Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (182)

Search Parameters:
Keywords = circular polarization ratio

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3616 KiB  
Article
A Multiband Dual Linear-to-Circular Polarization Conversion Reflective Metasurface Design Based on Liquid Crystal for X-Band Applications
by Xinju Wang, Lihan Tong, Peng Chen, Lu Liu, Yutong Yin and Haowei Zhang
Appl. Sci. 2025, 15(15), 8499; https://doi.org/10.3390/app15158499 (registering DOI) - 31 Jul 2025
Abstract
A novel reflective metasurface (RMS) is proposed in this paper. The MS measures 128 × 128 × 2.794 mm3 and consists of a six-layer vertically stacked structure, with a liquid crystal (LC) cavity in the middle layer. A dual fan-shaped direct current [...] Read more.
A novel reflective metasurface (RMS) is proposed in this paper. The MS measures 128 × 128 × 2.794 mm3 and consists of a six-layer vertically stacked structure, with a liquid crystal (LC) cavity in the middle layer. A dual fan-shaped direct current (DC) bias circuit is designed to minimize the interaction between the radio frequency (RF) signal and the DC source, allowing control of the LC dielectric constant via bias voltage. This enables multi-band operation to improve communication capacity and quality for x-band devices. The polarization conversion (PC) structure employs an orthogonal anisotropic design, utilizing logarithmic functions to create two pairs of bowtie microstrip patches for linear-to-circular polarization conversion (LCPC). Simulation results show that for x-polarized incident waves, with an LC dielectric constant of εr = 2.8, left- and right-handed circularly polarized (LHCP and RHCP) waves are achieved in the frequency ranges of 8.15–8.46 GHz and 9.84–12.52 GHz, respectively. For εr = 3.9, LHCP and RHCP are achieved in 9–9.11 GHz and 9.86–11.81 GHz, respectively, and for εr = 4.6, they are in 8.96–9.11 GHz and 9.95–11.51 GHz. In the case of y-polarized incident waves, the MS reflects the reverse CP waves within the same frequency ranges. Measured results show that at εr = 2.8, the axial ratio (AR) is below 3 dB in the frequency ranges 8.16–8.46 GHz and 9.86–12.48 GHz, with 3 dB AR relative bandwidth (ARBW) of 3.61% and 23.46%, respectively. For εr = 4.6, the AR < 3 dB in the frequency range of 9.78–11.34 GHz, with a 3 dB ARBW of 14.77%. Finally, the measured and simulated results are compared to validate the proposed design, which can be applied to various applications within the corresponding operating frequency band. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

13 pages, 3812 KiB  
Article
Generation of Four-Beam Output in a Bonded Nd:YAG/Cr4+:YAG Laser via Fiber Splitter Pumping
by Qixiu Zhong, Dongdong Meng, Zhanduo Qiao, Wenqi Ge, Tieliang Zhang, Zihang Zhou, Hong Xiao and Zhongwei Fan
Photonics 2025, 12(8), 760; https://doi.org/10.3390/photonics12080760 - 29 Jul 2025
Viewed by 105
Abstract
To address the poor thermal performance and low output efficiency of conventional solid-state microchip lasers, this study proposes and implements a bonded Nd:YAG/Cr4+:YAG laser based on fiber splitter pumping. Experimental results demonstrate that at a 4.02 mJ pump pulse energy and [...] Read more.
To address the poor thermal performance and low output efficiency of conventional solid-state microchip lasers, this study proposes and implements a bonded Nd:YAG/Cr4+:YAG laser based on fiber splitter pumping. Experimental results demonstrate that at a 4.02 mJ pump pulse energy and a 100 Hz repetition rate, the system achieves four linearly polarized output beams with an average pulse energy of 0.964 mJ, a repetition rate of 100 Hz, and an optical-to-optical conversion efficiency of 23.98%. The energy distribution ratios for the upper-left, lower-left, upper-right, and lower-right beams are 22.61%, 24.46%, 25.50%, and 27.43%, with pulse widths of 2.184 ns, 2.193 ns, 2.205 ns, and 2.211 ns, respectively. As the optical axis distance increases, the far-field spot pattern transitions from a single circular profile to four fully separated spots, where the lower-right beam exhibits beam quality factors of Mx2 = 1.181 and My2 = 1.289. Simulations at a 293.15 K coolant temperature and a 4.02 mJ pump energy reveal that split pumping reduces the volume-averaged temperature rise in Nd:YAG by 28.81% compared to single-beam pumping (2.57 K vs. 3.61 K), decreases the peak temperature rise by 66.15% (6.97 K vs. 20.59 K), and suppresses peak-to-peak temperature variation by 78.6% (1.34 K vs. 6.26 K). Compared with existing multi-beam generation methods, the fiber splitter approach offers integrated advantages—including compact size, low cost, high energy utilization, superior beam quality, and elevated damage thresholds—and thus shows promising potential for automotive multi-point ignition, multi-beam single-photon counting LiDAR, and laser-induced breakdown spectroscopy (LIBS) online analysis. Full article
(This article belongs to the Special Issue Laser Technology and Applications)
Show Figures

