Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = circadian-microRNAs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2012 KB  
Review
Role of Anti-Inflammatory and Antioxidant Properties of Natural Products in Curing Cardiovascular Diseases
by Amit Kulkarni, Chaitra Chidambar Kulkarni, Seetur Radhakrishna Pradeep, Jagadeesha Poyya, Avinash Kundadka Kudva, Vijay Radhakrishnan and Ajay Sathyanarayanrao Khandagale
Curr. Issues Mol. Biol. 2025, 47(11), 955; https://doi.org/10.3390/cimb47110955 - 17 Nov 2025
Viewed by 1294
Abstract
Cardiovascular diseases (CVDs) remain a leading cause of mortality worldwide. According to the WHO, every year, there is an increase in the rate of death globally due to CVDs, stroke, and myocardial infarction. Several risk factors contribute to the development of CVDs, one [...] Read more.
Cardiovascular diseases (CVDs) remain a leading cause of mortality worldwide. According to the WHO, every year, there is an increase in the rate of death globally due to CVDs, stroke, and myocardial infarction. Several risk factors contribute to the development of CVDs, one of which is hypoxia, defined as a reduction in oxygen levels. This major stressor affects aerobic species and plays a crucial role in the development of cardiovascular disease. Research has uncovered the “hypoxia-inducible factors (HIFs) switch” and investigated the onset, progression, acute and chronic effects, and adaptations of hypoxia, particularly at high altitudes. The hypoxia signalling pathways are closely linked to natural rhythms such as the circadian rhythm and hibernation. In addition to genetic and evolutionary factors, epigenetics also plays an important role in postnatal cardiovascular responses to hypoxia. Oxidized LDL-C initiates atherosclerosis amidst oxidative stress, inflammation, endothelial dysfunction, and vascular remodelling in CVD pathogenesis. Anti-inflammatory and antioxidant biomarkers are needed to identify individuals at risk of cardiovascular events and enhance risk prediction. Among these, C-reactive protein (CRP) is a recognized marker of vascular inflammation in coronary arteries. Elevated pro-atherogenic oxidized LDL (oxLDL) expression serves as an antioxidant marker, predicting coronary heart disease in apparently healthy men. Natural antioxidants and anti-inflammatory molecules protect the heart by reducing oxidative stress, enhancing vasodilation, and improving endothelial function. For instance, the flavonoid quercetin exerts antioxidant and anti-inflammatory effects primarily by activating the Nrf2/HO-1 signaling pathway, thereby enhancing cellular antioxidant defense and reducing reactive oxygen species. Carotenoids, such as astaxanthin, exhibit potent antioxidant activity by scavenging free radicals and preserving mitochondrial integrity. The alkaloid berberine mediates cardiovascular benefits through activation of AMO-activated protein kinase (AMPK) and inhibition of nuclear factor kappa B [NF-kB] signalling, improving lipid metabolism and suppressing inflammatory cytokines. Emerging evidence highlights microRNAs (miRNAs) as potential regulators of oxidative stress via endothelial nitric oxide synthase (eNOS) and silent mating-type information regulation 2 homolog (SIRT1). While the exact mechanisms remain unclear, their benefits are likely to include antioxidant and anti-inflammatory effects, notably reducing the susceptibility of low-density lipoproteins to oxidation. Additionally, the interactions between organs under hypoxia signalling underscore the need for a comprehensive regulatory framework that can support the identification of therapeutic targets, advance clinical research, and enhance treatments, including FDA-approved drugs and those in clinical trials. Promising natural products, including polysaccharides, alkaloids, saponins, flavonoids, and peptides, as well as traditional Indian medicines, have demonstrated anti-hypoxic properties. Their mechanisms of action include increasing haemoglobin, glycogen, and ATP levels, reducing oxidative stress and lipid peroxidation, preserving mitochondrial function, and regulating genes related to apoptosis. These findings emphasise the importance of anti-hypoxia research for the development of effective therapies to combat this critical health problem. A recent approach to controlling CVDs involves the use of antioxidant and anti-inflammatory therapeutics through low-dose dietary supplementation. Despite their effectiveness at low doses, further research on ROS, antioxidants, and nutrition, supported by large multicentre trials, is needed to optimize this strategy. Full article
Show Figures

