Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,188)

Search Parameters:
Keywords = circuit construction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6263 KiB  
Article
Revealing the Ecological Security Pattern in China’s Ecological Civilization Demonstration Area
by Xuelong Yang, Haisheng Cai, Xiaomin Zhao and Han Zhang
Land 2025, 14(8), 1560; https://doi.org/10.3390/land14081560 - 29 Jul 2025
Viewed by 126
Abstract
The construction and maintenance of an ecological security pattern (ESP) are important for promoting the regional development of ecological civilizations, realizing sustainable and healthy development, and creating a harmonious and beautiful space for human beings and nature to thrive. Traditional construction methods have [...] Read more.
The construction and maintenance of an ecological security pattern (ESP) are important for promoting the regional development of ecological civilizations, realizing sustainable and healthy development, and creating a harmonious and beautiful space for human beings and nature to thrive. Traditional construction methods have the limitations of a single dimension, a single method, and excessive human subjective intervention for source and corridor identification, without considering the multidimensional quality of the sources and the structural connectivity and resilience optimization of the corridors. Therefore, an ecological civilization demonstration area (Jiangxi Province) was used as the study area, a new research method for ESP was proposed, and an empirical study was conducted. To evaluate ecosystem service (ES) importance–disturbance–risk and extract sustainability sources through the deep embedded clustering–self-organizing map (DEC–SOM) deep unsupervised learning clustering algorithm, ecological networks (ENs) were constructed by applying the minimum cumulative resistance (MCR) gravity model and circuit theory. The ENs were then optimized to improve performance by combining the comparative advantages of the two approaches in terms of structural connectivity and resilience. A comparative analysis of EN performance was constructed among different functional control zones, and the ESP was constructed to include 42 ecological sources, 134 corridors, 210 restoration nodes, and 280 protection nodes. An ESP of ‘1 nucleus, 3 belts, 6 zones, and multiple corridors’ was constructed, and the key restoration components and protection functions were clarified. This study offers a valuable reference for ecological management, protection, and restoration and provides insights into the promotion of harmonious symbiosis between human beings and nature and sustainable regional development. Full article
(This article belongs to the Special Issue Urban Ecological Indicators: Land Use and Coverage)
Show Figures

Figure 1

16 pages, 770 KiB  
Article
On the Low Reliability of Sunk Cost Vignettes
by Michał Białek and Emilia Biesiada
Brain Sci. 2025, 15(8), 808; https://doi.org/10.3390/brainsci15080808 - 28 Jul 2025
Viewed by 152
Abstract
Background/Objectives: Sunk cost bias—continuing failing endeavours due to prior investments—is among the most studied decision-making biases. Despite decades of vignette-based research, these measures lack systematic psychometric validation. We examined whether widely-used sunk cost scenarios reliably measure the same psychological construct. Methods: Across two [...] Read more.
Background/Objectives: Sunk cost bias—continuing failing endeavours due to prior investments—is among the most studied decision-making biases. Despite decades of vignette-based research, these measures lack systematic psychometric validation. We examined whether widely-used sunk cost scenarios reliably measure the same psychological construct. Methods: Across two experiments (N = 395), we tested established sunk cost vignettes, including classic scenarios from Arkes and Blumer (1985). English-speaking participants from Prolific Academic completed vignettes alongside cognitive reflection and social desirability measures. We assessed internal consistency and intercorrelations between scenarios. Results: Internal consistency was consistently poor (ω = 0.14–0.57) with weak intercorrelations between scenarios. Even highly similar vignettes correlated only moderately. External validity was problematic, showing inconsistent relationships with cognitive reflection and social desirability across vignettes. Conclusions: These measurement failures have critical implications for neuroimaging research, where unreliable behavioural measures may be mistaken for genuine neural differences. The field needs systematic categorization of scenarios to identify which vignettes engage specific psychological processes and neural circuits, enabling more targeted theoretical development. Full article
(This article belongs to the Special Issue Advances in Cognitive and Psychometric Evaluation)
Show Figures