Figure 1

14 pages, 3371 KiB  
Article
A Symmetry-Driven Broadband Circularly Polarized Magnetoelectric Dipole Antenna with Bandpass Filtering Response
by Xianjing Lin, Zuhao Jiang, Miaowang Zeng and Zengpei Zhong
Symmetry 2025, 17(7), 1145; https://doi.org/10.3390/sym17071145 - 17 Jul 2025
Viewed by 170
Abstract
This paper presents a symmetry-driven broadband circularly polarized magnetoelectric dipole antenna with bandpass filtering response, where the principle of symmetry is strategically employed to enhance both radiation and filtering performance. The antenna’s circular polarization is achieved through a symmetrical arrangement of two orthogonally [...] Read more.
This paper presents a symmetry-driven broadband circularly polarized magnetoelectric dipole antenna with bandpass filtering response, where the principle of symmetry is strategically employed to enhance both radiation and filtering performance. The antenna’s circular polarization is achieved through a symmetrical arrangement of two orthogonally placed metallic ME dipoles combined with a phase delay line, creating balanced current distributions for optimal CP characteristics. The design further incorporates symmetrical parasitic elements—a pair of identical inverted L-shaped metallic structures placed perpendicular to the ground plane at −45° relative to the ME dipoles—which introduce an additional CP resonance through their mirror-symmetric configuration, thereby significantly broadening the axial ratio bandwidth. The filtering functionality is realized through a combination of symmetrical modifications: grid slots etched in the metallic ground plane and an open-circuited stub loaded on the microstrip feed line work in tandem to create two radiation nulls in the upper stopband, while the inherent symmetrical properties of the ME dipoles naturally produce a radiation null in the lower stopband. This comprehensive symmetry-based approach results in a well-balanced bandpass filtering response across a wide operating bandwidth. Experimental validation through prototype measurement confirms the effectiveness of the symmetric design with compact dimensions of 0.96λ0 × 0.55λ0 × 0.17λ0 (λ0 is the wavelength at the lowest operating frequency), demonstrating an impedance bandwidth of 66.4% (2.87–5.05 GHz), an AR bandwidth of 31.9% (3.32–4.58 GHz), an average passband gain of 5.5 dBi, and out-of-band suppression levels of 11.5 dB and 26.8 dB at the lower and upper stopbands, respectively, along with good filtering performance characterized by a gain-suppression index (GSI) of 0.93 and radiation skirt index (RSI) of 0.58. The proposed antenna is suitable for satellite communication terminals requiring wide AR bandwidth and strong interference rejection in L/S-bands. Full article
(This article belongs to the Special Issue Symmetry Study in Electromagnetism: Topics and Advances)
Show Figures

