A Comprehensive Analysis of Cinnamon, Flaxseed, and Lemon Seed Essential Oils’ Effects on In Vitro Gas Formation and Nutrient Degradability in Diets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Silage Preparation
2.2. Essential Oils Preparation
2.3. Experimental Diets
Chemical Analysis
2.4. In Vitro Gas Formation Test
2.5. In Vitro Digestibility
2.6. Statistical Analysis
3. Results and Discussion
3.1. In Vitro Gas Formation
3.2. In Vitro Digestibility
3.3. Digestibility Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jafari, S.; Ebrahimi, M.; Goh, Y.M.; Rajion, M.A.; Jahromi, M.F.; Al-Jumaili, W.S. Manipulation of rumen fermentation and methane gas formation by plant secondary metabolites (saponin, tannin and essential oil)–a review of ten-year studies. Ann. Anim. Sci. 2019, 19, 3–29. [Google Scholar] [CrossRef]
- Garcia, F.; Colombatto, D.; Brunetti, M.A.; Martínez, M.J.; Moreno, M.V.; Turcato, M.C.S.; Lucini, E.; Frossasco, G.; Ferrer, J.M. The reduction of methane production in the In Vitro ruminal fermentation of different substrates is linked with the chemical composition of the essential oil. Animals 2020, 10, 786. [Google Scholar] [CrossRef] [PubMed]
- Benchaar, C.; Petit, H.V.; Berthiaume, R.; Whyte, T.D.; Chouinard, P.Y. Effects of addition of essential oils and monensin premix on digestion, ruminal fermentation, milk production and milk composition in dairy cows. J. Dairy Sci. 2006, 89, 4352–4364. [Google Scholar] [CrossRef] [PubMed]
- Gratzl, G.; Paulik, C.; Hild, S.; Guggenbichler, J.P.; Lackner, M. Antimicrobial activity of poly (acrylic acid) block copolymers. Mater. Sci. Eng. C. 2014, 38, 94–100. [Google Scholar] [CrossRef] [PubMed]
- Bayatkouhsar, J.; Khajeh, E.; Ghanbari, F.; Taliei, F. Effect of different processing methods (chemical and biological) on chemical composition, gas formation parameters and digestibility of wheat straw. J. Anim. Sci. Res. 2021, 30, 41–57. [Google Scholar]
- Fedorah, P.M.; Hrudey, S.E. A simple apparatus for measuring gas formation by methanogenic cultures in serum bottles. Environ. Technol. 1983, 4, 425–432. [Google Scholar] [CrossRef]
- Adesogan, A.T.; Krueger, N.; Salawu, M.B.; Dean, D.B.; Staples, C.R. The influence of treatment with dual purpose bacterial inoculants or soluble carbohydrates on the fermentation and aerobic stability of bermudagrass. J. Dairy Sci. 2004, 87, 3407–3416. [Google Scholar] [CrossRef]
- Patra, A.K. Effects of essential oils on rumen fermentation, microbial ecology and ruminant production. Asian J. Anim. Vet. Adv. 2011, 6, 416–428. [Google Scholar] [CrossRef]
- Castillejos, L.; Calsamiglia, S.; Ferret, A.; Losa, R. Effects of dose and adaptation time of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed Sci. Technol. 2007, 132, 186–201. [Google Scholar] [CrossRef]
- Silva, G.G.; Takiya, C.S.; Del Valle, T.A.; de Jesus, E.F.; Grigoletto, N.T.S.; Nakadonari, B.; Cortinhas, C.S.; Acedo, T.S.; Rennó, F.P. Nutrient digestibility, ruminal fermentation, and milk yield in dairy cows fed a blend of essential oils and amylase. J. Dairy Sci. 2018, 101, 9815–9826. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Ferret, A. Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef] [PubMed]
- Arbabi, S.; Ghoorchi, T.; Ramezanpour, S.S.; Torbatinejad, N. Effects of Forage to Concentrate Ratios Based on Faba Bean on Fermentation, Cellulase Enzyme Activity, and Population of Bacteria in Rumen Sheep. Ph.D. Thesis, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran, 2014; p. 241. (In Persian). [Google Scholar]
- Besharati, M.; Palangi, V.; Niazifar, M.; Nemati, Z. Optimization of dietary lemon seed essential oil to enhance alfalfa silage chemical composition and In Vitro degradability. Semin. Cienc. Agrar. 2021, 42, 891–906. [Google Scholar] [CrossRef]