Figure 1

15 pages, 1609 KiB  
Article
Swap Test-Based Quantum Protocol for Private Array Equality Comparison
by Min Hou and Shibin Zhang
Mathematics 2025, 13(15), 2425; https://doi.org/10.3390/math13152425 - 28 Jul 2025
Viewed by 100
Abstract
Private array equality comparison (PAEC) aims to evaluate whether two arrays are equal while maintaining the confidentiality of their elements. Current private comparison protocols predominantly focus on determining the relationships of secret integers, lacking exploration of array comparisons. To address this issue, we [...] Read more.
Private array equality comparison (PAEC) aims to evaluate whether two arrays are equal while maintaining the confidentiality of their elements. Current private comparison protocols predominantly focus on determining the relationships of secret integers, lacking exploration of array comparisons. To address this issue, we propose a swap test-based quantum protocol for PAEC, which satisfies both functionality and security requirements using the principles of quantum mechanics. This protocol introduces a semi-honest third party (TP) that acts as a medium for generating Bell states as quantum resources and distributes the first and second qubits of these Bell states to the respective participants. They encode their array elements into the received qubits by performing rotation operations. These encoded qubits are sent to TP to derive the comparison results. To verify the feasibility of the proposed protocol, we construct a quantum circuit and conduct simulations on the IBM quantum platform. Security analysis further indicates that our protocol is resistant to various quantum attacks from outsider eavesdroppers and attempts by curious participants. Full article
(This article belongs to the Special Issue Recent Advances in Quantum Theory and Its Applications)
Show Figures

Figure 1

25 pages, 20396 KiB  
Article
Constructing Ecological Security Patterns in Coal Mining Subsidence Areas with High Groundwater Levels Based on Scenario Simulation
by Shiyuan Zhou, Zishuo Zhang, Pingjia Luo, Qinghe Hou and Xiaoqi Sun
Land 2025, 14(8), 1539; https://doi.org/10.3390/land14081539 - 27 Jul 2025
Viewed by 257
Abstract
In mining areas with high groundwater levels, intensive coal mining has led to the accumulation of substantial surface water and significant alterations in regional landscape patterns. Reconstructing the ecological security pattern (ESP) has emerged as a critical focus for ecological restoration in coal [...] Read more.
In mining areas with high groundwater levels, intensive coal mining has led to the accumulation of substantial surface water and significant alterations in regional landscape patterns. Reconstructing the ecological security pattern (ESP) has emerged as a critical focus for ecological restoration in coal mining subsidence areas with high groundwater levels. This study employed the patch-generating land use simulation (PLUS) model to predict the landscape evolution trend of the study area in 2032 under three scenarios, combining environmental characteristics and disturbance features of coal mining subsidence areas with high groundwater levels. In order to determine the differences in ecological network changes within the study area under various development scenarios, morphological spatial pattern analysis (MSPA) and landscape connectivity analysis were employed to identify ecological source areas and establish ecological corridors using circuit theory. Based on the simulation results of the optimal development scenario, potential ecological pinch points and ecological barrier points were further identified. The findings indicate that: (1) land use changes predominantly occur in urban fringe areas and coal mining subsidence areas. In the land reclamation (LR) scenario, the reduction in cultivated land area is minimal, whereas in the economic development (ED) scenario, construction land exhibits a marked increasing trend. Under the natural development (ND) scenario, forest land and water expand most significantly, thereby maximizing ecological space. (2) Under the ND scenario, the number and distribution of ecological source areas and ecological corridors reach their peak, leading to an enhanced ecological network structure that positively contributes to corridor improvement. (3) By comparing the ESP in the ND scenario in 2032 with that in 2022, the number and area of ecological barrier points increase substantially while the number and area of ecological pinch points decrease. These areas should be prioritized for ecological protection and restoration. Based on the scenario simulation results, this study proposes a planning objective for a “one axis, four belts, and four zones” ESP, along with corresponding strategies for ecological protection and restoration. This research provides a crucial foundation for decision-making in enhancing territorial space planning in coal mining subsidence areas with high groundwater levels. Full article
Show Figures