Figure 1

14 pages, 2184 KiB  
Article
A Wideband Circularly Polarized Filtering Dipole Antenna
by Xianjing Lin, Ruishan Huang, Miaowang Zeng and An Yan
Symmetry 2025, 17(7), 1047; https://doi.org/10.3390/sym17071047 - 3 Jul 2025
Viewed by 266
Abstract
This paper presents a circularly polarized (CP) antenna based on crossed dipoles with bandpass-type filtering radiation response. The antenna employs a pair of crossed dipole arms as radiators, which are printed on the upper and lower planes of the substrate. To achieve bandpass [...] Read more.
This paper presents a circularly polarized (CP) antenna based on crossed dipoles with bandpass-type filtering radiation response. The antenna employs a pair of crossed dipole arms as radiators, which are printed on the upper and lower planes of the substrate. To achieve bandpass filtering effects, radiation nulls are introduced on both sides of the passband. By vertically extending the ends of the four dipole arms, a ring-shaped current is formed between adjacent dipoles, generating the upper-band radiation null. Additionally, four parasitic patches are introduced parallel to the ends of the crossed dipole arms, creating another upper-band radiation null, further enhancing the frequency selectivity at the band edges and broadening the axial ratio (AR) bandwidth. Moreover, a square-ring slot is etched on the ground plane to introduce a lower-band radiation null, ultimately achieving a good bandpass filtering response. The proposed wideband CP filtering dipole antenna is implemented and tested. The antenna has a compact size of 0.49λ0× 0.49λ0× 0.16λ0 (where λ0 denotes the wavelength corresponding to the lowest operating frequency). The measured results show that the proposed antenna has an impedance bandwidth of 75% (1.65–3.66 GHz) and an overlapping AR bandwidth of 46.9% (2.25–3.63 GHz). Without additional filtering circuits, the antenna exhibits a stable gain of approximately 7 dB and three radiation nulls, with suppression levels of 20 dB in both the lower and upper stopbands, achieving good bandpass filtering performance. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

17 pages, 9122 KiB  
Article
A Printed Hybrid-Mode Antenna for Dual-Band Circular Polarization with Flexible Frequency Ratio
by Takafumi Fujimoto and Chai-Eu Guan
Electronics 2025, 14(13), 2504; https://doi.org/10.3390/electronics14132504 - 20 Jun 2025
Cited by 1 | Viewed by 322
Abstract
In this paper, a printed hybrid-mode antenna for dual-band circular polarization (CP) is proposed. In the proposed antenna, one T-shaped element is fed by a coplanar waveguide and one L-shaped element is loaded to the ground plane. The relationship between the antenna’s geometric [...] Read more.
In this paper, a printed hybrid-mode antenna for dual-band circular polarization (CP) is proposed. In the proposed antenna, one T-shaped element is fed by a coplanar waveguide and one L-shaped element is loaded to the ground plane. The relationship between the antenna’s geometric parameters and the circular polarization characteristic (axial ratio) is examined through electric current distribution and radiation field components. In addition, the antenna’s resonant modes are investigated through characteristic mode analysis (CMA). Through parametric studies, the range of two frequency ratios is explored, revealing that the antenna operates as a dual-band single-sense CP antenna, even in ranges where the two frequency ratios (the ratio of high frequency to low frequency) are smaller compared to antennas in other studies. The proposed antenna has a frequency ratio of less than 1.5 between the two frequencies and can be flexibly designed. The proposed antenna is designed for the 2.5 GHz band and 3.5 GHz band. The measured bandwidths of 10 dB impedance with a 3 dB axial ratio are 2.35–2.52 GHz and 3.36–3.71 GHz, respectively. Full article
Show Figures

Figure 1

12 pages, 11398 KiB  
Article
Tuning the Ellipticity of High-Order Harmonics from Helium in Orthogonal Two-Color Laser Fields
by Shushan Zhou, Hao Wang, Yue Qiao, Nan Xu, Fuming Guo, Yujun Yang and Muhong Hu
Symmetry 2025, 17(6), 967; https://doi.org/10.3390/sym17060967 - 18 Jun 2025
Viewed by 336
Abstract
High-order harmonic generation in atomic systems driven by laser fields with tailored symmetries provides a powerful approach for producing structured ultrafast light sources. In this work, we theoretically investigate the ellipticity control of high-order harmonics emitted from helium atoms exposed to orthogonally polarized [...] Read more.
High-order harmonic generation in atomic systems driven by laser fields with tailored symmetries provides a powerful approach for producing structured ultrafast light sources. In this work, we theoretically investigate the ellipticity control of high-order harmonics emitted from helium atoms exposed to orthogonally polarized two-color laser pulses with a 1:3 frequency ratio. The polarization properties of the harmonics are governed by the interplay between the spatial symmetry of the driving field and the atomic potential. By numerically solving the time-dependent Schrödinger equation, we show that fine-tuning the relative phase and amplitude ratio between the fundamental and third-harmonic components enables selective symmetry breaking, resulting in the emission of elliptically and circularly polarized harmonics. Remarkably, we achieve near-perfect circular polarization (ellipticity ≈ 0.995) for the 5th harmonic, as well as highly circularly polarized 17th (0.945), 21st (0.96), and 23rd (0.935) harmonics, demonstrating a level of polarization control and efficiency that exceeds previous schemes. Our results highlight the advantage of using a 1:3 frequency ratio orthogonally polarized two-color laser field over the conventional 1:2 configuration, offering a promising route toward tunable attosecond light sources with tailored polarization characteristics. Full article
(This article belongs to the Section Physics)
Show Figures

