.2.3. CBC of the Finite Periodic Sandwich Plate

At the interface between two neighboring sub sandwich panels, both the generalized
displacements and generalized forces satisfy the continuous condition. Thus, at position
xi = 0 (1 ≤ i ≤ I), the boundary equations can be given as

u1(i−1)(ai−1, yi−1) = u1i(0, yi)

v1(i−1)(ai−1, yi−1) = v1i(0, yi)

u3(i−1)(ai−1, yi−1) = u3i(0, yi)

v3(i−1)(ai−1, yi−1) = v3i(0, yi)

w(i−1)(ai−1, yi−1) = wi(0, yi)

θ(i−1)y(ai−1, yi−1) = θiy(0, yi)



N1(i−1)x(ai−1, yi−1) = N1ix(0, yi)

T1(i−1)x(ai−1, yi−1) = T1ix(0, yi)

N3(i−1)x(ai−1, yi−1) = N3ix(0, yi)

T3(i−1)x(ai−1, yi−1) = T3ix(0, yi)

Q(i−1)x(ai−1, yi−1) = Qix(0, yi)

M(i−1)x(ai−1, yi−1) = Mix(0, yi)

. (16)

Substituting Equations (4)–(6) into Equations (14)–(16), the boundary equations in
matrix form can be given as

Hp = Qa, (17)

where p = [p0, p1, . . . , pI]
T, a = [a0, a1, . . . , aI]

T, and the x-wise and y-wise infinite series
are truncated to M and N, respectively. In the above expression,
pi = [c1iu d1iu c1iv d1iv c3iu d3iu c3iv d3iv ciw diw]

T, ai = [u1i v1i u3i v3i wi]
T,

c1iu = [c1
1iu0, c1

1iu1, . . ., c1
1iuM, c2

1iu0, . . ., c2
1iuM] and d1iu=[d1

1iu0, d1
1iu1, . . ., d1

1iuN, d2
1iu0,. . ., d2

1iuN].
The vectors c1iv, c3iu, c3iv, ciw, d1iv, d3iu, d3iv, and diw can be arranged similarly to c1iu and d1iu,
except that ciw has 4× (M+ 1) elements and diw has 4× (N + 1) elements. The vector u1i can
be given as u1i = [U1i00, U1i01, . . ., U1i0N, U1i10, U1i11, . . ., U1i1N, . . ., U1imn, . . ., U1iM0, U1iM1, . . .,
U1iMN]. The vectors v1i, u3i, v3i, and wi can be arranged similarly to u1i.

It can be easily deduced from Equation (17) that

p = H−1Qa. (18)

From boundary equations, Equation (18) is obtained, where the vector p is represented
by the vector a. Next, we will go on to the governing differential equations.
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In the derivation, the vibration is assumed in harmonic form. At position (xi0, yi0)

on the ith sub sandwich panel, a harmonic point force in the form of Fi0 ejωt is applied. It
can be obtained from Equation (3) that the ith sub sandwich panel’s governing differential
equation can be given as

L11 L12 L13 L14 L15

L21 L22 L23 L24 L25

L31 L32 L33 L34 L35

L41 L42 L43 L44 L45

L51 L52 L53 L54 L55




u1i

v1i

u3i

v3i

wi

 =


0
0
0
0

Fi0δ(xi − xi0)δ(yi − yi0)

, (19)

where Fi0 is the force amplitude, and δ(xi − xi0)δ(yi − yi0) is the Dirac delta function. By
multiplying cos λiamxi cos λibnyi at both sides of the above equation, integrating over the
area of (xi, yi) ∈ ([0, ai]× [0, bi]), and using the orthogonality of trigonometric functions,
the vibration governing equations in detail can be given by Equations (A21)–(A25) in
Appendix A. By truncating the x-wise and y-wise infinite series to M and N and combining
all the I + 1 sub sandwich panels’ governing equations (Equations (A21)–(A25)), the matrix
form of all the governing equations can be given as

(Ra + Sp)− ω2(Za + Tp) = f, (20)

where f = [f0, f1, . . . , fI]
T, fi= [Fi00, Fi01,. . ., Fi0N , Fi10, Fi11,. . ., Fi1N ,. . ., FiM0, FiM1,. . .,

FiMN]. The force element is expressed as Fimn = F0
ΛimΛin

cos λimxi0 cos λinyi0, where

Λim =

ai m = 0

ai/2 m ̸= 0
and Λin =

b n = 0

b/2 n ̸= 0
.

