Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = cinnamon extraction oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 7201 KiB  
Article
Carnauba Wax Coatings Enriched with Essential Oils or Fruit By-Products Reduce Decay and Preserve Postharvest Quality in Organic Citrus
by Lorena Martínez-Zamora, Rosa Zapata, Marina Cano-Lamadrid and Francisco Artés-Hernández
Foods 2025, 14(15), 2616; https://doi.org/10.3390/foods14152616 - 25 Jul 2025
Viewed by 370
Abstract
This research analyzes the innovative development of carnauba wax coatings enriched with essential oils (EOs: lemon, orange, grapefruit, clove, oregano, and cinnamon) or fruit by-products (FBPs: avocado, tomato, carrot, orange, lemon, and grapefruit) to improve postharvest preservation of organic oranges and lemons. Six [...] Read more.
This research analyzes the innovative development of carnauba wax coatings enriched with essential oils (EOs: lemon, orange, grapefruit, clove, oregano, and cinnamon) or fruit by-products (FBPs: avocado, tomato, carrot, orange, lemon, and grapefruit) to improve postharvest preservation of organic oranges and lemons. Six EOs and six FBPs were evaluated for total phenolic content (TPC) and in vitro antifungal activity against Penicillium digitatum. Based on results, grapefruit, oregano, and clove EOs were selected for lemons, while avocado, orange, and grapefruit FBPs were selected for oranges. An in vivo test at 20 °C for 15 days with carnauba wax coatings assessed antifungal performance. Clove EO and avocado FBP showed strong in vitro inhibition and consistent hyphal suppression (~100 and ~82%, respectively). In vivo, coatings with grapefruit EO and avocado FBP significantly reduced fungal decay and sporulation (~75%) in lemons and oranges, respectively. Coated fruits also retained weight losses by ~25% compared to uncoated ones. These findings suggest that phenolic-rich natural extracts, especially from agro-industrial residues like avocado peels, offer a promising and sustainable strategy for postharvest citrus disease control. Further studies should test coating effectiveness in large-scale trials under refrigeration combined with other preservation strategies. Full article
Show Figures

Graphical abstract

44 pages, 10756 KiB  
Review
The Road to Re-Use of Spice By-Products: Exploring Their Bioactive Compounds and Significance in Active Packaging
by Di Zhang, Efakor Beloved Ahlivia, Benjamin Bonsu Bruce, Xiaobo Zou, Maurizio Battino, Dragiša Savić, Jaroslav Katona and Lingqin Shen
Foods 2025, 14(14), 2445; https://doi.org/10.3390/foods14142445 - 11 Jul 2025
Viewed by 717
Abstract
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit [...] Read more.
Spice by-products, often discarded as waste, represent an untapped resource for sustainable packaging solutions due to their unique, multifunctional, and bioactive profiles. Unlike typical plant residues, these materials retain diverse phytochemicals—including phenolics, polysaccharides, and other compounds, such as essential oils and vitamins—that exhibit controlled release antimicrobial and antioxidant effects with environmental responsiveness to pH, humidity, and temperature changes. Their distinctive advantage is in preserving volatile bioactives, demonstrating enzyme-inhibiting properties, and maintaining thermal stability during processing. This review encompasses a comprehensive characterization of phytochemicals, an assessment of the re-utilization pathway from waste to active materials, and an investigation of processing methods for transforming by-products into films, coatings, and nanoemulsions through green extraction and packaging film development technologies. It also involves the evaluation of their mechanical strength, barrier performance, controlled release mechanism behavior, and effectiveness of food preservation. Key findings demonstrate that ginger and onion residues significantly enhance antioxidant and antimicrobial properties due to high phenolic acid and sulfur-containing compound concentrations, while cinnamon and garlic waste effectively improve mechanical strength and barrier attributes owing to their dense fiber matrix and bioactive aldehyde content. However, re-using these residues faces challenges, including the long-term storage stability of certain bioactive compounds, mechanical durability during scale-up, natural variability that affects standardization, and cost competitiveness with conventional packaging. Innovative solutions, including encapsulation, nano-reinforcement strategies, intelligent polymeric systems, and agro-biorefinery approaches, show promise for overcoming these barriers. By utilizing these spice by-products, the packaging industry can advance toward a circular bio-economy, depending less on traditional plastics and promoting environmental sustainability in light of growing global population and urbanization trends. Full article
Show Figures