Figure 1

19 pages, 6471 KiB  
Article
A Miniaturized RHCP Slot Antenna for Wideband Applications Including Sub-6 GHz 5G
by Atyaf H. Mohammed, Falih M. Alnahwi, Yasir I. A. Al-Yasir and Sunday C. Ekpo
Technologies 2025, 13(6), 254; https://doi.org/10.3390/technologies13060254 - 17 Jun 2025
Viewed by 454
Abstract
The rapid development of 5G and next-generation wireless systems has increased the demand for antennas that support circular polarization (CP), wide frequency coverage, and a compact size. Achieving wideband CP performance in a low-profile and simple structure remains a key challenge for modern [...] Read more.
The rapid development of 5G and next-generation wireless systems has increased the demand for antennas that support circular polarization (CP), wide frequency coverage, and a compact size. Achieving wideband CP performance in a low-profile and simple structure remains a key challenge for modern antenna designs. In response to this, this paper presents a compact wide-slot antenna with a single feed, offering a wide operational bandwidth and circularly polarized radiation. The proposed design is excited by a 50 Ohm microstrip feedline, and it is fabricated on an (54 × 50 × 1.6 mm3) FR4 dielectric substrate. On the bottom side of the dielectric substrate, the ground plane is engraved to form a square-shaped radiating slot. The shape of the tuning stub of the antenna is modified in order to attain a wide impedance bandwidth and an axial ratio bandwidth (ARBW). The modifications include inserting a rectangular strip and thin horizontal strips into the tuning stub after tapering its upper corner. On the other hand, the radiating slot is appended by two rectangular stubs. The radiation of the resulted structure has right-hand circular polarization (RHCP). The measured results of the proposed antenna show a −10 dB impedance bandwidth equal to 78% (2.65 GHz, 2.08–4.73 GHz), whereas its broadside 3 dB ARBW is 71.6% over the frequencies (2.31 GHz, 2.07–4.38 GHz), which is compatible with various wireless communication applications. Furthermore, the peak value of the measured gain is equal to 4.68 dB, and its value is larger than 2 dBi along the operational bandwidth of the antenna. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

18 pages, 4356 KiB  
Article
A Miniaturized Design for a Terahertz Tri-Mirror CATR with High QZ Characteristics
by Zhi Li, Yuan Yao, Haiming Xin and Daocai Xiang
Sensors 2025, 25(12), 3751; https://doi.org/10.3390/s25123751 - 15 Jun 2025
Viewed by 377
Abstract
This paper proposes a miniaturized design for a terahertz tri-mirror compact antenna test range (CATR) system, composed of a square-aperture paraboloid primary mirror with a side length of 0.2 m and two shaped mirrors with circular apertures of 0.06 m and 0.07 m [...] Read more.
This paper proposes a miniaturized design for a terahertz tri-mirror compact antenna test range (CATR) system, composed of a square-aperture paraboloid primary mirror with a side length of 0.2 m and two shaped mirrors with circular apertures of 0.06 m and 0.07 m in diameter. The design first employs the cross-polarization cancelation method based on beam mode expansion to determine the geometric configuration of the system, thereby enabling the structure to exhibit low cross-polarization characteristics. Subsequently, the shaped mirrors, with beamforming and wave-front control capabilities, are synthesized using dynamic ray tracing based on geometric optics (GO) and the dual-paraboloid expansion method. Finally, the strong edge diffraction effects induced by the small-aperture primary mirror are suppressed by optimizing the desired quiet-zone (QZ) field width, adjusting the feed-edge taper, and incorporating rolled-edge structures on the primary mirror. Numerical simulation results indicate that within the 100–500 GHz frequency band, the system’s cross-polarization level is below −40 dB, while the amplitude and phase ripples of the co-polarization in the QZ are, respectively, less than 1.6 dB and 10°, and the QZ usage ratio exceeds 70%. The designed CATR was manufactured and tested. The results show that at 183 GHz and 275 GHz, the measured co-polarization amplitude and phase ripples in the system’s QZ are within 1.8 dB and 15°, respectively. While these values deviate slightly from simulations, they still meet the CATR evaluation criteria, which specify QZ co-polarization amplitude ripple < 2 dB and phase ripple < 20°. The overall physical structure sizes of the system are 0.61 m × 0.2 m × 0.66 m. The proposed miniaturized terahertz tri-mirror CATR design methodology not only enhances the QZ characteristics but also significantly reduces the spatial footprint of the entire system, demonstrating significant potential for practical engineering applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