By substituting Equation (18) into Equation (20), the vector p can be eliminated. Thus,
Equation (20) can finally be given by(

K − ω2M
)

a = f, (21)

where K = R + SH−1Q and M = Z + TH−1Q.
When the external point force and frequency ω are given, the coefficient vector a can

be obtained by solving Equation (21), and then the coefficient vector p can be determined
by Equation (18). With vectors a and p, the in-plane displacements u1i, u3i, v1i, v3i and the
transverse displacement wi of each sub-sandwich panel can be finally analytically acquired
from Equation (6).

2.3. Band Structure

The band structure of periodic structures can be determined by both ω(k) and k(ω)

approaches [53,54]. The ω(k) approach determines the frequency with given real-valued
wave vectors, which can be used to examine the propagating waves. The limitation of this
approach is that it is unable to investigate evanescent waves [42,44]. The k(ω) approach
determines the complex wave vectors with given real-valued frequencies, which can be
used to examine both propagating waves and evanescent waves. However, due to the
complexity of the k(ω) approach for the periodic sandwich plates with elastic boundary
conditions, it is quite complicated to solve the vibration governing equations for given
wave vectors. As the focus of this research is the effect of the boundary condition on the
band structure, the ω(k) approach is used in this research for calculation convenience.
Thus, the damping effect on the imaginary part of the wave vector cannot be fully covered
by this method. Establishing a new model by using k(ω) approach to obtain the complex
band structure is valuable and worth doing in the future.
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Using Bloch–Floquet periodic boundary conditions, the vibration characteristics of the
infinite periodic sandwich plate can be represented by a vibration model of a unit element.
The model of a unit element is shown in Figure 6, where three types of boundary conditions
are used: elastic boundary conditions (EBC) at yi = 0 and yi = bi, periodic boundary
conditions (PBC) at x0 = 0 and x1 = a1, and continuous boundary conditions (CBC) at the
connection of two neighboring sub sandwich panels.

0 1

x0
y0 z0

x1
y1 z1

EBC EBC

EBC EBC

A B

Figure 6. The periodic sandwich plate’s unit element with periodic boundary conditions (PBC)
applied to the left-end boundary (x0 = 0) and the right-end boundary (x1 = a1).

2.3.1. EBC of the Single Element

At positions yi = 0 and yi = bi (i = 0, 1), each sub sandwich panel is constrained by
linear and torsional elastic springs. Thus, the boundary equations can be expressed as

(yi = 0) :



kyvv1i(xi, 0) = N1iy(xi, 0)
kyuu1i(xi, 0) = T1iy(xi, 0)
kyvv3i(xi, 0) = N3iy(xi, 0)
kyuu3i(xi, 0) = T3iy(xi, 0)
kywwi(xi, 0) = Qiy(xi, 0)
kyθθi(xi, 0) = Miy(xi, 0)

(yi = b) :



−kyvv1i(xi, bi) = N1iy(xi, bi)

−kyuu1i(xi, bi) = T1iy(xi, bi)

−kyvv3i(xi, bi) = N3iy(xi, bi)

−kyuu3i(xi, bi) = T3iy(xi, bi)

−kywwi(xi, bi) = Qiy(xi, bi)

−kyθθiy(xi, bi) = Miy(xi, bi)

. (22)

