Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (970)

Search Parameters:
Keywords = circular industrial systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1984 KB  
Article
Upcycling Oat Hulls via Solid-State Fermentation Using Edible Filamentous Fungi: A Co-Culture Approach with Neurospora intermedia and Rhizopus oryzae
by Laura Georgiana Radulescu, Mikael Terp, Christian Enrico Rusbjerg-Weberskov, Niels Thomas Eriksen and Mette Lübeck
J. Fungi 2025, 11(11), 810; https://doi.org/10.3390/jof11110810 - 14 Nov 2025
Abstract
The global challenge of food insecurity requires innovative approaches for sustainable food production and waste valorization. This study investigates the valorization of oat hulls, an abundant lignocellulosic by-product from oat manufacturing, by solid-state fermentation using edible filamentous fungi. Oat hulls sourced from oatmeal [...] Read more.
The global challenge of food insecurity requires innovative approaches for sustainable food production and waste valorization. This study investigates the valorization of oat hulls, an abundant lignocellulosic by-product from oat manufacturing, by solid-state fermentation using edible filamentous fungi. Oat hulls sourced from oatmeal industrial side-streams were used as the sole substrate in co-cultures of Neurospora intermedia and Rhizopus oryzae. The fermentation process was optimized and upscaled, with fungal growth monitored via CO2 efflux and modeled to assess substrate utilization. Comprehensive analyses revealed a significant increase in protein concentration (p < 0.05) in the fermented oat hulls compared to the non-fermented controls. The resulting product was successfully incorporated into granola bars, which underwent sensory evaluation and received positive feedback, demonstrating its potential as a value-added food ingredient. These findings highlight the feasibility of using edible fungi to upcycle cereal processing by-products into nutritionally enhanced alternative protein sources, supporting both food system sustainability and circular bioeconomy objectives. Full article
(This article belongs to the Special Issue Fungi in Focus: Fungal Enzyme and Fungal Metabolism)
Show Figures

Figure 1

26 pages, 2077 KB  
Article
How Data-Driven Synergy Between Digitalization and Greening Reshapes Industrial Structure: Evidence from China (2012–2022)
by Ying Yan and Shujing Liu
Sustainability 2025, 17(22), 10183; https://doi.org/10.3390/su172210183 - 14 Nov 2025
Abstract
Digitalization and greening are two fundamental forces shaping the current technological revolution and industrial transformation, serving as key pathways for nations to achieve sustainable development goals. Drawing on panel data from 30 Chinese provinces from 2012 to 2022, this study constructs indicators of [...] Read more.
Digitalization and greening are two fundamental forces shaping the current technological revolution and industrial transformation, serving as key pathways for nations to achieve sustainable development goals. Drawing on panel data from 30 Chinese provinces from 2012 to 2022, this study constructs indicators of digitalization and greening from the perspectives of data empowerment and technological efficiency improvement and examines how their synergistic development influences industrial structure optimization. The findings reveal the following: (1) although the overall synergy between digitalization and greening has steadily increased, regional disparities persist, displaying an “East strong–West weak” pattern, with inter-regional differences being the primary source of overall imbalance; (2) through the mediating role of environmental regulation, the coordinated advancement of digitalization and greening exerts a significant positive effect on industrial structure optimization; (3) heterogeneity analysis indicates a gradient empowerment effect, showing that the impact of digitalization–greening synergy on industrial structure optimization follows a “West > Central > East” pattern. These results provide both theoretical and empirical evidence for understanding how digitalization and greening jointly drive sustainable development. The study offers practical insights for guiding traditional industries to integrate into circular economy systems through “digitalization + greening” transformation and recommends that governments adopt differentiated strategies tailored to local conditions, enhance digital infrastructure, promote green initiatives, deepen reforms, and innovate regulatory frameworks to foster the synergistic advancement of digitalization and greening. Full article
Show Figures