13 pages, 4379 KiB  
Article
A Broadband Millimeter-Wave Circularly Polarized Folded Reflectarray Antenna Based on Transmissive Linear-to-Circular Polarization Converter
by Yue Cao, Zhuwei Wang, Qing Wang, Mingzhu Du and Miaojuan Zhang
Micromachines 2025, 16(6), 711; https://doi.org/10.3390/mi16060711 - 14 Jun 2025
Viewed by 465
Abstract
In this paper, a wideband circularly polarized folded reflectarray antenna (CPFRA) based on a transmissive linear-to-circular polarization converter is proposed. The CPFRA consists of a primary reflector and a sub-reflector. To achieve broadband performance, a metasurface-based RA element on the primary reflector surface [...] Read more.
In this paper, a wideband circularly polarized folded reflectarray antenna (CPFRA) based on a transmissive linear-to-circular polarization converter is proposed. The CPFRA consists of a primary reflector and a sub-reflector. To achieve broadband performance, a metasurface-based RA element on the primary reflector surface and a transmissive linear-to-circular polarization converter on the sub-reflector surface are applied. Moreover, the transmissive linear-to-circular polarization converter on the sub-reflector surface helps convert linear polarization to circular polarization. To verify the proposed CPFRA, a prototype is designed, fabricated, and tested. The measured results exhibit that the proposed CPFRA presents a 3 dB gain bandwidth of 27.4% and a 3 dB axial ratio bandwidth of 23%. The CPFRA achieves a peak gain of 21.2 dBi with an aperture efficiency of 27.2%. The proposed CPFRA is a promising candidate for millimeter-wave (mm-W) satellite communication applications because of its advantages of high gain, low cost, low profile, and broad bandwidth. Full article
(This article belongs to the Special Issue Microwave Passive Components, 3rd Edition)
Show Figures

Figure 1

20 pages, 5762 KiB  
Article
Multi-Band Unmanned Aerial Vehicle Antenna for Integrated 5G and GNSS Connectivity
by Suguna Gunasekaran, Manikandan Chinnusami, Rajesh Anbazhagan, Karunyaa Sureshkumar and Shreela Sridhar
Telecom 2025, 6(2), 38; https://doi.org/10.3390/telecom6020038 - 3 Jun 2025
Viewed by 495
Abstract
This paper proposes a dual-band antenna to support 5G communication with linear polarization and the global navigation satellite system (GNSS) band with circular polarization. A single inverted T-shaped patch antenna with a defective ground was designed on the Schott Foturan II (Ceramized 560 [...] Read more.
This paper proposes a dual-band antenna to support 5G communication with linear polarization and the global navigation satellite system (GNSS) band with circular polarization. A single inverted T-shaped patch antenna with a defective ground was designed on the Schott Foturan II (Ceramized 560 degrees) substrate. Then, an L-shaped stub and slot were inserted into the ground to achieve the 5G and GNSS bands. The antenna was then designed as a 1 × 2 multiple-input and multiple-output (MIMO) antenna to increase the directivity. A square ring-shaped frequency selective surface (FSS) was intended on the FR-4 substrate to improve the gain of the MIMO antenna. The FSS MIMO antenna increased the 3D gain from 2.8 to 5.4 dBi for the GNSS band and from 4.9 to 6.43 dBi for the 5G n79 band. The proposed antenna can receive and transmit the frequency bands covering sub-6 GHz 5G band n79 (4400–5000 MHz) and GNSS band E6 (1260–1300 MHz), respectively. A multi-port unmanned aerial vehicle antenna was fabricated, and its performance was characterized in terms of bandwidth, axial ratio, and gain. Full article
Show Figures