Figure 1

67 pages, 5184 KiB  
Review
Recent Advances on the Analysis and Biological Functions of Cinnamaldehyde and Its Derivatives
by Roghayeh Karimirad, Baskaran Stephen Inbaraj and Bing-Huei Chen
Antioxidants 2025, 14(7), 765; https://doi.org/10.3390/antiox14070765 - 22 Jun 2025
Viewed by 1002
Abstract
Natural antioxidants isolated from fruits, vegetables, herbs and spices have drawn great attention owing to their numerous health-promoting effects. Cinnamaldehyde (CA), an abundant antioxidant in cinnamon spice, has been explored more intensely over the last decade as it has been demonstrated to be [...] Read more.
Natural antioxidants isolated from fruits, vegetables, herbs and spices have drawn great attention owing to their numerous health-promoting effects. Cinnamaldehyde (CA), an abundant antioxidant in cinnamon spice, has been explored more intensely over the last decade as it has been demonstrated to be effective and safe in the treatment of various diseases. Structurally, a substituted aldehyde group with an unsaturated carbon–carbon double bond with two electrophilic sites for reaction with receptors and enzymes can exert diverse biological effects. Although cinnamon has been traditionally used as a spice and herbal remedy, many studies investigating the most dominant functional compound, CA, and its biological activities have been reported in recent years. This review article intends to present an overview of recent advances in analytical methods and the application of cinnamon extract/oil, CA and its derivatives, CA-polymer/biomolecule conjugates and CA micro/nanosystems in alleviating various chronic diseases including cancer, diabetes, obesity, cardiovascular disease, neurological disorders, osteoarthritis and osteoporosis. Both in vitro and in vivo studies have demonstrated the improved pharmacological efficiency of CA and its derivatives as well as their polymer/drug/biomolecule conjugates and micro/nanoencapsulated forms, suggesting a possible alternative natural therapy and adjuvant therapy with conventional drugs via a synergistic process. Full article
(This article belongs to the Special Issue Natural Antioxidants in Pharmaceuticals and Dermatocosmetology)
Show Figures

Figure 1

20 pages, 1227 KiB  
Article
A Mixture of Free and Microencapsulated Essential Oils Combined with Turmeric and Tannin in the Diet of Dairy Cows: Effects on Productive Efficiency and Animal Health
by Emeline Pizzolatto de Mello, Miklos Maximiliano Bajay, Tainara Leticia dos Santos, Renato Santos de Jesus, Guilherme Luiz Deolindo, Luisa Nora, Mario Augusto Tortelli, Gilnei Bruno da Silva, Daiane Manica, Margarete Dulce Bagatini, Francisco Machado and Aleksandro S. da Silva
Animals 2025, 15(11), 1588; https://doi.org/10.3390/ani15111588 - 29 May 2025
Viewed by 450
Abstract
This study aimed to evaluate whether the addition of a phytobiotic additive formulated based on cinnamon and oregano essential oils (50% free and 50% microencapsulated) combined with turmeric extract and tannins to the diet of cows has beneficial effects on health, productivity, and [...] Read more.
This study aimed to evaluate whether the addition of a phytobiotic additive formulated based on cinnamon and oregano essential oils (50% free and 50% microencapsulated) combined with turmeric extract and tannins to the diet of cows has beneficial effects on health, productivity, and milk quality. In a completely randomized design, eighteen Jersey cows were used in a compost barn system over 45 days. The cows were divided into two homogeneous groups: one control (without additive; n = 9) and another treatment (with a phytobiotic at a dose of 2 g/cow/day; n = 9). The diet was formulated based on corn silage, hay and concentrate for daily 30 L/cow production. Blood and milk samples were collected at 15-day intervals. There was a treatment × day interaction: cows that consumed the phytobiotic additive produced a more significant amount of milk at days 14, 17, 18, 30, 39 and 45 (p ≤ 0.05). When we corrected milk production for fat percentage, we observed higher milk production in the cows that consumed phytobiotics compared to the control during the experimental period (p = 0.01). The feed intake of cows fed phytobiotics was lower (p = 0.01). Thus, feed efficiency was better in cows that consumed phytogenics. There was a higher percentage of fat in the milk of cows that consumed phytobiotics and a higher amount of polyunsaturated fatty acids compared to the control (p = 0.02). There was an increase in total protein and globulin levels (p = 0.01), which may be associated with the interaction of the antimicrobial, antioxidant, and immunomodulatory properties of the phytobiotic additive. An increase in immunoglobulins (p = 0.01) and a reduction in acute-phase proteins (p ≤ 0.05) were observed in the blood of cows in the phytobiotic group. Lower levels of TNF-α, IL-1β and IL-6 and higher levels of IL-10 in the serum of cows that consumed the phytoactive (p = 0.01) reaffirm the anti-inflammatory effect of the additive. Lower levels of lipid peroxidation (TBARS) and reactive oxygen species (ROS) were observed in the serum of cows in the phytobiotic group. Greater catalase and superoxide dismutase activity was observed in cows that consumed the phytogenic (p < 0.01). Therefore, it can be concluded that the additive in question has antioxidant, immunological, and anti-inflammatory actions and has the potential to improve productive performance when corrected for milk fat. Full article
Show Figures