Figure 1

18 pages, 2686 KB  
Article
Sustainable Biopolymer Films from Amazonian Tambatinga Fish Waste: Gelatin Extraction and Performance for Food Packaging Applications
by Fernanda Ramalho Procopio, Rodrigo Vinícius Lourenço, Ana Mônica Q. B. Bitante, Paulo José do Amaral Sobral and Manuel Antônio Chagas Jacintho
Foods 2025, 14(22), 3866; https://doi.org/10.3390/foods14223866 - 12 Nov 2025
Abstract
Tambatinga (Colossoma macropomum × Piaractus brachypomus), a hybrid Amazonian fish recognized for its superior growth performance, represents a valuable and sustainable source of collagen-rich raw material. Due to its tropical origin, the species’ skin may contain higher levels of amino acids, [...] Read more.
Tambatinga (Colossoma macropomum × Piaractus brachypomus), a hybrid Amazonian fish recognized for its superior growth performance, represents a valuable and sustainable source of collagen-rich raw material. Due to its tropical origin, the species’ skin may contain higher levels of amino acids, which can enhance the functional and structural properties of gelatin derived from it. The valorization of fish processing residues for biopolymer production not only mitigates environmental impacts but also reinforces the principles of the circular economy within aquaculture systems. This study explores the development of biopolymer films from Tambatinga skin, an abundant by-product of Brazilian aquaculture. The skins were cleaned and subjected to a hot water–acid extraction process to obtain gelatin. The extracted gelatin exhibited high proline and hydroxyproline contents (12.47 and 9.84 g/100 g of amino acids, respectively) and a Bloom strength of 263.9 g, confirming its suitability for film formation. Films were prepared using 2 g of gelatin per 100 g of film-forming solution, with glycerol added at 10 and 20 g/100 g of gelatin. The resulting films were transparent, flexible, and showed uniform surfaces. Increasing the glycerol concentration reduced tensile strength (from 59.4 to 37.9 MPa) but improved elongation at break (from 116% to 159.1%) and modified the films’ thermal behavior. Moreover, Tambatinga gelatin films demonstrated excellent UV-blocking performance (below 300 nm) and lower water vapor permeability compared to other gelatin-based films reported in the literature. These findings highlight the potential of fish skin—typically regarded as industrial waste—as a renewable and high-value raw material for the production of sustainable biopolymers. This approach supports resource efficiency, waste reduction, and the broader goals of sustainable development and circular bioeconomy. Full article
Show Figures

