Cinnamon Oil-Loaded Nanoliposomes with Potent Antibacterial and Antibiofilm Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antimicrobial and Antibiofilm Activities of Specific Essential Oil Extracts
2.2. GC–MS Analysis of Cinnamon Oil Extract (COE)
2.3. Combination Effect of COE with Some Commonly Used Antibiotics
2.4. Synthesis and Characterization of Nanoliposomes
FT-IR Analysis
2.5. Antibacterial and Antibiofilm Activities of the Most Potent Nano-Formula Identified (COE/C)
3. Materials and Methods
3.1. Extraction of Bioactive Material
3.2. Antimicrobial Effect of Essential Oil Extracts
3.3. Minimal Biofilm Eradication Concentration (MBEC)
3.4. GC–MS (Gas Chromatography–Mass Spectroscopy) Analysis
3.5. Combination Effect of the Most Promising Essential Oil with Commonly Used Antibiotics Using the Disc-Diffusion Method
Checkerboard Assay
3.6. Synthesis of Liposome Nanoparticles
3.7. Characterization of the Synthesized Nanoliposomes
3.8. Antimicrobial and Antibiofilm Activities of the Synthesized Nanoliposomes
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Dias, C.; Borges, A.; Saavedra, M.J.; Simões, M. Biofilm formation and multidrug-resistant Aeromonas spp. from wild animals. J. Glob. Antimicrob. Resist. 2018, 12, 227–234. [Google Scholar] [CrossRef]
- Frozi, J.B.; Esper, L.M.R.; Franco, R.M. Single-and multispecies biofilms by Escherichia coli, Staphylococcus aureus, and Salmonella spp. isolated from raw fish and a fish processing unit. Ciência Rural 2017, 47. [Google Scholar] [CrossRef] [Green Version]
- Millezi, A.F.; Costa, K.A.D.; Oliveira, J.M.; Lopes, S.P.; Pereira, M.O.; Piccoli, R.H. Atividade antibacteriana e anti-biofilme de óleo essencial de canela e eugenol. Ciência Rural 2019, 49. [Google Scholar] [CrossRef]
- Rasool, N.; Saeed, Z.; Pervaiz, M.; Ali, F.; Younas, U.; Bashir, R.; Bukhari, S.M.; Khan, R.R.M.; Jelani, S.; Sikandar, R. Evaluation of essential oil extracted from ginger, cinnamon and lemon for therapeutic and biological activities. Biocatal. Agric. Biotechnol. 2022, 44, 102470. [Google Scholar] [CrossRef]
- Alam, A. Herbs that heal spices: The hoard of natural remedies. Ann. Phytomed. 2019, 8, 7–18. [Google Scholar] [CrossRef]
- US FDA (U.S. Food, Drug Administration). Generally Recognized as Safe (GRAS). 2013. Available online: http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/ (accessed on 30 August 2013).
- Wang, X.; Shen, Y.; Thakur, K.; Han, J.; Zhang, J.G.; Hu, F.; Wei, Z.J. Antibacterial activity and mechanism of ginger essential oil against Escherichia coli and Staphylococcus aureus. Molecules 2020, 25, 3955. [Google Scholar] [CrossRef] [PubMed]
- Vivas, R.; Barbosa, A.A.T.; Dolabela, S.S.; Jain, S. Multidrug-resistant bacteria and alternative methods to control them: An overview. Microb. Drug Resist. 2019, 25, 890–908. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Lu, P.M.; Piao, J.H.; Xu, X.L.; Chen, J.; Zhu, L. Preparation and physicochemical characteristics of an allicin nanoliposome and its release behavior. LWT Food Sci. Technol. 2014, 57, 686–695. [Google Scholar] [CrossRef]