Figure 1

47 pages, 4589 KB  
Review
Understanding Sex Differences in Autoimmune Diseases: Immunologic Mechanisms
by Yu Rin Kim, YunJae Jung, Insug Kang and Eui-Ju Yeo
Int. J. Mol. Sci. 2025, 26(15), 7101; https://doi.org/10.3390/ijms26157101 - 23 Jul 2025
Cited by 2 | Viewed by 4748
Abstract
Autoimmune diseases such as systemic lupus erythematosus and Sjögren’s syndrome show pronounced sex disparities in prevalence, severity, and clinical outcomes, with females disproportionately affected. Emerging evidence highlights sex-based differences in immune and inflammatory responses as key contributors to this bias. Genetic factors—including sex [...] Read more.
Autoimmune diseases such as systemic lupus erythematosus and Sjögren’s syndrome show pronounced sex disparities in prevalence, severity, and clinical outcomes, with females disproportionately affected. Emerging evidence highlights sex-based differences in immune and inflammatory responses as key contributors to this bias. Genetic factors—including sex chromosomes, skewed X chromosome inactivation, and sex-biased microRNAs—as well as sex hormones and pregnancy modulate gene expression and immune cell function in a sex-specific manner. Additionally, sex hormone-dependent epigenetic modifications influence the transcription of critical immune regulators. These genetic and hormonal factors collectively shape the activation, differentiation, and effector functions of diverse immune cell types. Environmental factors—including infections, gut microbiota, environmental chemicals and pollutants, and lifestyle behaviors such as diet, smoking, UV exposure, alcohol and caffeine intake, physical activity, and circadian rhythms—further modulate immune function and autoimmune disease pathogenesis in a sex-dependent manner. Together, these mechanisms contribute to the heightened risk and distinct clinical features of autoimmunity in females. A deeper understanding of sex-biased immune regulation will facilitate the identification of novel biomarkers, enable patient stratification, and inform the development of sex-specific diagnostic and therapeutic strategies for autoimmune diseases. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

24 pages, 4805 KB  
Article
A Computational Analysis Based on Automatic Digitization of Movement Tracks Reveals the Altered Diurnal Behavior of the Western Flower Thrips, Frankliniella occidentalis, Suppressed in PKG Expression
by Chunlei Xia, Gahyeon Jin, Falguni Khan, Hye-Won Kim, Yong-Hyeok Jang, Nam Jung, Yonggyun Kim and Tae-Soo Chon
Insects 2025, 16(3), 320; https://doi.org/10.3390/insects16030320 - 19 Mar 2025
Viewed by 852
Abstract
The western flower thrips, Frankliniella occidentalis, a worldwide insect pest with its polyphagous feeding behavior and capacity to transmit viruses, follows a diurnal rhythmicity driven by expression of the circadian clock genes. However, it remained unclear how the clock signal triggers the [...] Read more.
The western flower thrips, Frankliniella occidentalis, a worldwide insect pest with its polyphagous feeding behavior and capacity to transmit viruses, follows a diurnal rhythmicity driven by expression of the circadian clock genes. However, it remained unclear how the clock signal triggers the thrips behaviors. This study posed a hypothesis that the clock signal modulates cGMP-dependent protein kinase (PKG) activity to mediate the diurnal behaviors. A PKG gene is encoded in F. occidentalis and exhibits high sequence homologies with those of honeybee and fruit fly. Interestingly, its expression followed a diel pattern with high expression during photophase in larvae and adults of F. occidentalis. It is noteworthy that PKG expression was clearly observed in the midgut during photophase but not in scotophase from our fluorescence in situ hybridization analysis. A prediction of protein–protein interaction suggested its functional association with clock genes. To test this functional link, RNA interference (RNAi) of the PKG gene expression was performed by feeding a gene-specific double-stranded RNA, which led to significant alteration of the two clock genes (Clock and Period) in their expression levels. The RNAi treatment caused adverse effects on early-life development and adult fecundity. To further analyze the role of PKG in affecting diurnal behavior, the adult females were continuously observed for a 24 h period with an automatic digitization device to obtain movement parameters and durations (%) in different micro-areas in the observation arena. Diel difference was observed with speed in RNAi-control females at 0.16 mm/s and 0.08 mm/s, in photo- and scotophase, respectively, whereas diel difference was not observed for the PKG-specific RNAi-treated females, which showed 0.07 mm/s and 0.06 mm/s, respectively. The diel difference was also observed in durations (%) in the control females, more strongly in the intermediate area in the observation arena. Speed and durations in the different micro-areas in mid-scotophase were significantly different from most photophase in the control females, while speed was significantly different mainly during late photophase when comparing effects of control and RNAi treatments in each light phase. Three sequential stages consisting of high activity followed by feeding and visiting of micro-areas were observed for the control females. For RNAi-treated females, the three phases were disturbed with irregular speed and visits to micro-areas. These results suggest that PKG is associated with implementing the diurnal behavior of F. occidentalis by interacting with expressions of the circadian clock genes. Full article
(This article belongs to the Section Insect Physiology, Reproduction and Development)
Show Figures