Figure 1

23 pages, 6498 KiB  
Article
Design and Testing of Miniaturized Electrically Driven Plug Seedling Transplanter
by Meng Chen, Yang Xu, Changjie Han, Desheng Li, Binning Yang, Shilong Qiu, Yan Luo, Hanping Mao and Xu Ma
Agriculture 2025, 15(15), 1589; https://doi.org/10.3390/agriculture15151589 - 24 Jul 2025
Viewed by 288
Abstract
To address the issues of bulky structure and complex transmission systems in current transplanters, a compact, electric-driven automatic transplanter was designed. Using pepper plug seedlings as the test subject, this study investigated plug tray dimensions and planting patterns. According to the design requirement [...] Read more.
To address the issues of bulky structure and complex transmission systems in current transplanters, a compact, electric-driven automatic transplanter was designed. Using pepper plug seedlings as the test subject, this study investigated plug tray dimensions and planting patterns. According to the design requirement that the width of the single-row transplanter must be less than 62.5 cm, a three-dimensional transplanter model was constructed. The transplanter comprises a coaxially installed dual-layer seedling conveying device and a sector-expanding automatic seedling picking and depositing device. The structural dimensions, drive configurations, and driving forces of the transplanter were also determined. Finally, the circuit and pneumatic system were designed, and the transplanter was assembled. Both bench and field tests were conducted to select the optimal working parameters. The test results demonstrated that the seedling picking and depositing mechanism met the required operational efficiency. In static seedling picking and depositing tests, at three transplanting speeds of 120 plants/min, 160 plants/min, and 200 plants/min, the success rates of seedling picking and depositing were 100%, 100%, and 97.5%, respectively. In the field test, at three transplanting speeds of 80 plants/min, 100 plants/min, and 120 plants/min, the transplanting success rates were 94.17%, 90.83%, and 88.33%, respectively. These results illustrate that the compact, electric-driven seedling conveying and picking and depositing devices meet the operational demands of automatic transplanting, providing a reference for the miniaturization and electrification of transplanters. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

25 pages, 10397 KiB  
Article
High-Performance All-Optical Logic Gates Based on Silicon Racetrack and Microring Resonators
by Amer Kotb, Zhiyang Wang and Kyriakos E. Zoiros
Electronics 2025, 14(15), 2961; https://doi.org/10.3390/electronics14152961 - 24 Jul 2025
Viewed by 190
Abstract
We propose a high-speed all-optical logic gate design based on silicon racetrack and ring resonators patterned on a silica substrate. The architecture features racetrack resonators at both the input and output, with a central ring resonator enabling the required phase-sensitive interference for logic [...] Read more.
We propose a high-speed all-optical logic gate design based on silicon racetrack and ring resonators patterned on a silica substrate. The architecture features racetrack resonators at both the input and output, with a central ring resonator enabling the required phase-sensitive interference for logic processing. Logic operations are achieved through the interplay of constructive and destructive interference induced by phase-shifted input beams. Using the finite-difference time-domain (FDTD) method in Lumerical software, we simulate and demonstrate seven fundamental Boolean logic functions, namely XOR, AND, OR, NOT, NOR, NAND, and XNOR, at an operating wavelength of 1.33 µm. The system supports a data rate of 47.94 Gb/s, suitable for ultrafast optical computing. The performance is quantitatively evaluated using the contrast ratio (CR) as the reference metric, with more than acceptable values of 13.09 dB (XOR), 13.84 dB (AND), 13.14 dB (OR), 13.80 dB (NOT), 14.53 dB (NOR), 13.80 dB (NAND), and 14.67 dB (XNOR), confirming strong logic level discrimination. Comparative analysis with existing optical gate designs underscores the advantages of our compact silicon-on-silica structure in terms of speed, CR performance, and integration potential. This study validates the effectiveness of racetrack–ring configurations for next-generation all-optical logic circuits. Full article
Show Figures