2.3.2. PBC of the Single Element

At the left end of sub sandwich panel #0 and the right end of sub sandwich panel #1,
the structure is in Bloch–Floquet periodic boundary conditions, and the corresponding
boundary equations can be expressed as

u11(a1, y1) = ejqaL u10(0, y0)

v11(a1, y1) = ejqaL v10(0, y0)

u31(a1, y1) = ejqaL u30(0, y0)

v31(a1, y1) = ejqaL v30(0, y0)

w1(a1, y1) = ejqaL w0(0, y0)

θ1(a1, y1) = ejqaL θ0(0, y0)



N11x(a1, y1) = ejqaL N10x(0, y0)

T11x(a1, y1) = ejqaL T10x(0, y0)

N31x(a1, y1) = ejqaL N30x(0, y0)

T31x(a1, y1) = ejqaL T30x(0, y0)

Q1x(a1, y1) = ejqaL Q0x(0, y0)

M1x(a1, y1) = ejqaL M0x(0, y0)

. (23)

where q is the Bloch wavenumber and aL = a0 + a1 is the element length.

2.3.3. CBC of the Single Element

At the interface between the two neighboring sub sandwich panels, both the general-
ized displacements and generalized forces satisfy the continuous condition. Thus, at the
position x1 = 0, the boundary equations can be given as
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

u10(a0, y0) = u11(0, y1)

v10(a0, y0) = v11(0, y1)

u30(a0, y0) = u31(0, y1)

v30(a0, y0) = v31(0, y1)

w0(a0, y0) = w1(0, y1)

θ0(a0, y0) = θ1(0, y1)



N10x(a0, y0) = N11x(0, y1)

T10x(a0, y0) = T11x(0, y1)

N30x(a0, y0) = N31x(0, y1)

T30x(a0, y0) = T31x(0, y1)

Q0x(a0, y0) = Q1x(0, y1)

M0x(a0, y0) = M1x(0, y1)

. (24)

Substituting Equations (4)–(6) into Equations (22)–(24), the combined boundary equa-
tions matrix form can be given as

¯
H(q)

¯
p =

¯
Q(q)

¯
a , (25)

where
¯
p = [p0, p1]

T and
¯
a = [a0, a1]

T. Multiplying
¯
H(q)−1 at both sides of

Equation (30) gives
¯
p =

¯
H(q)−1 ¯

Q(q)
¯
a . (26)

From boundary equations, Equation (26) is obtained, where the vector
¯
p is represented

by the vector
¯
a .

After the boundary equations are obtained, following the same calculation procedure
shown in Section 2.2, the combined governing equation in matrix form can also be obtained
by eliminating the force term Fi0δ(xi − xi0)δ(yi − yi0), which gives that(

R
¯
a +

¯
S

¯
p
)
− ω2

(
¯
Z

¯
a +

¯
T

¯
p
)
= 0. (27)

Substituting Equation (26) into Equation (27), the vector
¯
p can be eliminated. Thus,

Equation (27) can finally be given by[
¯
K(q)− ω2 ¯

M(q)
]
¯
a = 0, (28)

where
¯
K(q) = R +

¯
S

¯
H(q)−1 ¯

Q(q) and
¯
M(q) =

¯
Z +

¯
T

¯
H(q)−1 ¯

Q(q).
By solving Equation (28), a series of characteristic frequencies will be obtained as a

function of the wavenumber q. Suppose the normalized wavenumber q̂ = qa/π is swept
from −1 to +1 in one period. In that case, the wavenumber-dependent dispersion curves
of the periodic sandwich plate can be determined, which then gives rise to the band-gap
properties of the periodic sandwich plate with elastic boundary conditions.