Figure 1

21 pages, 1003 KB  
Review
Recent Advances in Pineoblastoma Research: Molecular Classification, Modelling and Targetable Vulnerabilities
by Zhe Jiang, Michelle S. Allkanjari, Philip E. D. Chung, Hanna Tran, Ronak Ghanbari-Azarnier, Dong-Yu Wang, Daniel J. Lin, Jung Yeon Min, Yaacov Ben-David and Eldad Zacksenhaus
Cancers 2025, 17(5), 720; https://doi.org/10.3390/cancers17050720 - 20 Feb 2025
Cited by 1 | Viewed by 5324
Abstract
Pineoblastoma (PB) is a rare yet lethal pediatric brain cancer of the pineal gland, a small endocrine organ that secretes melatonin to regulate the circadian rhythm. For PB patients ≤5 years of age, the overall survival rate is approximately 15%; metastatic PB is [...] Read more.
Pineoblastoma (PB) is a rare yet lethal pediatric brain cancer of the pineal gland, a small endocrine organ that secretes melatonin to regulate the circadian rhythm. For PB patients ≤5 years of age, the overall survival rate is approximately 15%; metastatic PB is incurable. Standard treatment, including surgical resection, radiation, and systemic chemotherapy, improves survival but compromises neurocognitive function. A better understanding of the disease and the generation of preclinical models may enable re-evaluation of previous clinical trials, development of precision therapeutic strategies and improve patient outcome. Over the past 5 years, PB has been recognized to include several major subtypes driven by (i) loss of microRNA processing factors DICER and DROSHA characterized by a relatively good prognosis; (ii) loss of the retinoblastoma tumor suppressor RB1; and (iii) amplification or induction of the cMYC protooncogene, with the latter two subtypes exhibiting exceedingly poor prognosis. Recently, mouse models for the major PB subtypes (RB1-, DICER1- and DROSHA-) except MYC- have been established. This progress, including better understanding of the disease, cell of origin, tumor progression, role of autophagy, and targetable vulnerabilities, holds promise for novel therapeutic strategies to combat each subtype of this lethal childhood malignancy. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

22 pages, 5135 KB  
Article
β-Carotene Impacts the Liver MicroRNA Profile in a Sex-Specific Manner in Mouse Offspring of Western Diet-Fed Mothers: Results from Microarray Analysis by Direct Hybridization
by Diana Marisol Abrego-Guandique, Sebastià Galmés, Adrián García-Rodríguez, Roberto Cannataro, Maria Cristina Caroleo, Joan Ribot, Maria Luisa Bonet and Erika Cione
Int. J. Mol. Sci. 2024, 25(23), 12899; https://doi.org/10.3390/ijms252312899 - 30 Nov 2024
Cited by 4 | Viewed by 1900
Abstract
Maternal unbalanced diets cause adverse metabolic programming and affect the offspring’s liver microRNA (miRNA) profile. The liver is a site of β-carotene (BC) metabolism and a target of BC action. We studied the interaction of maternal Western diet (WD) and early-life BC supplementation [...] Read more.
Maternal unbalanced diets cause adverse metabolic programming and affect the offspring’s liver microRNA (miRNA) profile. The liver is a site of β-carotene (BC) metabolism and a target of BC action. We studied the interaction of maternal Western diet (WD) and early-life BC supplementation on the epigenetic remodeling of offspring’s liver microRNAs. Mouse offspring of WD-fed mothers were given a daily placebo (controls) or BC during suckling. Biometric parameters and liver miRNAome by microarray hybridization were analyzed in newly weaned animals. BC sex-dependently impacted the liver triacylglycerol content. The liver miRNAome was also differently affected in male and female offspring, with no overlap in differentially expressed (DE) miRNAs between sexes and more impact in females. Bioinformatic analysis of DE miRNA predicted target genes revealed enrichment in biological processes/pathways related to metabolic processes, regulation of developmental growth and circadian rhythm, liver homeostasis and metabolism, insulin resistance, and neurodegeneration, among others, with differences between sexes. Fifty-five percent of the overlapping target genes in both sexes identified were targeted by DE miRNAs changed in opposite directions in males and females. The results identify sex-dependent responses of the liver miRNA expression profile to BC supplementation during suckling and may sustain further investigations regarding the long-term impact of early postnatal life BC supplementation on top of an unbalanced maternal diet. Full article
Show Figures