Figure 1

26 pages, 362 KB  
Article
Exploratory Survey—The Role of Traceability Systems in Quality Assurance and Advancement of the Circular Economy for Recycled Plastics in Australia
by Benjamin Gazeau, Atiq Zaman, Roberto Minnuno and Faiz Uddin Ahmed Shaikh
Clean Technol. 2025, 7(4), 103; https://doi.org/10.3390/cleantechnol7040103 - 12 Nov 2025
Abstract
Plastic recycling is critical to transitioning toward a circular economy (CE), yet traceability systems for recycled plastics remain unevenly adopted. While effective traceability supports transparency, compliance, and supply chain accountability, its implementation is shaped not only by technological readiness but also by organisational [...] Read more.
Plastic recycling is critical to transitioning toward a circular economy (CE), yet traceability systems for recycled plastics remain unevenly adopted. While effective traceability supports transparency, compliance, and supply chain accountability, its implementation is shaped not only by technological readiness but also by organisational behaviours and strategic priorities. This study explores how traceability adoption is influenced by company size, internal CE strategy, and perceptions of cost, risk, and regulatory demand. A survey of 65 Australian industry stakeholders reveals that 76% of companies with a CE strategy have implemented traceability systems, compared to 42% without. Larger firms report higher adoption rates than small and medium enterprises, largely due to resource advantages and differing interpretations of traceability’s value. Key barriers include high perceived costs, lack of standardised frameworks, and scepticism toward digital tools. Conversely, motivations such as reputational benefits, regulatory alignment, and inter-organisational trust were identified as enablers, alongside emerging technologies like blockchain and chemical tracers. The findings underscore the role of organisational context in shaping traceability practices and highlight the need for tailored interventions. Recommendations include financial incentives, harmonised standards, and sector-specific guidance that address not only technical gaps but behavioural and structural factors limiting uptake. Positioning traceability as an integrated organisational strategy may accelerate its adoption and support broader circular economy outcomes across the plastics value chain. Full article
25 pages, 6452 KB  
Article
Design Optimization of Direct Combustion Process in Regenerative Thermal Oxidizer at Low Concentration of Coal Mine Gas Using Advanced Computational Models
by Jida Zhang, Dong Wang, Zhongkuan Wei, Sheng Li, Junhui Yang, Shiyang Jia, Zhongcheng Ma, Chengmin Chen and Krishnaswamy Nandakumar
Fluids 2025, 10(11), 293; https://doi.org/10.3390/fluids10110293 - 12 Nov 2025
Viewed by 88
Abstract
Coal mine gas with methane concentrations below 8% cannot sustain stable self-combustion, posing significant challenges for safe utilization and greenhouse gas mitigation. To address this limitation, we developed a large-scale industrial square rotary regenerative thermal oxidizer (RTO) capable of high-efficiency oxidation under ultra-low [...] Read more.
Coal mine gas with methane concentrations below 8% cannot sustain stable self-combustion, posing significant challenges for safe utilization and greenhouse gas mitigation. To address this limitation, we developed a large-scale industrial square rotary regenerative thermal oxidizer (RTO) capable of high-efficiency oxidation under ultra-low methane conditions. This work integrates multi-scale computational fluid dynamics (CFD) modeling, laboratory and pilot-scale physical experiments, and multi-physics coupled simulations to capture the complex interactions of fluid flow, species transport, and thermal response in regenerative ceramics. Compared with conventional circular or three-bed RTOs, the proposed square rotating design achieves 13% higher heat storage utilization, 15% smaller floor area, and enhanced spatial uniformity of the temperature field. Multi-scale simulations reveal that increasing methane molar fraction (CH4) from 0.012 to 0.017 raises the peak temperature from 1280 K to 1350 K, reduces the burnout height from 1.18 m to 1.15 m, and, under constant oxygen supply, extends the high-temperature zone to 1450 K with a stabilized burnout position at 1.06 ± 0.01 m. Incorporating a 15° conical expansion combustion chamber increases local turbulent kinetic energy by 17.4%, accelerating oxidation while maintaining methane removal rates > 98% within an optimized bottom blowing time of 30–90 s. This study not only provides validated design thresholds for ultra-low concentration methane oxidation—such as temperature windows, buffer zones, and switching cycles—but also offers an engineering framework for scaling RTO systems to industrial coal mine applications. This advances both energy recovery efficiency and methane emission control, demonstrating clear advantages over existing RTO configurations. Full article
(This article belongs to the Special Issue Turbulence and Combustion)
Show Figures

Figure 1

25 pages, 1246 KB  
Review
Biochar for Soil Fertility and Climate Mitigation: Review on Feedstocks, Pyrolysis Conditions, Functional Properties, and Applications with Emerging AI Integration
by Florian Marin, Oana Maria Tanislav, Marius Constantinescu, Antoaneta Roman, Felicia Bucura, Simona Oancea and Anca Maria Zaharioiu
Agriculture 2025, 15(22), 2345; https://doi.org/10.3390/agriculture15222345 - 11 Nov 2025
Viewed by 108
Abstract
Soil degradation, declining fertility, and rising greenhouse gas emissions highlight the urgent need for sustainable soil management strategies. Among them, biochar has gained recognition as a multifunctional material capable of enhancing soil fertility, sequestering carbon, and valorizing biomass residues within circular economy frameworks. [...] Read more.
Soil degradation, declining fertility, and rising greenhouse gas emissions highlight the urgent need for sustainable soil management strategies. Among them, biochar has gained recognition as a multifunctional material capable of enhancing soil fertility, sequestering carbon, and valorizing biomass residues within circular economy frameworks. This review synthesizes evidence from 186 peer-reviewed studies to evaluate how feedstock diversity, pyrolysis temperature, and elemental composition shape the agronomic and environmental performance of biochar. Crop residues dominated the literature (17.6%), while wood, manures, sewage sludge, and industrial by-products provided more targeted functionalities. Pyrolysis temperature emerged as the primary performance driver: 300–400 °C biochars improved pH, cation exchange capacity (CEC), water retention, and crop yield, whereas 450–550 °C biochars favored stability, nutrient concentration, and long-term carbon sequestration. Elemental composition averaged 60.7 wt.% C, 2.1 wt.% N, and 27.5 wt.% O, underscoring trade-offs between nutrient supply and structural persistence. Greenhouse gas (GHG) outcomes were context-dependent, with consistent Nitrous Oxide (N2O) reductions in loam and clay soils but variable CH4 responses in paddy systems. An emerging trend, present in 10.6% of studies, is the integration of artificial intelligence (AI) to improve predictive accuracy, adsorption modeling, and life-cycle assessment. Collectively, the evidence confirms that biochar cannot be universally optimized but must be tailored to specific objectives, ranging from soil fertility enhancement to climate mitigation. Full article
Show Figures