Figure 1

18 pages, 1587 KiB  
Article
Management of Mobile Resonant Electrical Systems for High-Voltage Generation in Non-Destructive Diagnostics of Power Equipment Insulation
by Anatolii Shcherba, Dmytro Vinnychenko, Nataliia Suprunovska, Sergy Roziskulov, Artur Dyczko and Roman Dychkovskyi
Electronics 2025, 14(15), 2923; https://doi.org/10.3390/electronics14152923 - 22 Jul 2025
Viewed by 212
Abstract
This research presents the development and management principles of mobile resonant electrical systems designed for high-voltage generation, intended for non-destructive diagnostics of insulation in high-power electrical equipment. The core of the system is a series inductive–capacitive (LC) circuit characterized by a high quality [...] Read more.
This research presents the development and management principles of mobile resonant electrical systems designed for high-voltage generation, intended for non-destructive diagnostics of insulation in high-power electrical equipment. The core of the system is a series inductive–capacitive (LC) circuit characterized by a high quality (Q) factor and operating at high frequencies, typically in the range of 40–50 kHz or higher. Practical implementations of the LC circuit with Q-factors exceeding 200 have been achieved using advanced materials and configurations. Specifically, ceramic capacitors with a capacitance of approximately 3.5 nF and Q-factors over 1000, in conjunction with custom-made coils possessing Q-factors above 280, have been employed. These coils are constructed using multi-core, insulated, and twisted copper wires of the Litzendraht type to minimize losses at high frequencies. Voltage amplification within the system is effectively controlled by adjusting the current frequency, thereby maximizing voltage across the load without increasing the system’s size or complexity. This frequency-tuning mechanism enables significant reductions in the weight and dimensional characteristics of the electrical system, facilitating the development of compact, mobile installations. These systems are particularly suitable for on-site testing and diagnostics of high-voltage insulation in power cables, large rotating machines such as turbogenerators, and other critical infrastructure components. Beyond insulation diagnostics, the proposed system architecture offers potential for broader applications, including the charging of capacitive energy storage units used in high-voltage pulse systems. Such applications extend to the synthesis of micro- and nanopowders with tailored properties and the electrohydropulse processing of materials and fluids. Overall, this research demonstrates a versatile, efficient, and portable solution for advanced electrical diagnostics and energy applications in the high-voltage domain. Full article
(This article belongs to the Special Issue Energy Harvesting and Energy Storage Systems, 3rd Edition)
Show Figures

Figure 1

23 pages, 2875 KiB  
Article
Analysis of Habitat Quality Changes in Mountainous Areas Using the PLUS Model and Construction of a Dynamic Restoration Framework for Ecological Security Patterns: A Case Study of Golog Tibetan Autonomous Prefecture, Qinghai Province, China
by Zihan Dong, Haodong Liu, Hua Liu, Yongfu Chen, Xinru Fu, Yang Zhang, Jiajia Xia, Zhiwei Zhang and Qiao Chen
Land 2025, 14(8), 1509; https://doi.org/10.3390/land14081509 - 22 Jul 2025
Viewed by 329
Abstract
The intensifying global climate warming caused by human activities poses severe challenges to ecosystem stability. Constructing an ecological security pattern can identify ecological land supply and an effective spatial distribution baseline and provide a scientific basis for safeguarding regional ecological security. This study [...] Read more.
The intensifying global climate warming caused by human activities poses severe challenges to ecosystem stability. Constructing an ecological security pattern can identify ecological land supply and an effective spatial distribution baseline and provide a scientific basis for safeguarding regional ecological security. This study analyzes land-use data from 2000 to 2020 for Golog Tibetan Autonomous Prefecture. The PLUS model was utilized to project land-use potential for the year 2030. The InVEST model was employed to conduct a comprehensive assessment of habitat quality in the study area for both 2020 and 2030, thereby pinpointing ecological sources. Critical ecological restoration zones were delineated by identifying ecological corridors, pinch points, and barrier points through the application of the Minimum Cumulative Resistance model and circuit theory. By comparing ecological security patterns (ESPs) in 2020 and 2030, we proposed a dynamic restoration framework and optimization recommendations based on habitat quality changes and ESPs. The results indicate significant land-use changes in the eastern part of Golog Tibetan Autonomous Prefecture from 2020 to 2030, with large-scale conversion of grasslands into bare land, farmland, and artificial surfaces. The ecological security pattern is threatened by risks like the deterioration of habitat quality, diminished ecological sources as well as pinch points, and growing barrier points. Optimizing the layout of ecological resources, strengthening barrier zone restoration and pinch point protection, and improving habitat connectivity are urgent priorities to ensure regional ecological security. This study offers a scientific foundation for the harmonization of ecological protection and economic development and the policy development and execution of relevant departments. Full article
Show Figures