Figure 1

13 pages, 5167 KB  
Article
Transcriptome-Wide Evaluation Characterization of microRNAs and Assessment of Their Functional Roles as Regulators of Diapause in Ostrinia furnacalis Larvae (Lepidoptera: Crambidae)
by Hongyue Ma, Ye Liu, Xun Tian, Yujie Chen and Shujing Gao
Insects 2024, 15(9), 702; https://doi.org/10.3390/insects15090702 - 14 Sep 2024
Cited by 2 | Viewed by 2064
Abstract
microRNAs (miRNAs) function as vital regulators of diapause in insects through their ability to post-transcriptionally suppress target gene expression. In this study, the miRNA of Ostrinia furnacalis, an economically important global crop pest species, was characterized. For the included analyses, 9 small RNA [...] Read more.
microRNAs (miRNAs) function as vital regulators of diapause in insects through their ability to post-transcriptionally suppress target gene expression. In this study, the miRNA of Ostrinia furnacalis, an economically important global crop pest species, was characterized. For the included analyses, 9 small RNA libraries were constructed using O. furnacalis larvae in different diapause states (non-diapause, ND; diapause, D; diapause-termination, DT). The results identified 583 total miRNAs, of which 256 had previously been identified, whereas 327 were novel. Furthermore, comparison analysis revealed that 119 and 27 miRNAs were differentially expressed in the D vs. ND and DT vs. D, respectively. Moreover, the expression patterns of their miRNAs were also analyzed. GO and KEGG analysis of the target genes of differentially expressed miRNAs highlighted the importance of these miRNAs as diapause regulators in O. furnacalis, especially through metabolic processes, endocrine processes, 20-hydroxyecdysone, and circadian clock signaling pathways. In summary, this study highlighted the involvement of specific miRNAs in the control of diapause in O. furnacalis. To the best of our knowledge, this is the first study to identify miRNA expression patterns in O. furnacalis, thereby providing reference and novel evidence enhancing our current understanding of how small RNAs influence insect diapause. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Graphical abstract

21 pages, 883 KB  
Review
microRNAs as New Biomolecular Markers to Estimate Time since Death: A Systematic Review
by Vincenzo Cianci, Cristina Mondello, Daniela Sapienza, Maria Cristina Guerrera, Alessio Cianci, Annalisa Cracò, Francesco Luppino, Vittorio Gioffrè, Patrizia Gualniera, Alessio Asmundo and Antonino Germanà
Int. J. Mol. Sci. 2024, 25(17), 9207; https://doi.org/10.3390/ijms25179207 - 24 Aug 2024
Cited by 11 | Viewed by 2521
Abstract
Estimating the post-mortem interval is still one of the most complex challenges in forensics. In fact, the main tools currently used are burdened by numerous limitations, which sometimes allow the time of death to be placed only within too large time intervals. In [...] Read more.
Estimating the post-mortem interval is still one of the most complex challenges in forensics. In fact, the main tools currently used are burdened by numerous limitations, which sometimes allow the time of death to be placed only within too large time intervals. In recent years, researchers have tried to identify new tools to try to narrow down the interval within which to place the time of death; among these, the analysis of microRNAs seems to be promising. An evidence-based systematic review of the literature has been conducted to evaluate the state of the art of knowledge, focusing on the potential correlation between miRNA degradation and PMI estimation. The research has been performed using the electronic databases PubMed, Scopus, and WOS. The results allowed us to highlight the usefulness of miRNAs both as markers for PMI estimation and for normalization, especially due to their stability. In fact, some miRNAs remain particularly stable for long periods and in different tissues, while others degrade faster. Furthermore, there are numerous factors capable of influencing the behavior of these molecules, among which the type of tissue, the cause of death, and the circadian rhythm appear to be the most relevant. Despite the promising results of the few articles present in the literature, because of the numerous limitations they are burdened by, further research is still necessary to achieve more solid and shareable results. Full article
(This article belongs to the Special Issue Advances in Molecular Forensic Pathology and Toxicology: An Update)
Show Figures