Figure 1

20 pages, 2219 KB  
Review
Sustainable Practices in Construction Management and Environmental Engineering: A Review
by Abdulaziz Alghamdi
Sustainability 2025, 17(22), 10027; https://doi.org/10.3390/su172210027 - 10 Nov 2025
Viewed by 466
Abstract
The construction industry is one of the most resource-intensive and environmentally impactful sectors, responsible for nearly 40% of global greenhouse gas emissions, over one-third of energy consumption, and a significant share of raw material depletion. These figures underscore the urgent need to transform [...] Read more.
The construction industry is one of the most resource-intensive and environmentally impactful sectors, responsible for nearly 40% of global greenhouse gas emissions, over one-third of energy consumption, and a significant share of raw material depletion. These figures underscore the urgent need to transform conventional approaches to project delivery and resource management. Integrating construction management with environmental engineering offers a comprehensive pathway to enhance efficiency, mitigate environmental pressures, and align the sector with international sustainability commitments. This paper presents a systematic review of peer-reviewed studies published between 2000 and 2025 to evaluate sustainable practices that connect these two domains. The review focuses on five thematic areas: project delivery and management strategies with sustainability goals, environmental engineering tools such as pollution control and life cycle assessment, green certification frameworks, waste reduction and circular economy practices, and the integration of emerging digital and material technologies. Together, these areas illustrate how managerial systems and engineering solutions can jointly foster sustainable outcomes. The review indicates notable progress in fields such as green certification adoption, the use of Building Information Modeling for resource efficiency, and advanced recycling technologies. However, persistent challenges remain. These include the uneven uptake of sustainable practices between developed and developing economies, limited application of digital innovations such as artificial intelligence and the Internet of Things, and insufficient policy coordination to support the United Nations Sustainable Development Goals. By synthesizing dispersed insights across disciplines, this review contributes an integrated perspective that clarifies current achievements, highlights unresolved gaps, and suggests directions for future research and practice. The analysis is intended to support policymakers, industry professionals, and scholars in accelerating the transition toward a more resource-efficient and environmentally responsible construction sector. Full article
Show Figures