- Cui, H.; Li, W.; Li, C.; Vittayapadung, S.; Lin, L. Liposome containing cinnamon oil with antibacterial activity against methicillin-resistant Staphylococcus aureus biofilm. Biofouling 2016, 32, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Nazareth, M.S.; Shreelakshmi, S.V.; Rao, P.J.; Shetty, N.P. Micro and nanoemulsions of Carissa spinarum fruit polyphenols, enhances anthocyanin stability and anti-quorum sensing activity: Comparison of degradation kinetics. Food Chem. 2021, 359, 129876. [Google Scholar] [CrossRef]
- Zabihi, A.; Akhondzadeh Basti, A.; Amoabediny, G.; Khanjari, A.; Tavakkoly Bazzaz, J.; Mohammadkhan, F.; Hajjar, B.A.; Vanaki, E. Physicochemical characteristics of nanoliposome garlic (Allium sativum L.) essential oil and its antibacterial effect on Escherichia coli O157: H7. J. Food Qual. Hazards Control 2017, 4, 24–28. [Google Scholar]
- Adinew, B. GC-MS and FT-IR analysis of constituents of essential oil from Cinnamon bark growing in South-west of Ethiopia. Int. J. Herb. Med. 2014, 1, 22–31. [Google Scholar]
- Worthington, R.J.; Melander, C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol. 2013, 31, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yap, P.S.X.; Yiap, B.C.; Ping, H.C.; Lim, S.H.E. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol. J. 2014, 8, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Si, H.; Hu, J.; Liu, Z.; Zeng, Z.L. Antibacterial effect of oregano essential oil alone and in combination with antibiotics against extended-spectrum β-lactamase-producing Escherichia coli. FEMS Immunol. Med. Microbiol. 2008, 53, 190–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Vuuren, S.F.; Suliman, S.; Viljoen, A.M. The antimicrobial activity of four commercial essential oils in combination with conventional antimicrobials. Lett. Appl. Microbiol. 2009, 48, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Karpanen, T.J.; Worthington, T.; Hendry, E.R.; Conway, B.R.; Lambert, P.A. Antimicrobial efficacy of chlorhexidine digluconate alone and in combination with eucalyptus oil, tea tree oil and thymol against planktonic and biofilm cultures of Staphylococcus epidermidis. J. Antimicrob. Chemother. 2008, 62, 1031–1036. [Google Scholar] [CrossRef]
- Chovanová, R.; Mikulášová, M.; Vaverková, Š. In vitro antibacterial and antibiotic resistance modifying effect of bioactive plant extracts on methicillin-resistant Staphylococcus epidermidis. Int. J. Microbiol. 2013, 2013, 760969. [Google Scholar] [CrossRef] [Green Version]
- Yap, P.S.X.; Lim, S.H.E.; Hu, C.P.; Yiap, B.C. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria. Phytomedicine 2013, 20, 710–713. [Google Scholar] [CrossRef]
- Doern, C.D. When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J. Clin. Microbiol. 2014, 52, 4124–4128. [Google Scholar] [CrossRef] [Green Version]