Figure 1

18 pages, 5211 KB  
Article
Computational Analyses Reveal Deregulated Clock Genes Associated with Breast Cancer Development in Night Shift Workers
by Silvia Vivarelli, Giovanna Spatari, Chiara Costa, Federica Giambò and Concettina Fenga
Int. J. Mol. Sci. 2024, 25(16), 8659; https://doi.org/10.3390/ijms25168659 - 8 Aug 2024
Cited by 6 | Viewed by 2472
Abstract
Breast cancer (BC) is the leading cause of cancer death among women worldwide. Women employed in shift jobs face heightened BC risk due to prolonged exposure to night shift work (NSW), classified as potentially carcinogenic by the International Agency for Research on Cancer [...] Read more.
Breast cancer (BC) is the leading cause of cancer death among women worldwide. Women employed in shift jobs face heightened BC risk due to prolonged exposure to night shift work (NSW), classified as potentially carcinogenic by the International Agency for Research on Cancer (IARC). This risk is linked to disruptions in circadian rhythms governed by clock genes at the cellular level. However, the molecular mechanisms are unclear. This study aimed to assess clock genes as potential BC biomarkers among women exposed to long-term NSW. Clock gene expression was analysed in paired BC and normal breast tissues within Nurses’ Health Studies I and II GEO datasets. Validation was performed on additional gene expression datasets from healthy night shift workers and women with varying BC susceptibility, as well as single-cell sequencing datasets. Post-transcriptional regulators of clock genes were identified through miRNA analyses. Significant alterations in clock gene expression in BC compared to normal tissues were found. BHLHE40, CIART, CLOCK, PDPK1, and TIMELESS were over-expressed, while HLF, NFIL3, NPAS3, PER1, PER3, SIM1, and TEF were under-expressed. The downregulation of PER1 and TEF and upregulation of CLOCK correlated with increased BC risk in healthy women. Also, twenty-six miRNAs, including miR-10a, miR-21, miR-107, and miR-34, were identified as potential post-transcriptional regulators influenced by NSW. In conclusion, a panel of clock genes and circadian miRNAs are suggested as BC susceptibility biomarkers among night shift workers, supporting implications for risk stratification and early detection strategies. Full article
(This article belongs to the Special Issue Molecular Biomarkers of Occupational Exposure: Where Are We Now?)
Show Figures

Figure 1

20 pages, 1719 KB  
Article
Variances in the Expression Profile of Circadian Clock-Related Genes in Astrocytic Brain Tumors
by Rafał Staszkiewicz, Dawid Sobański, Wojciech Pulka, Dorian Gładysz, Marcin Gadzieliński, Damian Strojny and Beniamin Oskar Grabarek
Cancers 2024, 16(13), 2335; https://doi.org/10.3390/cancers16132335 - 26 Jun 2024
Cited by 6 | Viewed by 3071
Abstract
This study explores the role of circadian clock genes in the progression of astrocytic tumors, a prevalent type of brain tumor. The aim was to assess the expression patterns of these genes in relation to the tumor grade. Using microarray analysis, qRT-PCR, and [...] Read more.
This study explores the role of circadian clock genes in the progression of astrocytic tumors, a prevalent type of brain tumor. The aim was to assess the expression patterns of these genes in relation to the tumor grade. Using microarray analysis, qRT-PCR, and methylation-specific PCR, we examined gene expression, DNA methylation patterns, and microRNA interactions in tumor samples from 60 patients. Our results indicate that the expression of key circadian clock genes, such as clock circadian regulator (CLOCK), protein kinase AMP-activated catalytic subunit alpha 1 (PRKAA1), protein kinase AMP-activated catalytic subunit alpha 2 (PRKAA2), protein kinase AMP-activated non-catalytic subunit beta 1 (PRKAB1), protein kinase AMP-activated non-catalytic subunit beta 2 (PRKAB2), period circadian regulator 1 (PER1), period circadian regulator 2 (PER2) and period circadian regulator 3 (PER3), varies significantly with the tumor grade. Notably, increased CLOCK gene expression and protein levels were observed in higher-grade tumors. DNA methylation analysis revealed that the promoter regions of PER1-3 genes were consistently methylated, suggesting a mechanism for their reduced expression. Our findings also underscore the complex regulatory mechanisms involving miRNAs, such as hsa-miR-106-5p, hsa-miR-20b-5p, and hsa-miR-30d-3p, which impact the expression of circadian clock-related genes. This underscores the importance of circadian clock genes in astrocytic tumor progression and highlights their potential as biomarkers and therapeutic targets. Further research is needed to validate these results and explore their clinical implications. Full article
(This article belongs to the Special Issue Circadian Rhythms, Cancers and Chronotherapy)
Show Figures