Figure 1

19 pages, 7588 KB  
Article
Enhancing Properties of Bayer Red Mud–Class F Fly Ash Geopolymer Composites via Ground Granulated Blast Furnace Slag and Calcium Carbide Slag Incorporation
by Qingke Nie, Huawei Li, Haipeng Yang, Rihua Zhang, Weidong Shang and Rui Wang
Buildings 2025, 15(22), 4013; https://doi.org/10.3390/buildings15224013 - 7 Nov 2025
Viewed by 282
Abstract
Red mud, fly ash, ground granulated blast furnace slag, and carbide slag are industrial byproducts posing significant environmental challenges. The synthesis of geopolymers represents a promising approach for their sustainable valorization. This study investigated the strength development mechanisms and microstructural evolution of Red [...] Read more.
Red mud, fly ash, ground granulated blast furnace slag, and carbide slag are industrial byproducts posing significant environmental challenges. The synthesis of geopolymers represents a promising approach for their sustainable valorization. This study investigated the strength development mechanisms and microstructural evolution of Red Mud–Class F Fly Ash-Based Geopolymer under co-incorporation of ground granulated blast furnace slag and carbide slag through compressive strength tests, X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy–Energy Dispersive Spectrometer (SEM-EDS). Key findings include the following: (1) single incorporation of ground granulated blast furnace slag achieved a 60-day compressive strength of 11.6 MPa—6.4× higher than carbide slag-only systems (1.8 MPa); (2) hybrid systems (50% ground granulated blast furnace slag/50% carbide slag) reached 8.8 MPa, demonstrating a strength peak at balanced ground granulated blast furnace slag/carbide slag ratios; (3) the multi-source geopolymer systems were dominated by monomeric gels (C-A-H, C-S-H, C-A-S-H), crystalline phases (ettringite and hydrocalumite), and poly-aluminosilicate chains ((-Si-O-Al-Si-O-)n); (4) elevated Ca levels (>40 weight percent in ground granulated blast furnace slag/carbide slag) favored C-S-H formation, while optimal Si/Al ratios (1.5–2.5) promoted gel polycondensation into long-chain polymers (e.g., Si-O-Al-O), consolidating the matrix. These results resolve the critical limitation of low strength (≤3.1 MPa) in ambient-cured red mud–fly ash geopolymers reported previously, enabling scalable utilization of red mud (46.44% Fe2O3) and carbide slag (92.43% CaO) while advancing circular economy paradigms in construction materials. Full article
(This article belongs to the Topic Clean and Low Carbon Energy, 2nd Edition)
Show Figures

Figure 1

23 pages, 1090 KB  
Review
Food Safety in the Age of Climate Change: The Rising Risk of Pesticide Residues and the Role of Sustainable Adsorbent Technologies
by Tamara Lazarević-Pašti, Tamara Tasić, Vedran Milanković and Igor A. Pašti
Foods 2025, 14(21), 3797; https://doi.org/10.3390/foods14213797 - 6 Nov 2025
Viewed by 363
Abstract
Climate change is increasingly recognized as a critical factor of food contamination risks, particularly through its influence on pesticide behavior and usage. Rising temperatures, altered precipitation patterns, and the proliferation of crop pests are leading to intensified and extended pesticide application across agricultural [...] Read more.
Climate change is increasingly recognized as a critical factor of food contamination risks, particularly through its influence on pesticide behavior and usage. Rising temperatures, altered precipitation patterns, and the proliferation of crop pests are leading to intensified and extended pesticide application across agricultural systems. These shifts increase the likelihood of elevated pesticide residues in food and water and affect their environmental persistence, mobility, and accumulation within the food chain. At the same time, current regulatory frameworks and risk assessment models often fail to account for the synergistic effects of chronic low-dose exposure to multiple residues under climate-stressed conditions. This review provides a multidisciplinary overview of how climate change intensifies the pesticide residue burden in food, emphasizing emerging toxicological concerns and identifying critical gaps in current mitigation strategies. In particular, it examines sustainable adsorbent technologies, primarily carbon-based materials derived from agro-industrial waste, which offer promising potential for removing pesticide residues from water and food matrices, aligning with a circular economy approach. Beyond their technical performance, the real question is whether such materials and the thinking behind them can be meaningfully integrated into next-generation food safety systems that are capable of responding to a rapidly changing world. Full article
Show Figures

Figure 1

31 pages, 2524 KB  
Review
Life Cycle Assessment of Industrial Symbiosis for Circular Solid Waste Management: A Literature Review
by Reza Vahidzadeh, Marta Domini and Giorgio Bertanza
Clean Technol. 2025, 7(4), 100; https://doi.org/10.3390/cleantechnol7040100 - 5 Nov 2025
Viewed by 288
Abstract
In recent years, industrial symbiosis (IS) has gained attention as a strategy to enhance circularity and to reduce the environmental impacts of solid waste management through resource reuse and recovery. Life Cycle Assessment (LCA) is increasingly used to evaluate the environmental performance of [...] Read more.
In recent years, industrial symbiosis (IS) has gained attention as a strategy to enhance circularity and to reduce the environmental impacts of solid waste management through resource reuse and recovery. Life Cycle Assessment (LCA) is increasingly used to evaluate the environmental performance of such inter-industry collaborations. Given the growing diversity of IS practices and LCA models, this updated review serves as a methodological reference, mapping existing approaches and identifying gaps to guide future research on the systematic assessment of circular strategies. Moreover, it investigates the environmental performance of IS approaches in the field, based on the LCA results of the analyzed case studies. We analyzed 48 peer-reviewed studies to examine how LCA has been applied to model and assess the environmental impacts and benefits of IS in the context of waste management. The literature revealed wide methodological variability, including differences in system boundaries, functional units, and impact categories, affecting comparability and consistency. Case studies confirm that IS can contribute to reducing environmental burdens, particularly with regard to climate change and resource depletion, though challenges remain in modelling the complex inter-organizational exchanges and accessing reliable data. Socio-economic aspects are increasingly considered but remain underrepresented. Future research should focus on methodological improvements, such as greater standardization and the better integration of indirect effects, to strengthen LCA in decision-making and to explore a wider range of scenarios reflecting different stakeholders, analytical perspectives, and the evolution of symbiotic systems over time. Full article
Show Figures