3. Results and Discussion
3.1. Illustrative Example and Validation

In the illustrated example, the dimensions of a unit element are given as follows. The
width of the element is set as 0.35 m, and the lengths of sub-cells A and B are set as 0.125 m
and 0.125 m, respectively. The thicknesses of the top, core, and bottom layers are set as
1.8 mm, 5 mm, and 2.0 mm, respectively. Both the top and bottom layers are made of
aluminum, with Young’s modulus of 77.6 GPa, shear modulus of 28.7 GPa, Poisson’s ratio
of 0.35, and density of 2730 kg/m3. The soft core A is made of polyurethane foam [55]
with Young’s modulus 0.138 MPa, shear modulus 0.0511 MPa, Poisson’s ratio 0.35, and
density 332 kg/m3. The hard core B is made of thermoplastic rubber with Young’s modulus
250 MPa, shear modulus 83.9 MPa, Poisson’s ratio 0.49, and density 1100 kg/m3.
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The boundaries along the x-axis are supported by a set of torsional springs with
stiffness kyθ (N) per unit length and three sets of linear springs with stiffnesses kyu (N/m2),
kyv (N/m2), and kyw (N/m2) per unit length. By setting appropriate stiffness constants,
the free boundary conditions (FBC), clamped boundary conditions (CLBC), and simply
supported boundary conditions (SBC) can be realized by using specific stiffness values of
kyu, kyv, kyw, and kyθ , as shown in Table 2.

Table 2. The various boundary conditions represented by specific stiffness constants.

kyu (N/m2) kyv (N/m2) kyw (N/m2) kyθ (N)

FBC zero zero zero zero
CLBC Infinity Infinity Infinity Infinity
SBC Infinity zero Infinity zero

General EBC Between zero
and infinity

Between zero
and infinity

Between zero
and infinity

Between zero
and infinity

In the numerical calculation, the infinite stiffness value cannot be defined. In fact,
a considerable value can be used to represent infinity. For the material and geometric
parameters used in this paper, a value of 1014 for kyu, kyv, kyw, and kyθ is big enough to be
considered as infinite stiffness. To examine the effect of boundary conditions on vibration
characteristics of the periodic sandwich plate and validate the accuracy of the present
theory, four cases with FBC, CLBC, SBC, and general EBC are conducted. For the general
EBC case, the spring stiffness constants are set as kyu = 106 N/m2, kyv = 107 N/m2,
kyw = 105 N/m2, and kyθ = 102 N.

In order to validate the accuracy of the present theoretical model, an FEM model is also
established using the commercial FEM software of COMSOL Multiphysics (Version 6.2).
Shown in Figure 7 is the mesh schematic diagram of a single-cell FEM model. A quadratic
element type is used to simulate. The element size in the horizontal plane is 0.01 m, and
there are three layers of meshes in the vertical direction. The total number of meshes is
2730, and the mesh resolution is adequate for the simulation from 0 Hz to 650 Hz. A
Floquet periodic condition is applied on the left and right ends of the structure model. By
parametrically setting the Floquet wave number and conducting characteristic frequency
analysis, the band structure can then be acquired from the FEM model.

The dispersion curves and band gaps of the infinite periodic sandwich plate with an
FBC, CLBC, SBC, and general EBC are, respectively, shown in Figure 8, where the results
calculated from the present theory are compared to those from FEM.

As shown in Figure 8d, the dispersion curves and band gaps calculated by the present
theory match very well with the results from the FEM model, which validates the accuracy
of the present theory. In addition, as shown in Figure 8a–c, the results calculated by the
present theory also coincide with the FEM results, which show that the elastic-boundary
theoretical model given in this paper has excellent compatibility, where the FBC, CLBC,
and SBC can all be included. It is also observed that, unlike the FBC, the first band gap of
the CLBC, SBC, and EBC starts from 0 Hz. The wave attenuation in the frequency range of
the 1st BG in Figure 8b–d is caused by the boundary restriction. The stronger the boundary
restriction is, the broader the band gap width will be. For a non-restricted boundary, as
shown in Figure 8a for FBC, the wave will freely propagate without attenuation from 0 Hz.
This phenomenon is also observed and discussed in other corresponding studies [10,11].
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Figure 7. The mesh schematic diagram of a single-cell FEM model.

 

Figure 8. Band structures of a periodic sandwich plate in (a) free boundary condition, (b) clamped
boundary condition, (c) simply supported boundary condition, and (d) elastic boundary condition
with kyu = 106 N/m2, kyv = 107 N/m2, kyw = 105 N/m2, and kyθ = 102 N.