Figure 1

22 pages, 1331 KB  
Review
The Role of MicroRNA, Long Non-Coding RNA and Circular RNA in the Pathogenesis of Polycystic Ovary Syndrome: A Literature Review
by Jenan Sh. Nasser, Noor Altahoo, Sayed Almosawi, Abrar Alhermi and Alexandra E. Butler
Int. J. Mol. Sci. 2024, 25(2), 903; https://doi.org/10.3390/ijms25020903 - 11 Jan 2024
Cited by 28 | Viewed by 6307
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine-metabolic disease in females of reproductive age, affecting 4–20% of pre-menopausal women worldwide. MicroRNAs (miRNAs) are endogenous, single-stranded, non-coding, regulatory ribonucleic acid molecules found in eukaryotic cells. Abnormal miRNA expression has been associated with several [...] Read more.
Polycystic ovary syndrome (PCOS) is the most common endocrine-metabolic disease in females of reproductive age, affecting 4–20% of pre-menopausal women worldwide. MicroRNAs (miRNAs) are endogenous, single-stranded, non-coding, regulatory ribonucleic acid molecules found in eukaryotic cells. Abnormal miRNA expression has been associated with several diseases and could possibly explain their underlying pathophysiology. MiRNAs have been extensively studied for their potential diagnostic, prognostic, and therapeutic uses in many diseases, such as type 2 diabetes, obesity, cardiovascular disease, PCOS, and endometriosis. In women with PCOS, miRNAs were found to be abnormally expressed in theca cells, follicular fluid, granulosa cells, peripheral blood leukocytes, serum, and adipose tissue when compared to those without PCOS, making miRNAs a useful potential biomarker for the disease. Key pathways involved in PCOS, such as folliculogenesis, steroidogenesis, and cellular adhesion, are regulated by miRNA. This also highlights their importance as potential prognostic markers. In addition, recent evidence suggests a role for miRNAs in regulating the circadian rhythm (CR). CR is crucial for regulating reproduction through the various functions of the hypothalamic-pituitary-gonadal (HPG) axis and the ovaries. A disordered CR affects reproductive outcomes by inducing insulin resistance, oxidative stress, and systemic inflammation. Moreover, miRNAs were demonstrated to interact with lncRNA and circRNAs, which are thought to play a role in the pathogenesis of PCOS. This review discusses what is currently understood about miRNAs in PCOS, the cellular pathways involved, and their potential role as biomarkers and therapeutic targets. Full article
(This article belongs to the Special Issue Molecular Studies in Endocrinology and Reproductive Biology)
Show Figures

Figure 1

20 pages, 1559 KB  
Review
Neuroinflammation and Neurodegenerative Diseases: How Much Do We Still Not Know?
by Carmela Rita Balistreri and Roberto Monastero
Brain Sci. 2024, 14(1), 19; https://doi.org/10.3390/brainsci14010019 - 23 Dec 2023
Cited by 24 | Viewed by 10366
Abstract
The term “neuroinflammation” defines the typical inflammatory response of the brain closely related to the onset of many neurodegenerative diseases (NDs). Neuroinflammation is well known, but its mechanisms and pathways are not entirely comprehended. Some progresses have been achieved through many efforts and [...] Read more.
The term “neuroinflammation” defines the typical inflammatory response of the brain closely related to the onset of many neurodegenerative diseases (NDs). Neuroinflammation is well known, but its mechanisms and pathways are not entirely comprehended. Some progresses have been achieved through many efforts and research. Consequently, new cellular and molecular mechanisms, diverse and conventional, are emerging. In listing some of those that will be the subject of our description and discussion, essential are the important roles of peripheral and infiltrated monocytes and clonotypic cells, alterations in the gut–brain axis, dysregulation of the apelinergic system, alterations in the endothelial glycocalyx of the endothelial component of neuronal vascular units, variations in expression of some genes and levels of the encoding molecules by the action of microRNAs (miRNAs), or other epigenetic factors and distinctive transcriptional factors, as well as the role of autophagy, ferroptosis, sex differences, and modifications in the circadian cycle. Such mechanisms can add significantly to understanding the complex etiological puzzle of neuroinflammation and ND. In addition, they could represent biomarkers and targets of ND, which is increasing in the elderly. Full article
(This article belongs to the Special Issue Advances in Neuroinflammation)
Show Figures