Figure 1

26 pages, 381 KiB  
Article
Potential Use of Selected Natural Anti-Microbials to Control Listeria monocytogenes in Vacuum Packed Beef Burgers and Their Impact on Quality Attributes
by Angelos Papadochristopoulos, Joseph P. Kerry, Narelle Fegan, Catherine M. Burgess and Geraldine Duffy
Microorganisms 2025, 13(4), 910; https://doi.org/10.3390/microorganisms13040910 - 16 Apr 2025
Cited by 1 | Viewed by 571
Abstract
This study assessed the potential for natural anti-microbials to control Listeria monocytogenes in vacuum packed beef burgers. Minimum inhibitory and bactericidal concentration (MIC and MBC) results for natural anti-microbials (carvacrol; essential oils of thyme, rosemary, clove and cinnamon; hop extract; cranberry extract; cranberry [...] Read more.
This study assessed the potential for natural anti-microbials to control Listeria monocytogenes in vacuum packed beef burgers. Minimum inhibitory and bactericidal concentration (MIC and MBC) results for natural anti-microbials (carvacrol; essential oils of thyme, rosemary, clove and cinnamon; hop extract; cranberry extract; cranberry pomace; propolis extract; and chitosan sourced from both shrimp and mushroom) were used to select agents (n = 6) showing the most promise against L. monocytogenes. These agents, including chitosan from shrimp and mushroom (a novel source), and cranberry extract, were then tested against L. monocytogenes in vacuum packed beef burgers during chilled storage (3 ± 1 °C, 16 days). Following storage (16 d), the number of L. monocytogenes in beef burgers treated with chitosan (2.5%), regardless of source, was significantly lower (p < 0.05) (1.2 to 1.6 log10CFU g−1) than in the control samples, while smaller reductions (0.5 log10 CFU g−1; p < 0.05) were noted in samples with cranberry extract (0.625%). While chitosan had no significant impact on HunterLab colour measurements during chilled storage, cranberry extract significantly impacted the colour (p < 0.05), resulting in lower L*, a*, and b* values. Observational assessment of colour, odour and the overall quality of the raw meat on opening the pack found that beef burgers with added chitosan (both sources) were acceptable, while those with added cranberry extract received an overall quality score of approximately 5.4, which is above the acceptability threshold (5/10). Overall, the study showed the potential of chitosan to control L. monocytogenes in beef burgers, and the advantage of this agent sourced from mushrooms is discussed. Full article
(This article belongs to the Special Issue Epidemiology, Prevention and Control of Foodborne Microbial Pathogens)
30 pages, 1994 KiB  
Review
Phytochemistry and Anti-Inflammatory and Antioxidant Activities of Cinnamomum osmophloeum and Its Bioactive Constituents: A Review
by Renan Oliveira Silva Damasceno, João Lucas Silva Pinheiro, Lorena Duarte da Silva, Lucas Henrique Marques Rodrigues, Jeremias Justo Emídio, Tamires Cardoso Lima and Damião Pergentino de Sousa
Plants 2025, 14(4), 562; https://doi.org/10.3390/plants14040562 - 12 Feb 2025
Cited by 1 | Viewed by 1531
Abstract
Cinnamomum osmophloeum, commonly known as indigenous cinnamon, is a tree species native to Taiwan’s hardwood forests. It has been extensively investigated for its chemical composition and bioactivities. Several reports have shown that C. osmophloeum leaves are rich in aromatic oils, which are [...] Read more.
Cinnamomum osmophloeum, commonly known as indigenous cinnamon, is a tree species native to Taiwan’s hardwood forests. It has been extensively investigated for its chemical composition and bioactivities. Several reports have shown that C. osmophloeum leaves are rich in aromatic oils, which are grouped into various chemotypes based on their major constituents. Components of the volatile oils included phenylpropanoids, monoterpenoids, sesquiterpenoids, phenols, coumarins, and other miscellaneous compounds. In addition, other secondary metabolites previously identified in this species included flavonol glycosides, phenolic acids, lignans, proanthocyanidins, and cyclopropanoids. C. osmophloeum is widely recognized for its medicinal and industrial applications, particularly its essential oils. In general, essential oils exhibit remarkable anti-inflammatory and antioxidant actions, enabling them to modulate key inflammatory mediators and neutralize free radicals. This review explored the phytochemical composition of the essential oils and extracts from C. osmophloeum as well as therapeutic potential of this species, focusing on the action mechanisms and clinical potential. We hope that this review will contribute to a better understanding of the biological effects of this plant and its potential applications in the management of conditions associated with inflammation and oxidative stress. Full article
Show Figures