Figure 1

27 pages, 1418 KB  
Article
Orchestrating Digital Capabilities for Supply Chain Resilience: Evidence from China-Pakistan Economic Corridor
by Muhammad Inam Makki Khan, Qipeng Sun, Zeeshan Ahmed, Ruihan Zhang and Mishal Khosa
Systems 2025, 13(11), 981; https://doi.org/10.3390/systems13110981 - 3 Nov 2025
Viewed by 429
Abstract
In the environment of modern climate uncertainty, institutional uncertainty, and digital disruption, resilience along the supply chain has become a strategic imperative for organisations operating in large-scale, high-risk infrastructure ecosystems. According to the dynamic capabilities’ theory, the current study examines the degree to [...] Read more.
In the environment of modern climate uncertainty, institutional uncertainty, and digital disruption, resilience along the supply chain has become a strategic imperative for organisations operating in large-scale, high-risk infrastructure ecosystems. According to the dynamic capabilities’ theory, the current study examines the degree to which big data analytics management capability (BDMC) supports supply chain resilience (SCR) through three intermediary mechanisms, including fintech adoption (FTA), circular economy activities (CEA), Internet of Things (IoT), and environmental dynamism acts as a moderating factor to determine the effect that external volatility conditions have on such associations. This study addresses several notable research gaps: (1) the insufficient theorization of how digital tools such as BDMC, FTA, IoT, and CEA interact in building SCR; (2) a lack of empirical clarity on the mediating mechanisms that link digital capabilities with resilience; and (3) limited understanding of the moderating role of environmental dynamism in volatile contexts like the CPEC. A survey was conducted among 441 mid and senior level professionals residing in Pakistan and working in industries related to the China-Pakistan economic corridor (CPEC). Structural equation modelling (SEM) revealed that BDMC has a significant, positive impact on SCR, as well as a mediated influence in this direction. Among mediating sets, the significant pathway discovered CEA supported by the next important pathway IoT and FTA, which also explained the layered (complementary) nature of both digital and sustainability targeting skills. Moreover, the factor of environmental dynamism was also found to have a positive moderating effect on the relationship between BDMC and SCR, indicating that the factor of dynamic capabilities becomes more significant in an environment where environmental uncertainty is high. The research questions driving this study are: (1) How does BDMC enable SCR in the CPEC context? (2) What are the mediating roles of FTA, CEA, and IoT in this relationship? (3) How does environmental dynamism moderate the BDMC-SCR nexus? Theoretically, this study extends DCT to an emerging megaproject context and conceptualizes BDMC as an orchestrating capability. The main innovation lies in integrating digital technologies and sustainability practices into a unified capability system, especially within high-risk, underdeveloped regions. The study provides a practical resilience roadmap for policymakers and firms, outlining the strategic integration of digital and circular practices, rather than merely adopting them. However, this study is limited by its cross-sectional survey design and its focus on a single geographic context, which may affect generalizability. Findings offer timely insights for resilience-building strategies in unstable organisational environments. Full article
Show Figures