Figure 1

8 pages, 10060 KB  
Brief Report
Circadian Rhythm Does Not Affect the miRNA Cargo of Bovine Raw Milk Extracellular Vesicles
by Mara D. Saenz-de-Juano, Giulia Silvestrelli and Susanne E. Ulbrich
Int. J. Mol. Sci. 2023, 24(12), 10210; https://doi.org/10.3390/ijms241210210 - 16 Jun 2023
Cited by 9 | Viewed by 1942
Abstract
Extracellular vesicles (EVs) and their microRNA (miRNA) cargo have been proposed as possible mammary gland health biomarkers in cattle. However, throughout the day, the biologically active milk components, such as miRNAs, may change due to the dynamic nature of milk. The current study [...] Read more.
Extracellular vesicles (EVs) and their microRNA (miRNA) cargo have been proposed as possible mammary gland health biomarkers in cattle. However, throughout the day, the biologically active milk components, such as miRNAs, may change due to the dynamic nature of milk. The current study aimed to evaluate the circadian fluctuation of milk EVs miRNA cargo to assess the feasibility of milk EVs as future biomarkers for mammary gland health management. Milk from four healthy dairy cows was collected for four consecutive days in the two daily milking sessions in the morning and the evening. The isolated EVs were heterogeneous, intact, and carried the EV protein markers CD9, CD81, and TSG101, as shown by transmission electron microscopy and western blot. The miRNA sequencing results demonstrate that the abundance of miRNA cargo in milk EVs remained stable, unlike other milk components, such as somatic cells, that changed during milking sessions. These findings indicated that the miRNA cargo within milk EVs remains stable irrespective of the time of day, suggesting their potential utility as diagnostic markers for mammary gland health. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

22 pages, 1438 KB  
Review
Current Progress and Future Prospect of Wheat Genetics Research towards an Enhanced Nitrogen Use Efficiency
by Yun Zhao, Shahidul Islam, Zaid Alhabbar, Jingjuan Zhang, Graham O’Hara, Masood Anwar and Wujun Ma
Plants 2023, 12(9), 1753; https://doi.org/10.3390/plants12091753 - 25 Apr 2023
Cited by 11 | Viewed by 4030
Abstract
To improve the yield and quality of wheat is of great importance for food security worldwide. One of the most effective and significant approaches to achieve this goal is to enhance the nitrogen use efficiency (NUE) in wheat. In this review, a comprehensive [...] Read more.
To improve the yield and quality of wheat is of great importance for food security worldwide. One of the most effective and significant approaches to achieve this goal is to enhance the nitrogen use efficiency (NUE) in wheat. In this review, a comprehensive understanding of the factors involved in the process of the wheat nitrogen uptake, assimilation and remobilization of nitrogen in wheat were introduced. An appropriate definition of NUE is vital prior to its precise evaluation for the following gene identification and breeding process. Apart from grain yield (GY) and grain protein content (GPC), the commonly recognized major indicators of NUE, grain protein deviation (GPD) could also be considered as a potential trait for NUE evaluation. As a complex quantitative trait, NUE is affected by transporter proteins, kinases, transcription factors (TFs) and micro RNAs (miRNAs), which participate in the nitrogen uptake process, as well as key enzymes, circadian regulators, cross-talks between carbon metabolism, which are associated with nitrogen assimilation and remobilization. A series of quantitative genetic loci (QTLs) and linking markers were compiled in the hope to help discover more efficient and useful genetic resources for breeding program. For future NUE improvement, an exploration for other criteria during selection process that incorporates morphological, physiological and biochemical traits is needed. Applying new technologies from phenomics will allow high-throughput NUE phenotyping and accelerate the breeding process. A combination of multi-omics techniques and the previously verified QTLs and molecular markers will facilitate the NUE QTL-mapping and novel gene identification. Full article
(This article belongs to the Special Issue Cereal Crop Breeding)
Show Figures