Figure 1

27 pages, 6418 KiB  
Review
Therapeutic Potential of Cinnamon Oil: Chemical Composition, Pharmacological Actions, and Applications
by Jiageng Guo, Xinya Jiang, Yu Tian, Shidu Yan, Jiaojiao Liu, Jinling Xie, Fan Zhang, Chun Yao and Erwei Hao
Pharmaceuticals 2024, 17(12), 1700; https://doi.org/10.3390/ph17121700 - 17 Dec 2024
Cited by 7 | Viewed by 5358
Abstract
Cinnamon oil, an essential oil extracted from plants of the genus Cinnamomum, has been highly valued in ancient Chinese texts for its medicinal properties. This review summarizes the chemical composition, pharmacological actions, and various applications of cinnamon oil, highlighting its potential in medical [...] Read more.
Cinnamon oil, an essential oil extracted from plants of the genus Cinnamomum, has been highly valued in ancient Chinese texts for its medicinal properties. This review summarizes the chemical composition, pharmacological actions, and various applications of cinnamon oil, highlighting its potential in medical and industrial fields. By systematically searching and evaluating studies from major scientific databases including Web of Science, PubMed, and ScienceDirect, we provide a comprehensive analysis of the therapeutic potential of cinnamon oil. Research indicates that cinnamon oil possesses a wide range of pharmacological activities, covering antibacterial, anti-inflammatory, anti-tumor, and hypoglycemic effects. It is currently an active ingredient in over 500 patented medicines. Cinnamon oil has demonstrated significant inhibitory effects against various pathogens comprising Staphylococcus aureus, Salmonella, and Escherichia coli. Its mechanisms of action include disrupting cell membranes, inhibiting ATPase activity, and preventing biofilm formation, suggesting its potential as a natural antimicrobial agent. Its anti-inflammatory properties are evidenced by its ability to suppress inflammatory markers like vascular cell adhesion molecules and macrophage colony-stimulating factors. Moreover, cinnamon oil has shown positive effects in lowering blood pressure and improving metabolism in diabetic patients by enhancing glucose uptake and increasing insulin sensitivity. The main active components of cinnamon oil include cinnamaldehyde, cinnamic acid, and eugenol, which play key roles in its pharmacological effects. Recently, the applications of cinnamon oil in industrial fields, including food preservation, cosmetics, and fragrances, have also become increasingly widespread. Despite the extensive research supporting its medicinal value, more clinical trials are needed to determine the optimal dosage, administration routes, and possible side effects of cinnamon oil. Additionally, exploring the interactions between cinnamon oil and other drugs, as well as its safety in different populations, is crucial. Considering the current increase in antibiotic resistance and the demand for sustainable and effective medical treatments, this review emphasizes the necessity for further research into the mechanisms and safety of cinnamon oil to confirm its feasibility as a basis for new drug development. In summary, as a versatile natural product, cinnamon oil holds broad application prospects and is expected to play a greater role in future medical research and clinical practice. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