Figure 1

12 pages, 349 KB  
Article
Valorization of Artichoke Wastes via Ozonation Pretreatment and Enzyme Fibrolytic Supplementation: Effect on Nutritional Composition, Ruminal Fermentation and Degradability
by Khalil Abid
Fermentation 2025, 11(11), 626; https://doi.org/10.3390/fermentation11110626 - 2 Nov 2025
Viewed by 389
Abstract
The increasing demand for sustainable ruminant feeds has driven interest in the valorization of agro-industrial wastes. Artichoke wastes are attractive in the Mediterranean region due to their availability and richness in protein (CP) and fiber (NDF), but their high lignin (ADL) and tannin [...] Read more.
The increasing demand for sustainable ruminant feeds has driven interest in the valorization of agro-industrial wastes. Artichoke wastes are attractive in the Mediterranean region due to their availability and richness in protein (CP) and fiber (NDF), but their high lignin (ADL) and tannin contents limit their nutritional value. This experiment was conducted using a completely randomized design with four treatments—control, ozone (O3), exogenous fibrolytic enzyme (EFE), and O3 + EFE—tested over six runs, each including three replicates per treatment. The study evaluated the effects of ozone (O3) and exogenous fibrolytic enzyme (EFE) treatments, applied alone or in combination, on artichoke waste chemical composition, ruminal fermentation, microbial populations, enzyme activity, and degradability. Ozone pretreatment significantly reduced fiber fractions (NDF −10%, ADF −7%), ADL (−16%), and condensed tannins (−64%), while increasing CP (+13%) and non-fibrous carbohydrates (NFC +38%). These modifications enhanced ruminal bacterial populations (+29%) and fibrolytic enzyme activities (xylanase +21%, endoglucanase +19%, exoglucanase +10%), resulting in higher dry matter degradability (DMD +11%), fiber degradability (NDFD +14%), total volatile fatty acids (VFAs +13%), and a lower acetate-to-propionate ratio. EFEs alone showed negligible effects; however, when applied after ozone, further improvements were observed in NFCs (+21%), bacterial populations (+21%), enzyme activities (xylanase +11%, endoglucanase +10%), DMD (+8%), NDFD (+7%), and VFAs (+6%) compared to ozone alone. These findings demonstrate that O3 pretreatment facilitates the enzymatic hydrolysis of lignocellulosic structures and enhances the effectiveness of EFEs, offering a sustainable and eco-efficient strategy for the bioconversion of artichoke wastes into high-value feed for ruminants, contributing to resource efficiency and circular bioeconomy development in livestock systems. Full article
Show Figures

Figure 1

26 pages, 3169 KB  
Article
Overcoming Barriers to Circular Economy in Plastic Packaging: Enablers and Integrated Strategies in Multinational Companies
by Daniela Bustamante, Abraham Londoño-Pineda, Jose Alejandro Cano and Stephan Weyers
Sustainability 2025, 17(21), 9757; https://doi.org/10.3390/su17219757 - 1 Nov 2025
Viewed by 642
Abstract
The transition to a circular economy (CE) in plastic packaging faces persistent barriers, including regulatory fragmentation, technological limitations, and supply chain disconnection. This study examines how multinational companies address these challenges by leveraging enablers such as advanced policies, technological innovation, and cross-sectoral collaboration. [...] Read more.
The transition to a circular economy (CE) in plastic packaging faces persistent barriers, including regulatory fragmentation, technological limitations, and supply chain disconnection. This study examines how multinational companies address these challenges by leveraging enablers such as advanced policies, technological innovation, and cross-sectoral collaboration. Based on a PRISMA-guided systematic review and a descriptive–explanatory case study, semi-structured interviews with senior managers were analyzed through thematic coding and data triangulation. Findings reveal that regulatory measures like virgin plastic taxation and post-consumer recycled material (PCR) incentives are effective only when synchronized with technical capacities. Investments in recycling infrastructure and circular design, such as resin standardization, enhance the quality of secondary materials, while local supply contracts and digital traceability platforms reduce volatility. Nevertheless, negative consumer perceptions and inconsistent PCR quality remain major obstacles. Unlike prior studies that examine barriers and enablers separately, this research develops an integrative framework where their interaction is conceptualized as a systemic and non-linear process. The study contributes to CE theory by reframing barriers as potential drivers of innovation and provides practical strategies, combining policy instruments, Industry 4.0 technologies, and collaborative governance to guide multinational firms in accelerating circular transitions across diverse regulatory contexts. Full article
Show Figures