Under general elastic boundary conditions, the band gaps are subsequently
0 Hz–31.5 Hz and 203.8 Hz–288.3 Hz. In order to further understand the band gap
formation of the periodic sandwich plate, the mode shapes of three specific points are
given in Figure 9, including the cases of (q̂ = 0, f = 31.5 Hz), (q̂ = 1, f = 203.8 Hz), and
(q̂ = 1, f = 288.3 Hz). As shown in Figures 8d and 9a, the first band gap is constituted by
a single dispersion branch where three modes exist in the y-axis direction. And the second
band gap, as shown in Figures 8d and 9b,c, is constituted by two dispersion branches,
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where two modes exist in the lower branch in the y-axis direction and no mode exists
(plane-wave propagation mode) in the upper branch in the y-axis direction.

Figure 9. Mode shapes of the periodic sandwich plate in elastic boundary conditions
(kyu = 106 N/m2, kyv = 107 N/m2, kyw = 105 N/m2, and kyθ = 102 N). (a) q̂ = 0, f = 31.5 Hz;
(b) q̂ = 1, f = 203.8 Hz; (c) q̂ = 1, f = 288.3 Hz.

While verifying the band structure of the infinite periodic model in this research, the
validity of the forced vibration response of the finite periodic structure is also verified. The
schematic diagram of the finite periodic model is shown in Figure 4, where the number
of unit cells is set to five, resulting in a total of eleven sub-plates. A unit harmonic point
force excitation is applied at x0 = 0.05 m and y0 = 0.05 m of the first sub-plate. The mesh
schematic diagram of the finite periodic sandwich plate FEM model is shown in Figure 10.
A quadratic element type is used to describe the FEM element. The element size in the
horizontal plane is 0.01 m, and there are three layers of meshes in the vertical direction.
The total number of meshes is 15,015, and the mesh resolution is adequate for estimating
vibration from 0 Hz to 650 Hz.

 

Figure 10. The mesh schematic diagram of a finite periodic sandwich plate FEM model.

The average vibration velocity of the first (v0) and last (vI) plates and the vibration
transmission (Te) from the first to the last plate of the periodic sandwich plate are used to

assess the vibration performance. They are defined as v0 =

√
N0
∑

i=0
v2

0i/N0, vI =

√
NI
∑

i=0
v2

Ii/NI ,

and Te = 20lg(vI/v0), where N0 and NI are the observation points number selected at the
first and the last plate, respectively. The terms v0i and vIi represent the vibration velocity of
the ith observation point at the first and the last plate, respectively. Figures 11–14 show,
respectively, the results of periodic structures under free, clamped, simply supported, and
elastic boundary conditions. As shown in the figures, the results calculated using the
analytical model in this study align well with those obtained using the finite element model,
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validating the effectiveness of the proposed model in estimating the vibration transmission
characteristics of finite periodic sandwich plates.

Figure 11. Spatially averaged velocity of the (a) first cell and (b) last cell, and (c) the transmittance
from the first cell to the last cell in a periodic sandwich plate in FBC.

Figure 12. Spatially averaged velocity of the (a) first cell and (b) last cell, and (c) the transmittance
from the first cell to the last cell in a periodic sandwich plate in CLBC.

 

Figure 13. Spatially averaged velocity of the (a) first cell and (b) last cell, and (c) the transmittance
from the first cell to the last cell in a periodic sandwich plate in SSBC.