Figure 1

18 pages, 20327 KiB  
Article
The Effect of Scratch-Induced Microscale Surface Roughness on Signal Transmission in Radio Frequency Coaxial Connectors
by Yuqi Zhou, Tianmeng Zhang, Gang Xie and Jinchun Gao
Micromachines 2025, 16(8), 837; https://doi.org/10.3390/mi16080837 - 22 Jul 2025
Viewed by 271
Abstract
Electrical connectors play a vital role in ensuring reliable signal transmission in high-frequency microsystems. This study explores the impact of microscale scratch-induced surface roughness on the alternating current (AC) contact impedance of RF coaxial connectors. Unlike traditional approaches that assume idealized surface conditions, [...] Read more.
Electrical connectors play a vital role in ensuring reliable signal transmission in high-frequency microsystems. This study explores the impact of microscale scratch-induced surface roughness on the alternating current (AC) contact impedance of RF coaxial connectors. Unlike traditional approaches that assume idealized surface conditions, controlled micro-defects were introduced at the central contact interface to establish a quantitative relationship between surface morphology and signal degradation. An equivalent circuit model was constructed to account for local impedance variations and the cumulative effects of cascaded connector interfaces. The model was validated using S-parameter measurements obtained from vector network analyzer (VNA) testing, showing strong agreement with simulation results. Experimental results reveal that the low-roughness (0.4 μm) contact surfaces lead to degraded signal integrity due to insufficient micro-contact formation. In contrast, scratch-induced moderate roughness (0.8–4.8 μm) improves transmission performance, although signal quality declines as roughness increases within this range. These effects are further amplified in multi-connector configurations due to accumulated impedance mismatches. This work provides new insight into the coupling between microscale surface features and frequency-domain transmission characteristics, offering practical guidance for surface engineering, contact design, and the development of miniaturized, high-reliability radio frequency interconnects for next-generation communication systems. Full article
Show Figures

Figure 1

17 pages, 4494 KiB  
Article
A Fault Detection Method for Multi-Sensor Data of Spring Circuit Breakers Based on the RF-Adaboost Algorithm
by Chuang Wang, Peijie Cong, Sifan Yu, Jing Yuan, Nian Lv, Yu Ling, Zheng Peng, Haoyan Zhang and Hongwei Mei
Energies 2025, 18(14), 3890; https://doi.org/10.3390/en18143890 - 21 Jul 2025
Viewed by 377
Abstract
In the context of increasing the complexity and intelligence of modern power systems, traditional maintenance approaches for circuit breakers have shown limitations in meeting both reliability and economic requirements. This paper proposes a multi-sensor data fusion fault detection method based on the RF-Adaboost [...] Read more.
In the context of increasing the complexity and intelligence of modern power systems, traditional maintenance approaches for circuit breakers have shown limitations in meeting both reliability and economic requirements. This paper proposes a multi-sensor data fusion fault detection method based on the RF-Adaboost algorithm for spring-operated circuit breakers. By integrating pressure, speed, coil current, and energy storage motor sensors into the mechanism, multi-source operational data are acquired and processed via denoising and feature extraction techniques. A fault detection model is then constructed using the RF-Adaboost classifier. The experimental results demonstrate that the proposed method achieves over 96% accuracy in identifying typical fault states such as coil voltage deviation, reset spring fatigue, and closing spring degradation, outperforming conventional approaches. These results validate the model’s effectiveness and robustness in diagnosing complex mechanical failures in circuit breakers. Full article
(This article belongs to the Special Issue Advanced Control and Monitoring of High Voltage Power Systems)
Show Figures