Figure 1

16 pages, 2454 KB  
Review
Recent Research Advances of Small Regulatory RNA in Fruit Crops
by Fatima Zaman, Meng Zhang, Rong Wu, Qinglin Zhang, Zhengrong Luo and Sichao Yang
Horticulturae 2023, 9(3), 294; https://doi.org/10.3390/horticulturae9030294 - 22 Feb 2023
Cited by 7 | Viewed by 4268
Abstract
MicroRNAs (miRNAs) are endogenous noncoding small RNAs containing 21–24 nucleotides (nt) that regulate gene expression precisely and efficiently at the posttranscriptional level through the negative regulation of target messenger RNA (mRNA) expression, such as translational inhibition or degradation. Likewise, as a controlling element, [...] Read more.
MicroRNAs (miRNAs) are endogenous noncoding small RNAs containing 21–24 nucleotides (nt) that regulate gene expression precisely and efficiently at the posttranscriptional level through the negative regulation of target messenger RNA (mRNA) expression, such as translational inhibition or degradation. Likewise, as a controlling element, miRNA itself is regulated by a variety of factors when performing its basic purposes, such as SNP detection, miRNA purging, methylation, and the circadian clock in model crops. In current years, miRNA-mediated controls have been intensely investigated in horticultural plants, leading to the discovery of numerous novel mechanisms that exhibit significantly greater mechanistic complexity and distinctive regulatory properties than those explored in model species. In fruit crops, miRNAs play a crucial role corresponding to various biological, metabolic functions and environmental challenges, including growth, expansion, response to biotic and abiotic stress, signaling of growth hormones, and the regulation of secondary product metabolism. In this study, we appraisal the current improvement of small regulatory RNA research in fruit crops, emphasizing miRNA mechanisms and their correlation with key trait rule. Considering that miRNAs engaged in the regulation of all aspects of fruit tree life activities, we focus here on their biosynthesis, target genes, function and regulatory network, as well as the mechanistic connection among them, to provide a theoretic base and breakthrough for upcoming exploration on miRNAs in fruit plants. Full article
Show Figures

Figure 1

21 pages, 4090 KB  
Article
The microRNA Cargo of Human Vaginal Extracellular Vesicles Differentiates Parasitic and Pathobiont Infections from Colonization by Homeostatic Bacteria
by Paula Fernandes Tavares Cezar-de-Mello, Stanthia Ryan and Raina N. Fichorova
Microorganisms 2023, 11(3), 551; https://doi.org/10.3390/microorganisms11030551 - 21 Feb 2023
Cited by 6 | Viewed by 3950
Abstract
The disturbed vaginal microbiome defined as bacterial vaginosis (BV) and the parasitic infection by Trichomonas vaginalis (TV), the most common non-viral sexually transmitted pathogen, have well-established adverse effects on reproductive outcomes and susceptibility to infection and cancer. Molecular mechanisms underlying these associations and [...] Read more.
The disturbed vaginal microbiome defined as bacterial vaginosis (BV) and the parasitic infection by Trichomonas vaginalis (TV), the most common non-viral sexually transmitted pathogen, have well-established adverse effects on reproductive outcomes and susceptibility to infection and cancer. Molecular mechanisms underlying these associations and the failure of antibiotic therapy to mitigate adverse consequences are not fully elucidated. In an in vitro human vaginal colonization model, we tested the hypothesis that responses to TV and/or BV-bacteria will disrupt the micro(mi)RNA cargo of extracellular vesicles (EV) with the potential to modify pathways associated with reproductive function, cancer, and infection. miRNAs were quantified by HTG EdgeSeq. MiRNA differential expression (DE) was established in response to TV, the BV signature pathobiont Prevotella bivia and a homeostatic Lactobacillus crispatus with adjusted p < 0.05 using R. Validated gene targets, pathways, protein-protein interaction networks, and hub genes were identified by miRWalk, STRING, Cytoscape, and CytoHubba. In contrast to L. crispatus, TV and the BV pathobiont dysregulated a massive number of EV-miRNAs, over 50% shared by both pathogens. Corresponding target pathways, protein interaction clusters and top hub genes were related to cancer, infectious disease, circadian rhythm, steroid hormone signaling, pregnancy, and reproductive tissue terms. These data support the emerging concept that bacteria and parasitic eukaryotes disturbing the human vaginal microbiome may impact reproductive health through EV-miRNA dysregulation. Full article
(This article belongs to the Special Issue Extracellular Vesicles in Human Infectious Diseases)
Show Figures

Graphical abstract

Back to TopTop