- Cardozo, P.W.; Calsamiglia, S.; Ferret, A.; Kamel, C. Effects of plant extracts on ruminal protein degradation and fermentation profiles in continuous culture. J. Anim. Sci. 2004, 82, 3230–3236. [Google Scholar] [CrossRef] [PubMed]
- Besharati, M.; Palangi, V.; Niazifar, M.; Nemati, Z. Comparison study of flaxseed, cinnamon and lemon seed sssential oils additives on quality and fermentation characteristics of lucerne silage. Acta Agric. Slov. 2020, 115, 455–462. [Google Scholar] [CrossRef]
- Naseri, V.; Kafilzadeh, F.; Jahani-Azizabadi, H. Effects of Pistacia atlantica gum essential oil on ruminal methanogen, protozoa, selected bacteria species and fermentation characteristics in sheep. Small Rumin. Res. 2022, 209, 106650. [Google Scholar] [CrossRef]
- Molero, R.; Ibara, M.; Calsamiglia, S.; Ferret, A.; Losa, R. Effects of a specific blend of essential oil compounds on dry matter and crude protein degradability in heifers fed diets with different forage to concentrate ratios. Anim. Feed Sci. Technol. 2004, 114, 91–104. [Google Scholar] [CrossRef]
- Chaves, A.V.; Baah, J.; Wang, Y.; Benchaar, C. Effects of cinnamon leaf, oregano and sweet orange essential oils on fermentation and aerobic stability of barley silage. J. Sci. Food Agric. 2012, 92, 906–915. [Google Scholar] [CrossRef]
- Jahani-Azizabadi, H.; Danesh Mesgaran, M.; Vakili, A.; Rezayazdi, K. Effect of some plant essential oils on In Vitro ruminal methane production and on fermentation characteristics of a mid-forage diet. J. Agric. Sci. Technol. 2014, 16, 1543–1554. [Google Scholar]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; The National Academies Press: Washington, WA, USA, 2001. [Google Scholar]
- Palangi, V.; Macit, M. Indictable mitigation of methane emission using some organic acids as additives towards a cleaner ecosystem. Waste Biomass Valor. 2021, 12, 4825–4834. [Google Scholar] [CrossRef]
- Association of offical Analytic chemists (AOAC). Official Method of Analytic, 17th ed.; AOAC: Arilington, VA, USA, 2002; Volume 1, pp. 120–155. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Markham, R. A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochem. J. 1942, 36, 790–791. [Google Scholar] [CrossRef] [PubMed]
- Palangi, V.; Macit, M.; Nadaroglu, H.; Taghizadeh, A. Effects of green-synthesized CuO and ZnO nanoparticles on ruminal mitigation of methane emission to the enhancement of the cleaner environment. Biomass Convers. Biorefin. 2022, 1–9. [Google Scholar] [CrossRef]
- McDougal, I.; Elder, R.L. Simulation of centrifugal compressor transient performance for process plant applications. J. Eng. Power. 1983, 105, 885–890. [Google Scholar] [CrossRef]
- Besharati, M.; Niazifar, M. The effect of lemon seed essential oil on composition, chemical characteristics, and gas formation parameters of alfalfa silage. J. Anim. Sci. 2020, 30, 93–104. [Google Scholar]
- Menke, K.H.; Raab, L.; Salewski, A.; Steingass, H.; Fritz, D.; Schneider, W. The estimation of digestibility and metabolizable energy content of ruminant feedstuffs from the gas formation when they incubated with rumen liquor In Vitro. J. Agric. Sci. 1979, 93, 217–222. [Google Scholar] [CrossRef]
- Besharati, M.; Palangi, V.; Moaddab, M.; Nemati, Z.; Pliego, A.B.; Salem, A.Z. Influence of cinnamon essential oil and monensin on ruminal biogas kinetics of waste pomegranate seeds as a biofriendly agriculture environment. Waste Biomass Valor. 2021, 12, 2333–2342. [Google Scholar] [CrossRef]
- Fisher, K.W. Regulation of Bacterial Metabolism; British Medical Bulletin: Oxford, UK, 1962; pp. 19–23. [Google Scholar]
- SAS, 2016; JMP Version 13.2; SAS Institute Incorporation: Cary, NC, USA, 1989–2019.