Figure 1

18 pages, 1956 KiB  
Article
Two Novel Quantum Steganography Algorithms Based on LSB for Multichannel Floating-Point Quantum Representation of Digital Signals
by Meiyu Xu, Dayong Lu, Youlin Shang, Muhua Liu and Songtao Guo
Electronics 2025, 14(14), 2899; https://doi.org/10.3390/electronics14142899 - 20 Jul 2025
Viewed by 187
Abstract
Currently, quantum steganography schemes utilizing the least significant bit (LSB) approach are primarily optimized for fixed-point data processing, yet they encounter precision limitations when handling extended floating-point data structures owing to quantization error accumulation. To overcome precision constraints in quantum data hiding, the [...] Read more.
Currently, quantum steganography schemes utilizing the least significant bit (LSB) approach are primarily optimized for fixed-point data processing, yet they encounter precision limitations when handling extended floating-point data structures owing to quantization error accumulation. To overcome precision constraints in quantum data hiding, the EPlsb-MFQS and MVlsb-MFQS quantum steganography algorithms are constructed based on the LSB approach in this study. The multichannel floating-point quantum representation of digital signals (MFQS) model enhances information hiding by augmenting the number of available channels, thereby increasing the embedding capacity of the LSB approach. Firstly, we analyze the limitations of fixed-point signals steganography schemes and propose the conventional quantum steganography scheme based on the LSB approach for the MFQS model, achieving enhanced embedding capacity. Moreover, the enhanced embedding efficiency of the EPlsb-MFQS algorithm primarily stems from the superposition probability adjustment of the LSB approach. Then, to prevent an unauthorized person easily extracting secret messages, we utilize channel qubits and position qubits as novel carriers during quantum message encoding. The secret message is encoded into the signal’s qubits of the transmission using a particular modulo value rather than through sequential embedding, thereby enhancing the security and reducing the time complexity in the MVlsb-MFQS algorithm. However, this algorithm in the spatial domain has low robustness and security. Therefore, an improved method of transferring the steganographic process to the quantum Fourier transformed domain to further enhance security is also proposed. This scheme establishes the essential building blocks for quantum signal processing, paving the way for advanced quantum algorithms. Compared with available quantum steganography schemes, the proposed steganography schemes achieve significant improvements in embedding efficiency and security. Finally, we theoretically delineate, in detail, the quantum circuit design and operation process. Full article
Show Figures