Figure 1

31 pages, 3898 KB  
Review
Composite Polymeric Sucker Rod Guides: State-of-Practice, Causes of Failure, and Circular Economy Opportunities
by Chundu Gyem Tamang, Allan Manalo, Paulomi (Polly) Burey, Wahid Ferdous, Tristan Shelley, Mayur Patel and Tony Chapman
Polymers 2025, 17(21), 2932; https://doi.org/10.3390/polym17212932 - 31 Oct 2025
Viewed by 708
Abstract
The oil and gas industry generates substantial amounts of polymeric waste each year, including sucker rod guides manufactured from premium thermoplastics such as Polyphenylene Sulphide (PPS), Polyacrylamide (PAA), Polyamide (PA), and Polyether ether ketone (PEEK). It is estimated that, annually, approximately 18,600 metric [...] Read more.
The oil and gas industry generates substantial amounts of polymeric waste each year, including sucker rod guides manufactured from premium thermoplastics such as Polyphenylene Sulphide (PPS), Polyacrylamide (PAA), Polyamide (PA), and Polyether ether ketone (PEEK). It is estimated that, annually, approximately 18,600 metric tonnes of polymeric sucker rod guides are discarded worldwide, contributing significantly to landfill accumulation. This paper critically reviews the behaviour of polymeric rod guides when exposed to downhole environments where high temperature, pressure, contamination, and severe mechanical stresses act simultaneously. These components are essential in maintaining system reliability, yet research and development on polymeric rod guides remain limited, and investigations into their degradation and failure mechanisms are non-existent. In addition, there are currently no established approaches for recycling or reusing worn polymeric guides, which restricts progress toward sustainability and contributes to the increased accumulation of polymer waste in landfills. This review highlights these gaps and discusses future research directions that could improve the performance and service life of glass-fibre-reinforced polymeric components, while also creating opportunities for recycling and circular economy. Full article
(This article belongs to the Special Issue Recyclable and Sustainable Polymers: Toward a Circular Economy)
Show Figures

Graphical abstract

21 pages, 890 KB  
Article
Environmental Performance of Hermetia illucens Bioconversion in a Medium-Scale Mass Rearing System to Valorize Agri-Food Industrial Residue
by Daniele Duca, Kofi Armah Boakye-Yiadom, Ester Foppa Pedretti and Alessio Ilari
Sustainability 2025, 17(21), 9651; https://doi.org/10.3390/su17219651 - 30 Oct 2025
Viewed by 316
Abstract
Valorizing agri-food waste through black soldier fly larvae (BSFL) bioconversion offers a promising path to enhance circular and sustainable food systems. This study used attributional Life Cycle Assessment (LCA) to evaluate the environmental performance of BSFL reared on six agro-industrial residue diets: tomato, [...] Read more.
Valorizing agri-food waste through black soldier fly larvae (BSFL) bioconversion offers a promising path to enhance circular and sustainable food systems. This study used attributional Life Cycle Assessment (LCA) to evaluate the environmental performance of BSFL reared on six agro-industrial residue diets: tomato, pea, onion, chickpea, wheat, and liquid digestate. The Environmental Footprint 3.1 method was used to assess multiple impact categories. The rearing trials were conducted in a dedicated pilot plant (13.5 m × 2.5 m × 2.7 m) that can treat about 1.58 t of residue per cycle. From the results, BSFL biomass yields were similar across diets, with 12–15% bioconversion and 70–85% substrate reduction. BSFL protein had higher impacts than fishmeal and pea protein but was comparable to soybean meal. BSFL lipids had greater impacts than rapeseed, palm, and sunflower oils yet were similar to soybean oil for bioenergy from fat. Electricity use for climate control was the main hotspot (~85%). Scenario analysis showed that using residual heat for climate control and scaling up via optimization could cut impacts by over 80%. The findings demonstrate the potential for producing BSFL on a medium-to-large scale to enhance circularity in the agri-food sector. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

Back to TopTop