- Castillo, C.; Beneditoa, J.L.; Vázquez, P.; Víctor, P.; Méndezb, J.; Sotilloc, J.; Hernández, J. Effects of supplementation with plant extract product containing carvacrol, cinnamaldehyde and capsaicin on serum metabolites and enzymes during the finishing phase of feedlot-fed bull calves. Anim. Feed Sci. Technol. 2012, 171, 246–250. [Google Scholar] [CrossRef]
- Patra, A.K.; Kamra, D.N.; Agarwal, N. Effect of plant extracts on In Vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim. Feed Sci. Technol. 2006, 128, 276–291. [Google Scholar] [CrossRef]
- Tawab, A.M.A.E.; Khattab, M.S.A.; Hadhoud, F.I.; Shaaban, M.M. Effect of mixture of herbal plants on ruminal fermentation, degradability and gas formation. Acta Sci. Anim. Sci. 2021, 43, 1–8. [Google Scholar] [CrossRef]
- Palangi, V.; Taghizadeh, A.; Abachi, S.; Lackner, M. Strategies to mitigate enteric methane emissions in ruminants: A review. Sustainability 2022, 14, 13229. [Google Scholar] [CrossRef]
- Amin, N.; Tagliapietra, F.; Arango, S.; Guzzo, N.; Bailoni, L. Free and microencapsulated essential oils incubated In Vitro: Ruminal stability and fermentation parameters. Animals 2021, 11, 180. [Google Scholar] [CrossRef]
- Cardozo, P.W.; Calsamiglia, S.; Ferret, A.; Kamel, C. Effects of alfalfa extract, anise, capsicum, and a mixture of cinnamaldehyde and eugenol on ruminal fermentation and protein degradation in beef heifers fed a high-concentrate diet. J. Anim. Sci. 2006, 84, 2801–2808. [Google Scholar] [CrossRef] [PubMed]
- Foggi, G.; Terranova, M.; Conte, G.; Mantino, A.; Amelchanka, S.L.; Kreuzer, M.; Mele, M. In Vitro screening of the ruminal methane and ammonia mitigating potential of mixtures of either chestnut or quebracho tannins with blends of essential oils as feed additives. Ital. J. Anim. Sci. 2022, 21, 1520–1532. [Google Scholar] [CrossRef]
- Esen, S.; Koç, F.; Özdüven, M.L.; Eseceli, H.; Cabi, E.; Karadağ, H. In Situ and In Vitro nutritive value assessment of Styrax officinalis L. as an alternative forage source for goat feeding. J. Agric. Sci. 2022, 28, 181–188. [Google Scholar] [CrossRef]
- Soycan-Önenç, S.; Coşkuntuna, L.; Koç, F.; Özdüven, M.L.; Gümüş, T. Effects of essential oils of oregano and cinnamon on fermentation quality and ın vitro metabolic energy of field pea silages. J. Anim. Prod. 2017, 58, 39–44. [Google Scholar]
- Newbold, C.J.; McIntosh, F.M.; Williams, P.; Losa, R.; Wallace, R.J. Effects of a specific blend of essential oil compounds on rumen fermentation. Anim. Feed Sci. Technol. 2004, 114, 105–112. [Google Scholar] [CrossRef]