23 pages, 1192 KiB  
Review
Essential Oils, Chemical Compounds, and Their Effects on the Gut Microorganisms and Broiler Chicken Production: Review
by Jaime Salinas-Chavira and Hugo Brígido Barrios-García
Agriculture 2024, 14(11), 1864; https://doi.org/10.3390/agriculture14111864 - 23 Oct 2024
Cited by 3 | Viewed by 2654
Abstract
The influence of essential oils (EOs) on gut microorganisms and broiler chicken production was evaluated through the systematic analysis of scientific reports. The present study was focused on the EO antimicrobial activity oriented toward broiler chicken production. There is a great biodiversity of [...] Read more.
The influence of essential oils (EOs) on gut microorganisms and broiler chicken production was evaluated through the systematic analysis of scientific reports. The present study was focused on the EO antimicrobial activity oriented toward broiler chicken production. There is a great biodiversity of plants, and various compounds with different biological activity have been isolated from them. The EO molecules extracted from plants have been employed recently in livestock feeding. Microbial resistance to antibiotics has led to their reduced use in animal production. To maintain competitive broiler chicken production with reduced antibiotic use, EOs have been explored. In broiler chickens, EOs are supplemented in the diet or drinking water to enhance weight gain and feed efficiency and reduce mortality. EOs are an alternative to antibiotics, and their research is dynamic in poultry production. The present review focused on the antimicrobial activity oriented to broiler chicken production. The search for information in databases used the terms “broiler chicken”, “essential oils” and combined them with the name of the plants. It was detected that the EO of Cinnamon bark or its compound cinnamaldehyde could reduce pathogenic bacteria in the digestive tract and improve intestinal morphology. Essential oils from Cymbopogon spp. and Origanum vulgare had an effect mainly against Gram-negative bacteria, such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella spp., and others, and against some Gram-positive bacteria, such as Staphylococcus spp., or yeasts, such as Candida albicans. Essential oils of Cymbopogon citratus acted against Salmonella. Citrus japonica affected Bacillus subtilis, Escherichia coli, and Salmonella typhimurium. Origanum EO improved the antioxidant status and gut health of chickens, while EO of Eucalyptus with carvacrol, thymol, and Citrus lemon improved the productive performance of broiler chickens; also, Citrus spp. reduced the number of oocysts of Eimeria and showed activity against Listeria monocytogenes, Staphylococcus aureus, and Pseudomonas aeruginosa. It is concluded that EOs are a sustainable alternative to antibiotics in the production of broiler chickens. Future research includes the standardization of EO from different plants and active molecules, as well as the interaction with other feed additives and their impact on the health and production of broiler chickens. In addition, safety for consumers and the environment must be considered. Full article
(This article belongs to the Special Issue Role of Gut Microbiota in Farm Animal Health)
Show Figures

Figure 1

15 pages, 1549 KiB  
Article
Antimicrobial Activity against Cronobacter of Plant Extracts and Essential Oils in a Matrix of Bacterial Cellulose
by Lidia Stasiak-Różańska, Anna Berthold-Pluta, Tamara Aleksandrzak-Piekarczyk, Anna Koryszewska-Bagińska and Monika Garbowska
Polymers 2024, 16(16), 2316; https://doi.org/10.3390/polym16162316 - 16 Aug 2024
Cited by 2 | Viewed by 1695
Abstract
Bacterial cellulose (BC) is a biodegradable polymer resembling paper after being dried. It finds a growing number of applications in many branches of industry and in medicine. In the present study, BC was produced after Gluconacetobacter hansenii ATCC 23769 strain culture and used [...] Read more.
Bacterial cellulose (BC) is a biodegradable polymer resembling paper after being dried. It finds a growing number of applications in many branches of industry and in medicine. In the present study, BC was produced after Gluconacetobacter hansenii ATCC 23769 strain culture and used as a matrix for plant extracts (tulsi, brahmi, lemon, blackberry, nettle root, and nettle leave) and essential oils (cinnamon, sage, clove, mint, thyme, lemongrass, rosemary, lemon, anise, tea tree, lime, grapefruit, and tangerine), and the antimicrobial properties of these biomaterials was determined. The growth-inhibiting effects of plant extracts and essential oils combined with BC were analyzed against five Cronobacter species isolated from food matrix and two reference strains from the ATCC (513229 and 29544). Additional analyses were conducted for BC water activity and for its capability to absorb biologically active plant compounds. The cellulose matrix with a 50% extract from brahmi was found to effectively inhibit the growth of the selected Cronobacter strains. The other plant water extracts did not show any antimicrobial activity against the tested strains. It was demonstrated that BC soaked with thyme essential oil was characterized with the strongest antimicrobial activity in comparison to the other tested EOs. These study results indicate the feasibility of deploying BC impregnated with natural plant components as an active and environmentally-friendly packaging material. Full article
(This article belongs to the Special Issue Polymers in Food Technology and Food Packaging)
Show Figures