Figure 1

18 pages, 4955 KiB  
Article
Design of a High-Gain X-Band Electromagnetic Band Gap Microstrip Patch Antenna for CubeSat Applications
by Linh Phuong Ta, Daisuke Nakayama and Miyuki Hirose
Electronics 2025, 14(11), 2216; https://doi.org/10.3390/electronics14112216 - 29 May 2025
Viewed by 446
Abstract
Microstrip patch antennas (MPAs) are widely used in satellite communication due to their low profile, compact size, and ease of fabrication. This paper presents a design of an X-band microstrip patch antenna using an electromagnetic band gap (EBG) structure for CubeSat applications. The [...] Read more.
Microstrip patch antennas (MPAs) are widely used in satellite communication due to their low profile, compact size, and ease of fabrication. This paper presents a design of an X-band microstrip patch antenna using an electromagnetic band gap (EBG) structure for CubeSat applications. The X-band is preferred for CubeSat missions in high-speed communication, long distance or deep space because it allows communication at higher data rates, and the antenna is smaller than those used for lower frequency bands. In our study, the EBG elements are analyzed, modified and optimized so that the antenna can fit a 10 cm × 10 cm surface area of a standard 3U CubeSat structure while providing a significant high gain and circular polarization (CP). A noticeable point of this research is that the simplicity of the antenna and the EBG structure are being maintained by just using a simple single-probe feed to achieve a total antenna efficiency exceeding 90%, and the measured gain of around 11.7 dBi at the desired frequency of 8.483 GHz. Furthermore, the measured axial ratio (AR) is around 1.4 dB at 8.483 GHz, which satisfied the lower-than-3 dB requirement for CP antennas in general. The simulation, analysis and measured results are discussed in detail. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Graphical abstract

11 pages, 2649 KiB  
Article
Design of an Integrated Circularly Polarized HgCdTe Photodetector Based on Silicon Metasurfaces
by Bo Cheng, Yuxiao Zou, Zihui Ge, Hanxiao Shao, Kunpeng Zhai and Guofeng Song
Photonics 2025, 12(5), 519; https://doi.org/10.3390/photonics12050519 - 21 May 2025
Viewed by 445
Abstract
Compared with conventional detectors, a circularly polarized detector operating at 4.26 μm effectively suppresses background noise (e.g., solar scattering and atmospheric interference), enabling high-precision CO2 monitoring across ecosystems like farmland, forests, and wetlands. This capability allows the precise quantification of carbon sink [...] Read more.
Compared with conventional detectors, a circularly polarized detector operating at 4.26 μm effectively suppresses background noise (e.g., solar scattering and atmospheric interference), enabling high-precision CO2 monitoring across ecosystems like farmland, forests, and wetlands. This capability allows the precise quantification of carbon sink potential and ecosystem health. Our design employs a mid-wave HgCdTe detector—a well-established platform—combined with a CMOS-compatible Si/SiO2 metasurface. Geometric displacements were applied to break C2 symmetry, achieving a chiral design. Through multiparameter optimization, we realized a circularly polarized photodetector (CPPD) with a CPER of 18 dB, expected to demonstrate superior CO2 monitoring performance. These advances may offer researchers and practitioners a robust tool for both fundamental studies and field deployments. Full article
(This article belongs to the Special Issue Latest Advances in Optical Diffraction, Imaging and Display)
Show Figures

Figure 1

15 pages, 3855 KiB  
Article
Thermocapillary Flow in Fluid Smectic Bubbles in Microgravity
by Eric Minor, Ravin Chowdhury, Cheol S. Park, Joseph E. Maclennan and Noel A. Clark
Crystals 2025, 15(5), 416; https://doi.org/10.3390/cryst15050416 - 29 Apr 2025
Viewed by 442
Abstract
Interfaces between two fluids exhibit an excess free-energy cost per unit area that is manifested as surface tension. This equilibrium property generally depends on temperature, which enables the phenomenon of thermocapillary flow, wherein application of a temperature gradient having a component parallel to [...] Read more.
Interfaces between two fluids exhibit an excess free-energy cost per unit area that is manifested as surface tension. This equilibrium property generally depends on temperature, which enables the phenomenon of thermocapillary flow, wherein application of a temperature gradient having a component parallel to the surface generates a net in-plane effective body force on the fluid and thereby causes flow. Here, we study the thermocapillary flow in fluid smectic liquid crystal films freely suspended in air and stabilized in thickness by the smectic layering. If such films are a single layer (~3 nm) or a few layers thick, they have the largest surface to volume ratio of any fluid preparation, making them particularly interesting in the context of thermocapillary flow, which is two-dimensional (2D) in the film plane. Five-layer thick films in the form of spherical bubbles were subjected to a north–south temperature gradient field along a polar axis, with flow fields mapped using inclusions on the film surface as tracers, where the inclusions were “islands”, small circular stacks of extra layers. These experiments were carried out on the International Space Station to avoid interference from thermal convention of the air. The flow field as a function of latitude on the bubble can be successfully modeled using Navier–Stokes hydrodynamics, modified to include permeative flow out of the background fluid into the islands. Full article
(This article belongs to the Section Liquid Crystals)
Show Figures