- McIntosh, F.M.; Newbold, V.J.; Losa, R.; Williams, P.; Wallace, R.J. Effects of essential oils on rumen fermentation. Reprod. Nutr. Dev. 2000, 40, 221–222. [Google Scholar]
- Loerch, S.C.; Berger, L.L.; Gianola, D.; Fahey, G.C. Effects of dietary protein source and energy level on in situ nitrogen disappearance of various protein sources. J. Anim. Sci. 1983, 56, 206–216. [Google Scholar] [CrossRef]
- Wallace, R.J.; Cotta, M.A. Metabolism of Nitrogen-Containing Compounds. In The Rumen Microbial Ecosystem; Hobson, P.N., Ed.; Elsevier: Amsterdam, The Netherlands, 1988; pp. 217–249. [Google Scholar]
- Mao, S.Y.; Huo, W.J.; Zhu, W.Y. Microbiome-metabolome analysis reveals unhealthy alterations in the composition and metabolism of ruminal microbiota with increasing dietary grain in a goat model. Environ. Microbiol. 2016, 18, 525–541. [Google Scholar] [CrossRef]
- Manuilov, A.V.; Barkhash, V.A. Recent trends in the theory of the deamination of aliphatic and alicyclic amines. Russ. Chem. Rev. 1990, 59, 179–192. [Google Scholar] [CrossRef]
- Cobellis, G.; Trabalza-Marinucci, M.; Yu, Z. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci. Total Environ. 2016, 545, 556–568. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Dairy Concentrate (DC) | Fattening Concentrate (FC) | Alfalfa Silage (AS) |
---|---|---|---|
Wheat bran | 15 | 18 | - |
Corn grain, ground | 11 | 10 | - |
Milo ** | 10 | 4 | - |
Soybean meal | 2 | 3 | - |
Barley grain, ground | 15 | 10 | - |
Meat powder (60% CP) | 5 | 6 | - |
Urea | 0.6 | 1 | - |
Calcium carbonate | 2.5 | 2.5 | - |
Molasses | 3 | 3 | - |
Rice bran | 27 | 27 | - |
Salt (NaCl) | 0.5 | 0.5 | - |
Di-calcium phosphate | 0.4 | 0 | - |
Mineral-vitamin mix *** | 2 | 2 | - |
Fruit pulp (apple and orange) | 4 | 11 | - |
Calcinit * | 2 | 2 | - |
Chemical composition | |||
Dry matter (%) | 92.60 ± 0.44 | 91.49 ± 0.34 | 24.40 ± 0.63 |
Crude protein (% DM) | 22.40 ± 0.70 | 20.02 ± 0.70 | 11.62 ± 0.43 |
Crude ash (% DM) | 16.66 ± 0.34 | 20.22 ± 0.70 | 11.40 ± 0.03 |
Acid detergent fiber (% DM) | 6.40 ± 0.15 | 5.20 ± 0.02 | 22.60 ± 1.40 |
Neutral detergent fiber (% DM) | 20.40 ± 1.02 | 18.60 ± 0.34 | 49.07 ± 1.78 |
pH | - | - | 4.35 ± 11 |
Treatments | Times (h) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 4 | 6 | 8 | 12 | 16 | 24 | 36 | 48 | 72 | 96 | 120 | |
CON-DC | 14.81 a | 25.94 a | 38.96 a | 45.64 a | 59.84 a | 76.07 a | 102.67 a | 107.38 a | 118.09 a | 127.49 a | 129.39 a | 132.06 a |
CON-FC | 14.34 a | 25.64 a | 38.66 a | 44.73 a | 59.71 a | 75.98 a | 98.97 a | 106.92 a | 117.10 a | 126.69 a | 129.22 a | 131.97 a |
DCCEO | 11.89 b | 20.47 c | 27.87 c | 39.39 c | 54.64 c | 71.74 c | 94.38 c | 103.11 c | 110.38 bc | 118.70 d | 122.23 b | 125.13 b |