Figure 1

21 pages, 4632 KiB  
Article
Eco-Friendly Preservation of Pharaonic Wooden Artifacts using Natural Green Products
by Neveen S. Geweely, Amira M. Abu Taleb, Paola Grenni, Giulia Caneva, Dina M. Atwa, Jasper R. Plaisier and Shimaa Ibrahim
Appl. Sci. 2024, 14(12), 5023; https://doi.org/10.3390/app14125023 - 9 Jun 2024
Cited by 5 | Viewed by 2211
Abstract
The biodeterioration of wooden cultural heritage is a severe problem worldwide and fungi are the main deteriorating agents. The identification of effective natural products, safer for humans and the environment, is a current challenge. Ten deteriorated archaeological objects (a wooden statue of a [...] Read more.
The biodeterioration of wooden cultural heritage is a severe problem worldwide and fungi are the main deteriorating agents. The identification of effective natural products, safer for humans and the environment, is a current challenge. Ten deteriorated archaeological objects (a wooden statue of a seated man, an anthropoid wooden coffin with a cartonnage mummy of Nespathettawi, and a wooden box of Padimen’s son), stored at the Egyptian museum in Cairo, were considered here. The wood species of the three most deteriorated objects were previously identified as Acacia nilotica, Ficus sycomorus, and Tamarix gennessarensis. Twenty-six fungal species were isolated and identified from the wooden objects and the four most frequent species belonged to the genus Aspergillus. Fourteen fungal species among those isolated showed the greatest biodeterioration activity on the experimental wood blocks of the archaeological objects. The antifungal activities of several eco-friendly plant essential oils (from cinnamon, eucalyptus, frankincense, geranium, lavender, lemongrass, menthe, rosemary, tea tree, and thyme) and plant extracts (from basil, eucalyptus, henna, melia, and teak) were tested against the fungal species with the greatest biodeterioration activity. The essential oils (Eos) were more effective than the plant extracts. Thyme EO, followed by geranium and cinnamon ones, was the most active (minimum inhibitory concentrations: 0.25–1 µL/mL). These EO; also showed inhibitory effects on the enzymatic activities (cellulase, amylase, and protease) of the four most dominant fungal species. Thymol and p-cymene were the two main components of thyme oil, while geraniol and beta-citronellol were those of geranium oil; eugenol and caryophyllene were those of the cinnamon EO. Thyme oil applied to the most deteriorated experimental aged A. nilotica wooden cubes inoculated with the four highly frequent fungal species was effective in wood preservation. Moreover, no significant interference was observed in the wood before and after thyme treatment. Thyme oil seems to be a promising eco-friendly antifungal agent for the preservation of archaeological wooden artefacts. Full article
(This article belongs to the Section Applied Microbiology)
Show Figures

Figure 1

13 pages, 4627 KiB  
Article
Cinnamon Oil-Loaded Nanoliposomes with Potent Antibacterial and Antibiofilm Activities
by Neveen M. Ellboudy, Bassma H. Elwakil, Marwa M. Shaaban and Zakia A. Olama
Molecules 2023, 28(11), 4492; https://doi.org/10.3390/molecules28114492 - 1 Jun 2023
Cited by 23 | Viewed by 3007
Abstract
Despite recent scientific advances, the global load of bacterial disease remains high and has been established against a backdrop of increasing antimicrobial resistance. Therefore, there is a pressing need for highly effective and natural antibacterial agents. In the present work, the antibiofilm effect [...] Read more.
Despite recent scientific advances, the global load of bacterial disease remains high and has been established against a backdrop of increasing antimicrobial resistance. Therefore, there is a pressing need for highly effective and natural antibacterial agents. In the present work, the antibiofilm effect provided by essential oils was evaluated. Of these, cinnamon oil extract showed potent antibacterial and antibiofilm activities against Staphylococcus aureus at an MBEC of 75.0 µg/mL. It was revealed that benzyl alcohol, 2-propenal-3-phenyl, hexadecenoic acid, and oleic acid were the major components of the tested cinnamon oil extract. In addition, the interaction between the cinnamon oil and colistin showed a synergistic effect against S. aureus. Cinnamon oil that had been combined with colistin was encapsulated by liposomes to enhance the essential oil’s chemical stability, demonstrating a particle size of 91.67 nm, a PDI of 0.143, a zeta potential of −0.129 mV, and an MBEC of 50.0 µg/mL against Staphylococcus aureus. Scanning electron microscopy was employed to observe the morphological changes in the Staphylococcus aureus biofilm that was treated with the encapsulated cinnamon oil extract/colistin. As a natural and safe option, cinnamon oil exhibited satisfactory antibacterial and antibiofilm performance. The application of liposomes further improved the stability of the antibacterial agents and extended the essential oil release profile. Full article
(This article belongs to the Special Issue Drug Development Inspired by Natural Products II)
Show Figures