Figure 1

19 pages, 1772 KiB  
Article
Analysis of Near-Polar and Near-Circular Periodic Orbits Around the Moon with J2, C22 and Third-Body Perturbations
by Xingbo Xu
Symmetry 2025, 17(5), 630; https://doi.org/10.3390/sym17050630 - 22 Apr 2025
Viewed by 322
Abstract
In the Moon–Earth elliptic restricted three-body problem, near-polar and near-circular lunar-type periodic orbits are numerically continued from Keplerian circular orbits using Broyden’s method with line search. The Hamiltonian system, expressed in Cartesian coordinates, is treated via the symplectic scaling method. The radii of [...] Read more.
In the Moon–Earth elliptic restricted three-body problem, near-polar and near-circular lunar-type periodic orbits are numerically continued from Keplerian circular orbits using Broyden’s method with line search. The Hamiltonian system, expressed in Cartesian coordinates, is treated via the symplectic scaling method. The radii of the initial Keplerian circular orbits are then scaled and normalized. For cases in which the integer ratios {j/k} of the mean motions between the inner and outer orbits are within the range [9,150], some periodic orbits of the elliptic restricted three-body problem are investigated. For the middle-altitude cases with j/k[38,70], the perturbations due to J2 and C22 are incorporated, and some new near-polar periodic orbits are computed. The orbital dynamics of these near-polar, near-circular periodic orbits are well characterized by the first-order double-averaged system in the Poincaré–Delaunay elements. Linear stability is assessed through characteristic multipliers derived from the fundamental solution matrix of the linear varational system. Stability indices are computed for both the near-polar and planar near-circular periodic orbits across the range j/k[9,50]. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

14 pages, 11515 KiB  
Communication
A High-Temperature Stabilized Anti-Interference Beidou Array Antenna
by Feng Xu and Xiaofei Zhang
Electronics 2025, 14(8), 1555; https://doi.org/10.3390/electronics14081555 - 11 Apr 2025
Viewed by 556
Abstract
Traditional Beidou Navigation Satellite System anti-jamming array antennas mostly use PCB plates, but in extreme vibration environments, their rigidity may cause the antenna structure to be more susceptible to damage. Especially in an extremely high-temperature environment, it may cause thermal expansion, softening, and [...] Read more.
Traditional Beidou Navigation Satellite System anti-jamming array antennas mostly use PCB plates, but in extreme vibration environments, their rigidity may cause the antenna structure to be more susceptible to damage. Especially in an extremely high-temperature environment, it may cause thermal expansion, softening, and even melting of metal materials, which will affect the structure and performance of the antenna; In this paper, a Beidou array antenna integrating high seismic resistance, high-temperature stability, and anti-interference ability is designed and studied. The structural parts of the antenna are composed of 7075 aluminum alloy and high-temperature ceramic material technology, which has a compact structure and strong corrosion resistance, which is especially suitable for aviation and marine environments. The antenna works stably at 400 °C and has excellent heat resistance. Built-in shock-absorbing elements or shock-absorbing materials are used to effectively absorb and disperse vibration energy and reduce the direct impact on the internal components of the antenna. Considering the anti-interference performance caused by the size of the array spacing and the mutual coupling between the array elements, the array spacing is designed to be between λ/4 and λ/2. In simulations and experiments, the designed antenna array shows good performance and proves its applicability for high-temperature applications. The antenna frequency includes the B3 band (1250.618~1286.423 MHz) and B1 band (1559.052~1591.788 MHz) of the Beidou Navigation Satellite System. The following article includes the introduction, proposed array antenna structure and dimension, antenna simulation results, antenna protype and environment test, conclusions and future work. Full article
Show Figures

Figure 1

Back to TopTop