FCCEO | 12.62 b | 23 b | 38.19 b | 43.72 b | 59.11 b | 75.34 b | 93.92 c | 104.65 c | 113.31 b | 120.77 c | 124.50 b | 126.59 b |
DCFEO | 14.72 a | 23.56 b | 28.96 c | 40.82 bc | 55.34 c | 73.84 c | 98.80 b | 106.19 b | 116.32 b | 125.11 b | 129.04 a | 131.52 a |
FCFEO | 14.25 a | 23.03 b | 29.70 bc | 43.49 b | 57.41 bc | 72.71 c | 86.89 d | 97.69 d | 106.82 c | 113.54 e | 116.80 c | 123.83 c |
DCLEO | 12.45 b | 21.17 c | 27.84 c | 39.69 c | 53.48 d | 69.39 d | 86.29 d | 95.89 d | 103.69 c | 110.33 e | 110.51 d | 115.89 d |
FCLEO | 10.65 c | 19.78 d | 23.64 d | 34.97 | 48.75 e | 63.86 e | 71.30 e | 78.90 e | 87.84 d | 64.63 f | 98.42 e | 118.19 d |
SEM | 0.9342 | 2.576 | 2.695 | 2.353 | 2.048 | 2.065 | 2.365 | 2.707 | 2.960 | 3.107 | 2.848 | 2.320 |
p-value | 0.0003 | 0.003 | 0.0018 | 0.0003 | ≤0.0001 | ≤0.0001 | ≤0.0001 | ≤0.0001 | ≤0.0001 | ≤0.0001 | ≤0.0001 | ≤0.0001 |
Treatments 1 | Parameters | ||||||
---|---|---|---|---|---|---|---|
pH | SCFA | ME | NEL | OMD | DOMD | NH3-N | |
CON-DC | 6.63 b | 0.101 d | 3.360 a | 1.315 a | 25.073 d | 25.043 a | 50.458 c |
CON-FC | 6.70 a | 0.095 d | 3.293 a | 1.297 a | 26.047 d | 24.413 a | 46.912 d |
DCCEO | 6.50 c | 0.152 ab | 3.224 ab | 1.259 b | 29.743 a | 24.011 ab | 50.458 c |
FCCEO | 6.55 bc | 0.140 b | 3.16 b | 1.216 b | 28.538 b | 23.318 b | 60.314 a |
DCFEO | 6.47 c | 0.158 ab | 3.282 ab | 1.297 b | 29.293 ab | 23.936 ab | 47.340 d |
FCFEO | 6.57 bc | 0.1018 c | 3.942 c | 0.972 c | 27.453 c | 23.163 b | 42.5 d |
DCLEO | 6.71 b | 0.155 ab | 2.66 d | 0.876 d | 25.583 d | 21.585 c | 47.184 d |
FCLEO | 6.68 b | 0.169 a | 2.668 d | 0.853 d | 27.229 c | 21.631 c | 52.222 b |
SEM | 0.055 | 0.009 | 0.045 | 0.0362 | 0.164 | 0.3410 | 0.2631 |
p-value | ≤0.0001 | ≤0.0001 | ≤0.0001 | ≤0.0001 | ≤0.0001 | ≤0.0001 | ≤0.0001 |
Treatments 1 | Time of Incubation (h) | ||||
---|---|---|---|---|---|
2 | 4 | 8 | 12 | 24 | |
DM | |||||
CON-DC | 32.87 d | 46.10 e | 57.62 c | 66.64 c | 73.64 c |
CON-FC | 34.28 d | 53.59 e | 63.73 c | 68.73 c | 75.27 c |
DCCEO | 38.64 b | 50.37 b | 62.34 b | 71.80 a | 82.19 ab |
FCCEO | 39.51 b | 53.94 b | 64.02 b | 74.80 a | 83.15 a |
DCFEO | 43.15 a | 45.21 c | 58.24 d | 67.97 b | 75.82 b |
FCFEO | 44.32 a | 59.64 a | 66.31 a | 74.25 a | 83.63 a |
DCLEO | 36.56 bc | 48.14 bc | 61.45 c | 69.53 b | 77.48 b |
FCLEO | 37.77 a | 56.84 a | 64.57 b | 72.85 ab | 84.45 b |
SEM | 0.5354 | 0.731 | 0.256 | 0.646 | 0.425 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
OM | |||||
CON-DC | 30.31 d | 40.89 a | 54.45 a | 62.75 a | 71.75 b |