Figure 1

12 pages, 281 KiB  
Article
A Comprehensive Analysis of Cinnamon, Flaxseed, and Lemon Seed Essential Oils’ Effects on In Vitro Gas Formation and Nutrient Degradability in Diets
by Maghsoud Besharati, Valiollah Palangi, Masoumeh Niazifar, Selim Esen and Maximilian Lackner
Fermentation 2023, 9(6), 504; https://doi.org/10.3390/fermentation9060504 - 24 May 2023
Cited by 1 | Viewed by 1999
Abstract
This study aimed to assess the impact of essential oils (EOs) on in vitro gas formation and the degradability of dairy and beef cattle diets. This study also aimed to investigate the effects of different types of EOs on nutrient utilization and rumen [...] Read more.
This study aimed to assess the impact of essential oils (EOs) on in vitro gas formation and the degradability of dairy and beef cattle diets. This study also aimed to investigate the effects of different types of EOs on nutrient utilization and rumen microbial activity. The current study was conducted using a fully randomized design consisting of eight experimental treatments, including two control treatments without any additives, and treatments with cinnamon essential oil (CEO), flaxseed essential oil (FEO), and lemon seed essential oil (LEO) at a concentration of 60 mg/kg fresh mass. Two control treatments were used, one with alfalfa silage and dairy concentrate (DC, CON-DC) and the other with alfalfa silage and fattening concentrate (FC, CON-FC). Gas formation, dry matter (DM) digestibility, crude protein (CP) digestibility, effective degradability (ED), and soluble fractions of DM and organic matter (OM) were evaluated. CEO had a substantial effect on gas formation (p < 0.05). When EOs were added to the diets, they increased dry matter digestibility after 24 h of incubation as compared to control treatments. After 24 h of incubation, FCCEO and FCFEO had the highest CP digestibility among the diets. FCLEO considerably enhanced ED, as well as the soluble fraction of DM (a) at a passage rate of 2% per hour. Treatment with FCCEO resulted in a significant increase in soluble fractions compared to the control diets. At a passage rate of 2% h, DCCEO had the maximum ED value. When EOs were introduced to the diet, they dramatically decreased the insoluble portion of CP (b). Compared to the control treatments, gas production was significantly lower in the presence of LEO (FCLEO; p < 0.05). The addition of EOs to cattle diets may increase nutrient utilization and enhance rumen microbial activity. EOs extracted from lemon seeds (at a dose of 60 mg/kg of diet) lowered gas production in both dairy cattle and fattening diets. Full article
(This article belongs to the Section Industrial Fermentation)
10 pages, 2070 KiB  
Article
Plant Extracts Control In Vitro Growth of Disease-Causing Fungi in Chayote
by Edgar García-Ramírez, Adriana Contreras-Oliva, Josafhat Salinas-Ruiz, Gabriela Hernández-Ramírez, José Luis Spinoso-Castillo and Saira Itzel Colmenares Cuevas
Plants 2023, 12(9), 1800; https://doi.org/10.3390/plants12091800 - 27 Apr 2023
Cited by 5 | Viewed by 3387
Abstract
The use of agrochemicals has caused environmental problems and toxicity to humans, so natural alternatives for disease control during harvest and postharvest have been evaluated. The aim of this study was to evaluate cinnamon essential oil, neem oil, and black sapote fruit extract [...] Read more.
The use of agrochemicals has caused environmental problems and toxicity to humans, so natural alternatives for disease control during harvest and postharvest have been evaluated. The aim of this study was to evaluate cinnamon essential oil, neem oil, and black sapote fruit extract for in vitro inhibition of fungi isolated from chayote fruit. The extracts were applied at 300, 350, and 400 ppm in Petri dishes and the mycelial growth of Fusarium oxysporum, Fusarium solani, Goetrichum sp., and Phytophthora capsici was evaluated for 7 days, and the percentage of mycelial growth inhibition per day was calculated. Cinnamon oil showed a fungicidal effect at all concentrations. Neem oil at 400 ppm showed a 42.3% reduction in the growth of F. solani and 27.8% reduction in the growth of F. oxysporum, while at 350 ppm it inhibited the mycelial growth of Phytophthora capsici by 53.3% and of Goetrichum sp. by 20.9%; finally, the black sapote extract at 400 ppm inhibited 21.9–28.6% of the growth of all fungi. The growth of postharvest fungi on chayote fruit could be prevented or reduced by applying the plant extracts evaluated at adequate concentrations. Full article
(This article belongs to the Special Issue Research of Bioactive Substances in Plant Extracts II)
Show Figures