Figure 1

16 pages, 4284 KiB  
Article
Monitoring of Corrosion in Reinforced E-Waste Concrete Subjected to Chloride-Laden Environment Using Embedded Piezo Sensor
by Gaurav Kumar, Tushar Bansal and Dayanand Sharma
Constr. Mater. 2025, 5(3), 46; https://doi.org/10.3390/constrmater5030046 - 16 Jul 2025
Viewed by 430
Abstract
This study explores the use of embedded piezo sensor (EPS) employing the Electro-Mechanical Impedance (EMI) technique for real-time corrosion monitoring in reinforced E-waste concrete exposed to chloride-laden environments. With the growing environmental concerns over electronic waste (E-waste) and the demand for sustainable construction [...] Read more.
This study explores the use of embedded piezo sensor (EPS) employing the Electro-Mechanical Impedance (EMI) technique for real-time corrosion monitoring in reinforced E-waste concrete exposed to chloride-laden environments. With the growing environmental concerns over electronic waste (E-waste) and the demand for sustainable construction practices, printed circuit board (PCB) materials were incorporated as partial replacements for coarse aggregates in concrete. The experiment utilized M30-grade concrete mixes, substituting 15% of natural coarse aggregates with E-waste, aiming to assess both sustainability and structural performance without compromising durability. EPS configured with Lead Zirconate Titanate (PZT) patches were embedded into both conventional and E-waste concrete specimens. The EPS monitored the changes in the form of conductance and susceptance signatures across a 100–400 kHz frequency range during accelerated corrosion exposure over a 60-day period in a 3.5% NaCl solution. The corrosion progression was evaluated qualitatively through electrical impedance signatures, visually via rust formation and cracking, and quantitatively using the Root Mean Square Deviation (RMSD) of EMI signatures. The results showed that the EMI technique effectively captured the initiation and propagation stages of corrosion. E-waste concrete exhibited earlier and more severe signs of corrosion compared to conventional concrete, indicated by faster increases and subsequent declines in conductance and susceptance and higher RMSD values during the initiation phase. The EMI-based system demonstrated its capability to detect microstructural changes at early stages, making it a promising method for Structural Health Monitoring (SHM) of sustainable concretes. The study concludes that while the use of E-waste in concrete contributes positively to sustainability, it may compromise long-term durability in aggressive environments. However, the integration of EPS and EMI offers a reliable, non-destructive, and sensitive technique for real-time corrosion monitoring, supporting preventive maintenance and improved infrastructure longevity. Full article
Show Figures

Figure 1

22 pages, 4636 KiB  
Article
SP-GEM: Spatial Pattern-Aware Graph Embedding for Matching Multisource Road Networks
by Chenghao Zheng, Yunfei Qiu, Jian Yang, Bianying Zhang, Zeyuan Li, Zhangxiang Lin, Xianglin Zhang, Yang Hou and Li Fang
ISPRS Int. J. Geo-Inf. 2025, 14(7), 275; https://doi.org/10.3390/ijgi14070275 - 15 Jul 2025
Viewed by 264
Abstract
Identifying correspondences of road segments in different road networks, namely road-network matching, is an essential task for road network-centric data processing such as data integration of road networks and data quality assessment of crowd-sourced road networks. Traditional road-network matching usually relies on feature [...] Read more.
Identifying correspondences of road segments in different road networks, namely road-network matching, is an essential task for road network-centric data processing such as data integration of road networks and data quality assessment of crowd-sourced road networks. Traditional road-network matching usually relies on feature engineering and parameter selection of the geometry and topology of road networks for similarity measurement, resulting in poor performance when dealing with dense and irregular road network structures. Recent development of graph neural networks (GNNs) has demonstrated unsupervised modeling power on road network data, which learn the embedded vector representation of road networks through spatial feature induction and topology-based neighbor aggregation. However, weighting spatial information on the node feature alone fails to give full play to the expressive power of GNNs. To this end, this paper proposes a Spatial Pattern-aware Graph EMbedding learning method for road-network matching, named SP-GEM, which explores the idea of spatially-explicit modeling by identifying spatial patterns in neighbor aggregation. Firstly, a road graph is constructed from the road network data, and geometric, topological features are extracted as node features of the road graph. Then, four spatial patterns, including grid, high branching degree, irregular grid, and circuitous, are modelled in a sector-based road neighborhood for road embedding. Finally, the similarity of road embedding is used to find data correspondences between road networks. We conduct an algorithmic accuracy test to verify the effectiveness of SP-GEM on OSM and Tele Atlas data. The algorithmic accuracy experiments show that SP-GEM improves the matching accuracy and recall by at least 6.7% and 10.2% among the baselines, with high matching success rate (>70%), and improves the matching accuracy and recall by at least 17.7% and 17.0%, compared to the baseline GNNs, without spatially-explicit modeling. Further embedding analysis also verifies the effectiveness of the induction of spatial patterns. This study not only provides an effective and practical algorithm for road-network matching, but also serves as a test bed in exploring the role of spatially-explicit modeling in GNN-based road network modeling. The experimental performances of SP-GEM illuminate the path to develop GeoEmbedding services for geospatial applications. Full article
Show Figures