- Yap, P.S.X.; Krishnan, T.; Chan, K.G.; Lim, S.H.E. Antibacterial mode of action of Cinnamomum verum bark essential oil, alone and in combination with piperacillin, against a multi-drug-resistant Escherichia coli strain. J. Microbiol. Biotechnol. 2015, 25, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Yap, P.S.X.; Krishnan, T.; Yiap, B.C.; Hu, C.P.; Chan, K.G.; Lim, S.H.E. Membrane disruption and anti-quorum sensing effects of synergistic interaction between Lavandula angustifolia (lavender oil) in combination with antibiotic against plasmid-conferred multi-drug-resistant Escherichia coli. J. Appl. Microbiol. 2014, 116, 1119–1128. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.K.; Yusoff, K.; Mai, C.W.; Lim, W.M.; Yap, W.S.; Lim, S.H.E.; Lai, K.S. Additivity vs. synergism: Investigation of the additive interaction of cinnamon bark oil and meropenem in combinatory therapy. Molecules 2017, 22, 1733. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.Y.; Zhao, C.T.; Lin, L. The specific antibacterial activity of liposome-encapsulated clove oil and its application in tofu. Food Control 2015, 56, 128–134. [Google Scholar] [CrossRef]
- Zhong, Y.; Wang, J.; Wang, Y.; Wu, B. Preparation and evaluation of liposome-encapsulated codrug LMX. Int. J. Pharm. 2012, 438, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Nafee, N.; Gaber, D.M.; Elzoghby, A.O.; Helmy, M.W.; Abdallah, O.Y. Promoted antitumor activity of myricetin against lung carcinoma via nanoencapsulated phospholipid complex in respirable microparticles. Pharm. Res. 2020, 37, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Abaee, A.; Madadlou, A. Niosome-loaded cold-set whey protein hydrogels. Food Chem. 2016, 196, 106–113. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wang, Y.; Jiang, P.; Quek, S.Y. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 2016, 59, 282–289. [Google Scholar] [CrossRef]
- Palanisamy, N.K.; Ferina, N.; Amirulhusni, A.N.; Mohd-Zain, Z.; Hussaini, J.; Ping, L.J.; Durairaj, R. Antibiofilm properties of chemically synthesized silver nanoparticles found against Pseudomonas aeruginosa. J. Nanobiotechnol. 2014, 12, 2. [Google Scholar] [CrossRef] [Green Version]
- El-Tarabily, K.A.; El-Saadony, M.T.; Alagawany, M.; Arif, M.; Batiha, G.E.; Khafaga, A.F.; Elwan, H.A.M.; Elnesr, S.S.; Abd El-Hack, M.E. Using essential oils to overcome bacterial biofilm formation and their antimicrobial resistance. Saudi J. Biol. Sci. 2021, 28, 5145–5156. [Google Scholar] [CrossRef]
- ISO 659:1988; Oilseeds—Determination of Hexane Extract (or Light Petroleum Extract), Called “Oil Content”. International Organization for Standardization (ISO): Geneva, Switzerland, 1988.
- Abbey, T.C.; Deak, E. What’s new from the CLSI subcommittee on antimicrobial susceptibility testing M100. Clin. Microbiol. Newsl. 2019, 41, 203–209. [Google Scholar] [CrossRef]
- Elshaer, E.E.; Elwakil, B.H.; Eskandrani, A.; Elshewemi, S.S.; Olama, Z.A. Novel Clotrimazole and Vitis vinifera loaded chitosan nanoparticles: Antifungal and wound healing efficiencies. Saudi J. Biol. Sci. 2022, 29, 1832–1841. [Google Scholar] [CrossRef] [PubMed]