Figure 1

16 pages, 4467 KiB  
Article
Citrous Lime—A Functional Reductive Booster for Oil-Mediated Green Synthesis of Bioactive Silver Nanospheres for Healthcare Clothing Applications and Their Eco-Mapping with SDGs
by Nasir Sarwar, Muhammad Shahzad Zafar, Usama Bin Humayoun, Suhyeon Kim, Syed Waqas Ahmad, Yong Ho Kim and Dae Ho Yoon
Molecules 2023, 28(6), 2802; https://doi.org/10.3390/molecules28062802 - 20 Mar 2023
Cited by 1 | Viewed by 2836
Abstract
Silver nanoparticles (Ag-NPs) are most effective against pathogens and have widely been studied as antibacterial agents in commodity clothing, medical textile, and other hygiene products. However, prolonged utilization of silver and rapid mutation in bacterium stains has made them resistant to conventional silver [...] Read more.
Silver nanoparticles (Ag-NPs) are most effective against pathogens and have widely been studied as antibacterial agents in commodity clothing, medical textile, and other hygiene products. However, prolonged utilization of silver and rapid mutation in bacterium stains has made them resistant to conventional silver agents. On the other hand, strict compliance against excessive utilization of toxic reagents and the current sustainability drive is forcing material synthesis toward green routes with extended functionality. In this study, we proposed an unprecedented chemical-free green synthesis of bioactive Ag-NPs without the incorporation of any chemicals. Cinnamon essential oil (ECO) was used as a bio-reducing agent with and without the mediation of lime extract. A rapid reaction completion with better shape and size control was observed in the vicinity of lime extract when incorporated into the reaction medium. The interaction of natural metabolites and citrus compounds with nanoparticles was established using Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The application of as-prepared nanoparticles on textiles encompasses extended bioactivity to treated fabric with infused easy-care performance. To the best of our knowledge, this is the first reported instance of utilizing bioactive silver nanoparticles as a functional finish, both as an antimicrobial and as for easy care in the absolute absence of toxic chemicals. The easy-care performance of fabric treated with lime-mediated nanoparticles was found to be 141O, which is around 26% better than bare cotton without any significant loss in fabric strength. Furthermore, to enlighten the sustainability of the process, the development traits were mapped with the United Nations Sustainable Development Goals (SDGs), which show significant influence on SDGs 3, 8, 9, and 14. With the effective suspension of microorganisms, added functionality, and eco-mapping with SDGs with the chemical-free synthesis of nanoparticles, widespread utilization can be found in various healthcare and hygiene products along with the fulfillment of sustainability needs. Full article
(This article belongs to the Special Issue Functional Nanomaterials in Green Chemistry)
Show Figures

Figure 1

16 pages, 3259 KiB  
Article
Antifungal, Antibacterial, and Interference Effects of Plant-Extracted Essential Oils Used for Mural Conservation at Buyeo Royal Tomb No. 1
by Hyun-Ju Lee and Yong-Jae Chung
Appl. Sci. 2023, 13(6), 3645; https://doi.org/10.3390/app13063645 - 13 Mar 2023
Cited by 5 | Viewed by 2062
Abstract
Although subterranean tombs are largely protected from the external environment, the colonization of microorganisms threatens their conservation. Conventional biocides have negative effects on the environment, human health, and the sensitive materials in ancient tombs, especially painted murals. Therefore, we tested the biocidal effects [...] Read more.
Although subterranean tombs are largely protected from the external environment, the colonization of microorganisms threatens their conservation. Conventional biocides have negative effects on the environment, human health, and the sensitive materials in ancient tombs, especially painted murals. Therefore, we tested the biocidal effects of 11 plant-extracted essential oils (EOs) against two fungal strains and four bacterial strains isolated from Buyeo Royal Tomb No. 1, a World Heritage Site in South Korea. Oregano, clove bud, thyme, and cinnamon cassia EOs showed the highest antifungal and antibacterial activities. At concentrations suitable for practical application (3–10%), oregano and cinnamon cassia EOs exhibited the highest antifungal and antibacterial activities against the tested microbial strains. No variation in the surface properties and mineral composition was detected for the lithotype specimens (granite and gneiss) treated with the EOs at 1–10%. Low-concentration thyme and oregano EOs led to minimal color change in the painting layer specimens, whereas clove bud and cinnamon cassia EOs caused yellowing of the oyster shell white pigment at a concentration of 3–10%. Our results suggest that 3% oregano EO is a candidate biocide that could minimize the biological damage to and promote the conservation of ancient tomb murals. Full article
(This article belongs to the Special Issue Application of Biology to Cultural Heritage II)
Show Figures

Figure 1

Back to TopTop