Figure 1

24 pages, 5634 KiB  
Article
Research on the Coordination of Transportation Network and Ecological Corridors Based on Maxent Model and Circuit Theory in the Giant Panda National Park, China
by Xinyu Li, Gaoru Zhu, Jiaqi Sun, Leyao Wu and Yuting Peng
Land 2025, 14(7), 1465; https://doi.org/10.3390/land14071465 - 14 Jul 2025
Viewed by 298
Abstract
National parks serve as critical spatial units for conserving ecological baselines, maintaining genetic diversity, and delivering essential ecosystem services. However, accelerating socio-economic development has increasingly intensified the conflict between ecological protection and transportation infrastructure. Ecologically sustainable transportation planning is, therefore, essential to mitigate [...] Read more.
National parks serve as critical spatial units for conserving ecological baselines, maintaining genetic diversity, and delivering essential ecosystem services. However, accelerating socio-economic development has increasingly intensified the conflict between ecological protection and transportation infrastructure. Ecologically sustainable transportation planning is, therefore, essential to mitigate habitat fragmentation, facilitate species migration, and conserve biodiversity. This study examines the Giant Panda National Park and its buffer zone, focusing on six mammal species: giant panda, Sichuan snub-nosed monkey, leopard cat, forest musk deer, rock squirrel, and Sichuan takin. By integrating Maxent ecological niche modeling with circuit theory, it identified ecological source areas and potential corridors, and employed a two-step screening approach to design species-specific wildlife crossings. In total, 39 vegetated overpasses were proposed to serve all target species; 34 underpasses were integrated using existing bridge and culvert structures to minimize construction costs; and 27 canopy bridges, incorporating suspension cables and elevated pathways, were designed to connect forest canopies for arboreal species. This study established a multi-species and multi-scale conservation framework, providing both theoretical insights and practical strategies for ecologically integrated transportation planning in national parks, contributing to the synergy between biodiversity conservation and sustainable development goals. Full article
(This article belongs to the Special Issue Territorial Space and Transportation Coordinated Development)
Show Figures

Figure 1

16 pages, 2528 KiB  
Article
An Adaptable Capacity Estimation Method for Lithium-Ion Batteries Based on a Constructed Open Circuit Voltage Curve
by Linjing Zhang, Xiaoqian Su, Caiping Zhang, Yubin Wang, Yao Wang, Tao Zhu and Xinyuan Fan
Batteries 2025, 11(7), 265; https://doi.org/10.3390/batteries11070265 - 14 Jul 2025
Viewed by 266
Abstract
The inevitable decline in battery performance presents a major barrier to its widespread industrial application. Adaptive and accurate estimation of battery capacity is paramount for battery operation, maintenance, and residual value evaluation. In this paper, we propose a novel battery capacity estimation method [...] Read more.
The inevitable decline in battery performance presents a major barrier to its widespread industrial application. Adaptive and accurate estimation of battery capacity is paramount for battery operation, maintenance, and residual value evaluation. In this paper, we propose a novel battery capacity estimation method based on an approximate open circuit voltage curve. The proposed method is rigorously tested using both lithium–iron–phosphate (LFP) and nickel–cobalt–manganese (NCM) battery packs at multiple charging rates under varied aging conditions. To further enhance capacity estimation accuracy, a voltage correction strategy is implemented utilizing the incremental capacity (IC) curve. This strategy also verifies the potential benefits of increasing the charging rate to shorten the overall test duration. Eventually, the capacity estimation error is consistently controlled within 2%. With optimal state of charge (SOC) interval selection, the estimation error can be further reduced to 1%. Clearly, our proposed method exhibits excellent compatibility across diverse battery materials and degradation states. This adaptability holds substantial scientific value and practical importance. It contributes to the safe and economic utilization of Li-ion batteries throughout their entire lifespan. Full article
Show Figures

Figure 1

Back to TopTop