- Ansari, M.A.; Khan, H.M.; Khan, A.A.; Cameotra, S.S.; Alzohairy, M.A. Anti-biofilm efficacy of silver nanoparticles against MRSA and MRSE isolated from wounds in a tertiary care hospital. Indian J. Med. Microbiol. 2015, 33, 101. [Google Scholar] [CrossRef] [PubMed]
- Hamza, H.; Elfalleh, W.; Nagaz, K. Date palm seed oil (phoenix dactylifera l.) green extraction: Physicochemical properties, antioxidant activities, and phenolic and fatty acid profiles. J. Food Qual. 2021, 2021, 2394220. [Google Scholar] [CrossRef]
- Foucquier, J.; Guedj, M. Analysis of drug combinations: Current methodological landscape. Pharmacol. Res. Perspect. 2015, 3, e00149. [Google Scholar] [CrossRef]
- Lorian, V. (Ed.) Antibiotics in Laboratory Medicine; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2005; p. 889. [Google Scholar]
- Hammoud, Z.; Gharib, R.; Fourmentin, S.; Elaissari, A.; Greige-Gerges, H. New findings on the incorporation of essential oil components into liposomes composed of lipoid S100 and cholesterol. Int. J. Pharm. 2019, 561, 161–170. [Google Scholar] [CrossRef]
- Elnaggar, Y.S.; Elwakil, B.H.; Elshewemi, S.S.; El-Naggar, M.Y.; Bekhit, A.A.; Olama, Z.A. Novel Siwa propolis and colistin-integrated chitosan nanoparticles: Elaboration; in vitro and in vivo appraisal. Nanomedicine 2020, 15, 1269–1284. [Google Scholar] [CrossRef]
- Dorgham, R.A.; Abd Al Moaty, M.N.; Chong, K.P.; Elwakil, B.H. Molasses-Silver Nanoparticles: Synthesis, Optimization, Characterization, and Antibiofilm Activity. Int. J. Mol. Sci. 2022, 23, 10243. [Google Scholar] [CrossRef]
Tested Pathogens | Inhibition Zone Diameter (mm) ± SD | |||||||
---|---|---|---|---|---|---|---|---|
Cinnamon | Ginger | Fennel | Lavender | Rosemary | Lemon | Geranium | Tea Tree | |
E. coli | 30.5 ± 6 | 6.0 ± 2 | 6.0 ± 0 | 6.0 ± 0 | 10.0 ± 2 | 6.0 ± 0 | 6.0 ± 0 | 6.0 ± 0 |
S. aureus | 31.5 ± 3 | 6.0 ± 0 | 8.0 ± 1 | 6.0 ± 0 | 15.0 ± 2 | 23.0 ± 4 | 17.0 ± 2 | 21.0 ± 4 |
E. faecalis 1 * | 19.0 ± 5 | 6.0 ± 0 | 15.0 ± 4 | 6.0 ± 0 | 8.0 ± 4 | 20.0 ± 2 | 12.0 ± 3 | 9.0 ± 2 |
E. faecalis 2 * | 30.0 ± 6 | 6.0 ± 0 | 12.0 ± 2 | 6.0 ± 0 | 13.0 ± 2 | 6.0 ± 0 | 19.0 ± 1 | 29.0 ± 1 |
K. pneumonia 1 * | 19.0 ± 2 | 6.0 ± 0 | 7.0 ± 1 | 15.0 ± 3 | 15.0 ± 2 | 6.0 ± 0 | 14.0 ± 1 | 24.0 ± 3 |
K. pneumonia 2 * | 22.0 ± 1 | 6.0 ± 0 | 10.0 ± 1 | 6.0 ± 0 | 6.0 ± 0 | 6.0 ± 0 | 21.0 ± 2 | 22.0 ± 1 |
P. vulgaris | 30.0 ± 2 | 6.0 ± 0 | 6.0 ± 0 | 6.0 ± 0 | 14.0 ± 4 | 6.0 ± 0 | 8.0 ± 2 | 28.0 ± 4 |
P. aeruginosa | 31.0 ± 6 | 6.0 ± 0 | 6.0 ± 0 | 6.0 ± 0 | 6.0 ± 0 | 6.0 ± 0 | 8.0 ± 1 | 8.0 ± 3 |
A. bauminii | 30.0 ± 2 | 6.0 ± 0 | 6.0 ± 0 | 6.0 ± 0 | 16.0 ± 3 | 6.0 ± 0 | 6.0 ± 0 | 12.0 ± 1 |
MRSA | 21.0 ± 3 | 6.0 ± 0 | 8.0 ± 3 | 6.0 ± 0 | 12.0 ± 2 | 10.0 ± 2 | 12.0 ± 3 | 13.5 ± 1 |
Oil Extracts | Tests | (µg/mL) | |
---|---|---|---|
S. aureus | P. aeruginosa | ||
Cinnamon | MIC | 50.0 | 125.0 |
MBC | 100.0 | 250.0 | |
MBEC | 75.0 | 250.0 | |
Ginger | MIC | 125.0 | 250.0 |
MBC | 250.0 | 350.0 | |
MBEC | 375.0 | 400.0 | |
Fennel | MIC | 250.0 | 500.0 |
MBC | 400.0 | 1000.0 | |
MBEC | 500.0 | 1000.0 | |
Lavender | MIC | 450.0 | 500.0 |
MBC | 500.0 | 1000.0 | |
MBEC | 750.0 | 1000.0 | |
Rosemary | MIC | 500.0 | 1000.0 |