Figure 14. Spatially averaged velocity of the (a) first cell and (b) last cell, and (c) the transmittance
from the first cell to the last cell in a periodic sandwich plate in EBC.
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In addition, the gray areas in Figures 11–14 represent the band gaps calculated from
an infinite periodic sandwich plate. By comparing with Figure 8, it can be seen that the
response valley frequency regions of the finite periodic structure calculated theoretically
match well with the band gap frequency ranges calculated from the infinite periodic struc-
ture, thereby verifying, to some extent, the validity of the analytical model presented in
Section 2.2. Shown in Figure 15 are the vibration displacement distributions of the periodic
sandwich plate in an elastic boundary condition with different frequencies. Figure 15a,b
illustrate the vibration transmission characteristic of the waves in band gaps, with the
frequency taken as 25 Hz in the first band gap and 250 Hz in the second band gap, respec-
tively. In these two subfigures, it can be observed that the waves cannot propagate freely
from the left end to the right end, and the vibration energy is mostly restricted near the
excitation position. Figure 15c,d illustrate the vibration transmission characteristics of the
waves outside band gaps, with the frequency taken as 107 Hz and 421 Hz, respectively. It
can be observed from these two subfigures that, unlike in the band gap, waves outside the
band gap can propagate freely from the left end to the right end, and the vibration energy
can distribute throughout the structure.

Figure 15. Vibration displacement distributions of the periodic sandwich plate in elastic boundary
conditions (kyu = 106 N/m2, kyv = 107 N/m2, kyw = 105 N/m2, and kyθ = 102 N). (a) In the first
band gap: f = 25 Hz; (b) In the second band gap: f = 250 Hz; (c) Outside the band gap: f = 107 Hz;
(d) Outside the band gap: f = 421 Hz.
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3.2. Parametric Analysis

From Figures 11–14, it can be observed that the bending-wave band structure and
band-gap characteristics of the periodic sandwich plate are related to the boundary con-
ditions on both sides. For example, under free boundary conditions, the band gap is
195.3 Hz–285.9 Hz; under clamped boundary conditions, the band gaps are subsequently
0 Hz–217.8 Hz, 294.8 Hz–342.9 Hz, and 508.1 Hz–574.2 Hz; under simply supported bound-
ary conditions, the band gaps are subsequently 0 Hz–151.4 Hz, 231.9 Hz–327.8 Hz, and
491.2 Hz–502.3 Hz; and under general elastic boundary conditions, the band gaps are subse-
quently 0 Hz–31.5 Hz and 203.8 Hz–288.3 Hz. The results clearly demonstrate that different
boundaries produce distinct band gaps, and boundary conditions have a significant impact
on the band-gap frequency ranges.

Assuming all four spring stiffnesses have identical values, namely kyu = kyv = kyw = kyθ.
For simplicity, we use ky0 to denote these four equal stiffness values. Here, ky0 represents
only a numerical value without indicating units. When ky0 takes specific values, the units
of kyu, kyv, and kyw are set to be N/m2, and that of kyθ is set to be N.

Figure 16 shows the influence of varying the boundary spring stiffness synchronously
on the band gap frequency range and bandwidth when the four spring stiffnesses (kyu,
kyv, kyw, and kyθ) change simultaneously. As shown, with increasing ky0, the band gap
frequencies gradually increase, and the total bandwidth within the 0 Hz–650 Hz frequency
range also increases successively from 92.4 Hz to 337.4 Hz. Thus, increasing the boundary
spring stiffness contributes to achieving broader band gaps. Figure 17 presents the vibration
transmissions from the first plate to the last plate when ky0 takes various values. It can
be seen from the figure that the band gap variations caused by ky0 eventually affect the
vibration transmission characteristics across the finite periodic sandwich plate structure,
with different boundaries corresponding to different transmission valley regions.

102 104 106 108 1010 1012 1014
0

50
100
150
200
250
300
350
400

To
ta

l B
an

dg
ap

 w
id

th
 (H

z)

Synchronous spring stiffness ky0 
102 104 106 108 1010 1012 1014

0

100

200

300

400

500

600

Fr
eq

ue
nc

y 
(H

z)

Synchronous spring stiffness ky0 

2ndBG

3rdBG

2nd BG

1st BG

(a) (b)

Figure 16. (a) Band structures and (b) Total bandgap width as a function of stiffness ky0. (kyu = kyv =

kyw = kyθ = ky0).