CON-FC | 29.31 b | 40.19 a | 49.52 c | 60.45 d | 67.45 c |
DCCEO | 28.67 c | 32.39 c | 51.42 b | 57.89 b | 65.64 c |
FCCEO | 29.65 b | 38.74 b | 54.87 a | 61.78 ab | 78.56 a |
DCFEO | 30.18 a | 36.97 bc | 46.84 c | 57.46 b | 72.45 b |
FCFEO | 30.87 a | 38.60 b | 49.16 c | 62.45 ab | 64.25 c |
DCLEO | 29.89 b | 37.34 bc | 50.56 b | 62.17 ab | 73.92 b |
FCLEO | 30.62 a | 40.94 a | 54.72 a | 65.93 a | 74.80 b |
SEM | 0.0347 | 0.0574 | 0.0692 | 0.0488 | 0.0761 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
CP | |||||
CON-DC | 21.32 c | 28.38 a | 31.84 b | 36.59 c | 41.84 e |
CON-FC | 22.63 b | 27.63 b | 32.84 c | 35.09 c | 44.62 d |
DCCEO | 21.39 c | 27.56 b | 32.24 c | 36.17 c | 45.56 b |
FCCEO | 22.74 b | 28.17 a | 34.87 a | 36.87 c | 47.64 a |
DCFEO | 22.97 b | 26.41 c | 32.85 c | 36.56 c | 42.45 c |
FCFEO | 23.60 a | 27.09 ab | 32.43 c | 38.41 a | 46.16 a |
DCLEO | 21.34 c | 28.43 a | 32.12 c | 37.53 b | 43.58 c |
FCLEO | 19.06 d | 21.49 d | 30.45 d | 34.24 d | 44.81 d |
SEM | 0.051 | 0.0765 | 0.047 | 0.154 | 0.0616 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
NDF | |||||
CON-DC | 22.93 a | 22.69 a | 32.91 a | 37.17 b | 47.36 c |
CON-FC | 23.32 a | 25.98 a | 32.33 a | 37.43 b | 49.92 c |
DCCEO | 19.80 c | 21.50 d | 25.77 d | 32.21 d | 48.84 c |
FCCEO | 21.80 b | 24.18 b | 31.57 b | 35.17 c | 50.62 b |
DCFEO | 19.06 c | 22.11 c | 29.03 c | 32.77 d | 45.10 d |
FCFEO | 21.96 b | 26.42 a | 32.51 a | 37.43 a | 52.03 a |
DCLEO | 18.76 d | 22.20 c | 26.54 cd | 32.60 d | 43.17 e |
FCLEO | 22.93 b | 25.58 a | 31.80 b | 36.50 b | 50.93 b |
SEM | 0.301 | 0.535 | 0.0335 | 0.465 | 0.0524 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Treatments 1 | Items | ||||
---|---|---|---|---|---|
DM | a | b | c | PD | ED |
CON-DC | 21.24 e | 49.34 bc | 0.12 c | 71.61 d | 64.89 d |
CON-FC | 19.95 e | 50.01 bc | 0.12 c | 72.75 d | 71.91 d |
DCCEO | 18.97 d | 60.90 a | 0.14 b | 79.87 b | 70.87 b |
FCCEO | 19.60 d | 60.64 a | 0.14 b | 80.24 ab | 73.24 ab |
DCFEO | 23.23 c | 50.19 bc | 0.18 a | 73.42 c | 66.42 c |
FCFEO | 25.63 c | 54.00 b | 0.095 d | 79.63 b | 72.63 ab |
DCLEO | 33.97 b | 40.51 d | 0.17 ab | 74.48 c | 67.4 b |
FCLEO | 34.84 a | 48.61 c | 0.18 a | 83.45 a | 76.45 a |
SEM | 1.664 | 1.051 | 0.009 | 1.068 | 0.851 |
p-value | 0.0003 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
OM | |||||
CON-DC | 17.38 c | 55.52 a | 0.068 e | 64.76 d | 54.14 d |
CON-FC | 18.94 c | 55.22 a | 0.067 d | 62.05 d | 52.28 d |
DCCEO | 18.35 b | 48.29 c | 0.091 c | 66.64 c | 57.64 c |
FCCEO | 19.82 a | 54.81 b | 0.067 d | 74.63 a | 67.63 a |
DCFEO | 18.53 b | 43.92 d | 0.11 b | 73.15 a | 64.45 b |