MBC | 750.0 | 1500.0 | |
MBEC | 1000.0 | 1500.0 | |
Lemon | MIC | 125.0 | 500.0 |
MBC | 250.0 | 750.0 | |
MBEC | 500.0 | 1000.0 | |
Geranium | MIC | 150.0 | 250.0 |
MBC | 300.0 | 500.0 | |
MBEC | 500.0 | 1000.0 | |
Tea tree | MIC | 125.0 | 300.0 |
MBC | 250.0 | 500.0 | |
MBEC | 500.0 | 750.0 |
Antibiotics | Inhibition Zone Diameter (mm) | MIC (µg/mL) | FIC | FICI | |
---|---|---|---|---|---|
Vancomycin | Alone | 21.0 ± 4 | 32.0 | 2.0 | 6.0 |
With COE | 36.5 ± 6 | 64.0 | |||
Ampicillin/Cloxacillin | Alone | 8.0 ± 3 | 500.0 | 1.0 | 2.0 |
With COE | 38.0 ± 6 | 500.0 | |||
Colistin | Alone | 6.0 ± 0 | 16.0 | 0.125 | 0.4 |
With COE | 38.0 ± 3 | 2.0 | |||
Cefuroxime | Alone | 6.0 ± 0 | 32.0 | 2.0 | 5.0 |
With COE | 32.5 ± 2 | 64.0 | |||
Doxycycline | Alone | 30.0 ± 7 | 500.0 | 1.0 | 7.0 |
With COE | 31.0 ± 3 | 500.0 | |||
Ampicillin | Alone | 33.0 ± 2 | 500.0 | 1.0 | 6.0 |
With COE | 34.0 ± 1 | 500.0 | |||
Ceftazidime | Alone | 6.0 ± 1 | 32.0 | 0.5 | 1.0 |
With COE | 33.5 ± 3 | 16.0 | |||
Erythromycin | Alone | 30.0 ± 2 | 125.0 | 1.0 | 6.0 |
With COE | 34.5 ± 2 | 125.0 | |||
Cotrimoxazole | Alone | 15.0 ± 4 | 32.0 | 2.0 | 3.0 |
With COE | 35.5 ± 4 | 64.0 | |||
Cefoxitin | Alone | 6.0 ± 0 | 16.0 | 0.5 | 0.9 |
With COE | 29.5 ± 3 | 8.0 |
Formula | Particle Size (nm) | Polydispersity Index | Zeta Potential (mV) | Encapsulation Efficiency (%) |
---|---|---|---|---|
Blank liposomes | 88.44 | 0.185 | −12.80 | NA |
COE 2 | 91.67 | 0.143 | −0.129 | 90.2 |
COE 5 | 129.7 | 0.209 | −0.309 | 81.7 |
COE 10 | 124.8 | 0.129 | −0.168 | 80.4 |
Colistin 2 | 137.2 | 0.221 | −15.9 | 63.5 |
Colistin 5 | 132.8 | 0.338 | −21.4 | 67.9 |
COE/Colistin 2 | 156.6 | 0.260 | −22.8 | 83.8 |
COE/Colistin 5 | 150.0 | 0.289 | −19.9 | 93.7 |
Tested Nanoformula | IZ (mm) | MIC (µg/mL) | MBC (µg/mL) | MBEC (µg/mL) |
---|---|---|---|---|
COE/Colistin 5 | 33.5 ± 3 | 25.0 | 50.0 | 50.0 |
Nanoformula | Lipoid S100 (mg/mL) | Cholesterol (mg/mL) | Cinnamon Oil Extract (COE) (µg/mL) | Colistin (µg/mL) |
---|---|---|---|---|
Blank liposomes | 75.0 | 18.75 | - | - |
COE 2 | 75.0 | 18.75 | 2.0 | - |
COE 5 | 75.0 | 18.75 | 5.0 | - |
COE 10 | 75.0 | 18.75 | 10.0 | - |
Colistin 2 | 75.0 | 18.75 | - | 2.0 |
Colistin 5 | 75.0 | 18.75 | - | 5.0 |
COE/Colistin 2 | 75.0 | 18.75 | 2.0 | 2.0 |
COE/Colistin 5 | 75.0 | 18.75 | 5.0 | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ellboudy, N.M.; Elwakil, B.H.; Shaaban, M.M.; Olama, Z.A. Cinnamon Oil-Loaded Nanoliposomes with Potent Antibacterial and Antibiofilm Activities. Molecules 2023, 28, 4492. https://doi.org/10.3390/molecules28114492
Ellboudy NM, Elwakil BH, Shaaban MM, Olama ZA. Cinnamon Oil-Loaded Nanoliposomes with Potent Antibacterial and Antibiofilm Activities. Molecules. 2023; 28(11):4492. https://doi.org/10.3390/molecules28114492
Chicago/Turabian StyleEllboudy, Neveen M., Bassma H. Elwakil, Marwa M. Shaaban, and Zakia A. Olama. 2023. "Cinnamon Oil-Loaded Nanoliposomes with Potent Antibacterial and Antibiofilm Activities" Molecules 28, no. 11: 4492. https://doi.org/10.3390/molecules28114492