Figures 18–21, respectively, show the effects on the band gap frequency range when
the tangential spring stiffness kyu, vertical spring stiffness kyv, transverse spring stiffness
kyw, or torsional spring stiffness kyθ changes individually. When evaluating the effect of one
particular spring stiffness on the band-gap characteristics, the other three spring stiffnesses
are set to zero.

Figures 18, 19 and 21 show that the tangential spring stiffness kyu, vertical spring
stiffness kyv, and torsional spring stiffness kyθ have relatively minor impacts on the band
gap frequency range, with the maximum frequency variation less than 10 Hz. However,
as shown in Figure 20, the transverse spring stiffness has a significant effect on the band
gap frequency range. With increasing kyw, both the band gap frequency and the bandwidth
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gradually increase. Similarly to the effect of total spring stiffness shown in Figure 16,
increasing kyw also noticeably increases the bandwidth.

Figure 17. Transmittances from the first cell to last cell in the periodic sandwich plate with various
spring stiffnesses: (a) ky0 = 103, 105, 107 and (b) ky0 = 107, 109, 1011.
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Figure 18. (a) Band structures and (b) Total bandgap width as a function of tangential linear spring
stiffness kyu.
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Figure 19. (a) Band structures and (b) Total bandgap width as a function of transverse linear spring
stiffness kyv.
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Figure 20. (a) Band structures and (b) Total bandgap width as a function of transverse linear spring
stiffness kyw.
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Figure 21. (a) Band structures and (b) Total bandgap width as a function of torsional spring stiff-
ness kyθ .

Figure 22 presents a comparison of the total band gap widths within the 0 Hz–650 Hz
frequency range when kyu, kyv, kyw, and kyθ vary separately and when all four types of
spring stiffness vary simultaneously (represented by ky0).
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Figure 22. Total bandgap widths as a function of various spring stiffnesses.

By comparing the five curves in Figure 22, it can be concluded that the tangential
spring stiffness kyu, vertical spring stiffness kyv, and torsional spring stiffness kyθ have
minor effects on the total bandwidth. In contrast, the transverse spring stiffness kyw has a
considerable impact on the total bandwidth. This phenomenon can be physically explained
by referring to Equation (14), where these four different spring stiffnesses are included.
As shown in Figures 8d and 9, the first two band gaps of the periodic sandwich plate are
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related to transverse-wave propagation modes, which are dominated by the transverse
displacement instead of the in-plane or torsional displacement. As shown in Equation (14),
the transverse spring stiffness kyw directly restricts the transverse displacement wi, whereas
the tangential spring stiffness kyu, vertical spring stiffness kyv, and torsional spring stiffness
kyθ indirectly affect the transverse displacement wi by restricting the in-plane displacements
ui and vi and torsional displacement θiy. Therefore, changing the transverse spring stiffness
kyw is more effective for adjusting the band-gap width.

4. Conclusions
Based on the theory of elastic dynamics and Hamilton’s principle, this research obtains

the dynamic control equations of a uniform sandwich plate. On this basis, the transfer
matrix method is employed to develop a theoretical model for calculating the band structure
and vibration response of periodic sandwich plates under elastic boundary conditions.
At the same time, the finite element method is used to verify the model, and the effect
of boundary conditions on the variation in band-gap characteristics is obtained through
parameter analysis.

Due to the Bragg scattering effect, the periodic sandwich plate exhibits good band-gap
characteristics, and the vibration transmission shows strong attenuation characteristics
within the band gap, which can be used in vibration and noise reduction designs. The
change in boundary conditions has a significant effect on the band-gap characteristics of the
periodic sandwich plate, and different boundary conditions correspond to different band-
gap characteristics. When the stiffness of each spring changes synchronously, increasing
the spring stiffness can shift the band-gap frequency to a higher frequency, and the total
band-gap width gradually increases. At this time, enhancing the boundary constraint can
improve the band-gap characteristics to a certain extent. Further research indicates that
the transverse spring stiffness controlling the transverse displacement at the boundary
plays a significant role in altering the band gap, making it more effective for adjusting the
band-gap width in the vibration reduction design process.