FCFEO | 19.50 ab | 42.75 d | 0.043 e | 62.25 d | 55.25 d |
DCLEO | 19.78 a | 51.84 c | 0.114 a | 71.62 b | 64.62 b |
FCLEO | 18.93 b | 53.87 b | 0.058 d | 72.80 b | 65.8 b |
SEM | 0.0155 | 0.301 | 0.008 | 0.0329 | 0.342 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
CP | |||||
CON-DC | 9.92 d | 53.17 a | 0.09 c | 45.64 c | 51.13 b |
CON-FC | 9.83 d | 54.94 a | 0.09 c | 54.63 b | 56.12 a |
DCCEO | 10.87 c | 39.24 c | 0.07 c | 53.56 b | 46.56 c |
FCCEO | 12.39 b | 33.25 d | 0.15 a | 45.64 c | 35.64 d |
DCFEO | 10.8 c | 33.65 d | 0.11 b | 44.45 c | 34.45 d |
FCFEO | 9.21 d | 55.95 a | 0.10 c | 65.16 a | 50.16 b |
DCLEO | 9.80 d | 45.78 b | 0.08 d | 55.58 b | 46.58 c |
FCLEO | 14.32 a | 53.93 ab | 0.07 c | 64.80 a | 51.80 b |
SEM | 0.345 | 1.491 | 0.075 | 0.0814 | 1.621 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
NDF | |||||
CON-DC | 28.69 b | 54.32 a | 0.042 c | 65.21 b | 45.48 d |
CON-FC | 29.71 a | 44.67 a | 0.039 c | 63.64 b | 44.98 d |
DCCEO | 27.40 c | 52.41 ab | 0.051 a | 78.84 a | 45.95 c |
FCCEO | 28.52 b | 42.10 b | 0.046 ab | 70.62 ab | 47.13 b |
DCFEO | 26.22 d | 28.88 d | 0.027 d | 55.10 d | 45.82 c |
FCFEO | 28.80 b | 33.23 c | 0.041 b | 62.03 b | 50.05 a |
DCLEO | 29.42 a | 23.75 e | 0.031 d | 53.17 e | 45.04 c |
FCLEO | 27.90 c | 33.04 c | 0.042 b | 60.93 c | 47.57 b |
SEM | 0.435 | 0.247 | 0.164 | 0.761 | 0.647 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Besharati, M.; Palangi, V.; Niazifar, M.; Esen, S.; Lackner, M. A Comprehensive Analysis of Cinnamon, Flaxseed, and Lemon Seed Essential Oils’ Effects on In Vitro Gas Formation and Nutrient Degradability in Diets. Fermentation 2023, 9, 504. https://doi.org/10.3390/fermentation9060504
Besharati M, Palangi V, Niazifar M, Esen S, Lackner M. A Comprehensive Analysis of Cinnamon, Flaxseed, and Lemon Seed Essential Oils’ Effects on In Vitro Gas Formation and Nutrient Degradability in Diets. Fermentation. 2023; 9(6):504. https://doi.org/10.3390/fermentation9060504
Chicago/Turabian StyleBesharati, Maghsoud, Valiollah Palangi, Masoumeh Niazifar, Selim Esen, and Maximilian Lackner. 2023. "A Comprehensive Analysis of Cinnamon, Flaxseed, and Lemon Seed Essential Oils’ Effects on In Vitro Gas Formation and Nutrient Degradability in Diets" Fermentation 9, no. 6: 504. https://doi.org/10.3390/fermentation9060504
APA StyleBesharati, M., Palangi, V., Niazifar, M., Esen, S., & Lackner, M. (2023). A Comprehensive Analysis of Cinnamon, Flaxseed, and Lemon Seed Essential Oils’ Effects on In Vitro Gas Formation and Nutrient Degradability in Diets. Fermentation, 9(6), 504. https://doi.org/10.3390/fermentation9060504