The sandwich structure with periodic cores studied in this research can be used as
a base plate on which the vibration equipment is mounted. The base plate is commonly
used in ships or large-scale underwater vehicles. By properly designing the material and
geometrical parameters and carefully tuning the structure’s boundary, it is promising to
locate the vibration equipment’s working frequency in the band-gap frequency range,
thereby reducing the vibration transmittance.

This work is limited to the sandwich-plate structure with periodic cores, which can
be further extended to composite or laminate structures. The corresponding extended
research may provide more helpful guidance on vibration control in practical engineering.
In addition, this work is limited to the ω(k) approach in the band structure estimation,
where the complex band structure cannot be acquired. Establishing a new model by using
the k(ω) approach to obtain the complex band structure is valuable and worth doing in
the future.
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Appendix A
The differential operators Lij (i, j = 1, . . . , 5) in Equation (3) can be expressed as

L11 = −B1
∂2

∂x2 − υ1aB1
∂2

∂y2 + Gh − ω2(m1 + 2C), (A1)

L12 = L21 = −υ1bB1
∂2

∂x∂y
, (A2)

L13 = L31 = −Gh − ω2C, (A3)

L14 = L41 = L23 = L32 = 0, (A4)

L15 = −Ghd
∂

∂x
− 6ω2Cht1

∂

∂x
, (A5)

L22 = −υ1aB1
∂2

∂x2 − B1
∂2

∂y2 + Gh − ω2(m1 + 2C), (A6)

L24 = L42 = −Gh − ω2C, (A7)

L25 = L52 = −Ghd
∂

∂y
− 6ω2Cht1

∂

∂y
, (A8)

L33 = −B3
∂2

∂x2 − υ3aB3
∂2

∂y2 + Gh − ω2(m3 + 2C), (A9)

L34 = L43 = −υ3bB3
∂2

∂x∂y
, (A10)

L35 = L53 = Ghd
∂

∂x
− 6ω2Cht2

∂

∂x
, (A11)

L44 = −υ3aB3
∂2

∂x2 − B3
∂2

∂y2 + Gh − ω2(m3 + 2C), (A12)

L45 = L54 = Ghd
∂

∂y
− 6ω2Cht2

∂

∂y
, (A13)

and
L55 = −(D1 + D3)

(
∂2

∂x2 +
∂2

∂y2

)2
+ Ghd2

(
∂2

∂x2 +
∂2

∂y2

)
+ω2

[
mT − (J1 + J3 + m2ht3)

(
∂2

∂x2 +
∂2

∂y2

)] , (A14)

where ht1 = (h3 − 2h1)/12, ht2 = (2h3 − h1)/12, ht3 = (h3 − h1)
2/16 + (h1 + h3)

2/48,

mT =
3
∑

i=1
ρihi, υib = (1 + υi)/2, and C = m2/6.

The matrices Bis0 to Bis4 used in Equation (9) can be expressed as

Bis0 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

, (A15)

Bis1 =
π

2si
diag

(
1 −1 3 −3

)
, (A16)
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Bis2 =
π2

4s2
i

diag
(
−1 −1 −9 −9

)
, (A17)

Bis3 =
π3

8s3
i

diag
(
−1 1 −27 27

)
, (A18)

and

Bis4 =
π4

16s4
i

diag
(

1 1 81 81
)

. (A19)

The term τr in Equation (10) can be expressed as

τr =
[
τ1

r τ2
r τ3

r τ4
r

]T
=


[

2
π

2
π

2
3π − 2

3π

]T
r = 0[

4
(1−4r2)π

4(−1)r

(1−4r2)π
12

(9−4r2)π
12(−1)r+1

(9−4r2)π

]T
r ̸= 0

(A20)

The vibration governing equations of the finite periodic sandwich plate can be ex-
pressed as
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where Fimn = Fi0 cos λimxi0 cos λinyi0, et
s (The terms s and t represent the corresponding

numbers that exist in (Equations (A21)–(A25)) is the coefficient which can be determined
from the above derivation and is independent of the variables to be determined.
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