Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = chytrid

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3327 KiB  
Article
Identification of Simultaneous Occurrence of Amphibian Chytrid Fungi and Ranavirus in South Korea
by Ji-Eun Lee, Young Jin Park, Mun-Gyeong Kwon, Yun-Kyeong Oh, Min Sun Kim and Yuno Do
Animals 2025, 15(14), 2132; https://doi.org/10.3390/ani15142132 - 18 Jul 2025
Viewed by 269
Abstract
Emerging infectious diseases such as chytridiomycosis and ranavirosis, caused by Batrachochytrium dendrobatidis (Bd) and ranavirus (RV), respectively, are major contributors to global amphibian declines. Despite their significance, comprehensive data on the spatial epidemiology of these pathogens in South Korea remain limited. [...] Read more.
Emerging infectious diseases such as chytridiomycosis and ranavirosis, caused by Batrachochytrium dendrobatidis (Bd) and ranavirus (RV), respectively, are major contributors to global amphibian declines. Despite their significance, comprehensive data on the spatial epidemiology of these pathogens in South Korea remain limited. This study aimed to assess the nationwide co-occurrence and prevalence of Bd and RV across four anuran species in five administrative regions. Infection rates were analyzed in relation to host species, sex, and life history stage. Results indicated distinct prevalence patterns driven by ecological traits. Bd was predominantly detected in mountainous and coastal habitats, whereas RV was more common in flat inland areas. Both pathogens exhibited peak occurrence in central regions, likely reflecting seasonal transmission dynamics rather than stable endemic hotspots. The observed spatial heterogeneity appears to be influenced by pathogen-specific thermal tolerance and host ecology. These findings underscore the importance of understanding host–pathogen–environment interactions for effective disease surveillance and management. Continuous monitoring and integrative ecological approaches are essential to mitigate pathogen-induced biodiversity loss and to inform amphibian conservation strategies in East Asia. Full article
(This article belongs to the Section Herpetology)
Show Figures

Figure 1

15 pages, 17659 KiB  
Article
Amphibian (Xenopus laevis) Macrophage Subsets Vary in Their Responses to the Chytrid Fungus Batrachochytrium dendrobatidis
by Amulya Yaparla, Milan Popovic, Kelsey A. Hauser, Louise A. Rollins-Smith and Leon Grayfer
J. Fungi 2025, 11(4), 311; https://doi.org/10.3390/jof11040311 - 15 Apr 2025
Viewed by 708
Abstract
The chytrid fungus, Batrachochytrium dendrobatidis (Bd), infects amphibian skin, causing chytridiomycosis, which is a contributing cause of worldwide declines and extinctions of amphibians. Relatively little is known about the roles of amphibian skin-resident immune cells, such as macrophages, in these antifungal defenses. Across [...] Read more.
The chytrid fungus, Batrachochytrium dendrobatidis (Bd), infects amphibian skin, causing chytridiomycosis, which is a contributing cause of worldwide declines and extinctions of amphibians. Relatively little is known about the roles of amphibian skin-resident immune cells, such as macrophages, in these antifungal defenses. Across vertebrates, macrophage differentiation is controlled through the activation of colony-stimulating factor-1 (CSF1) receptor by CSF1 and interleukin-34 (IL34) cytokines. While the precise roles of these respective cytokines in macrophage development remain to be fully explored, our ongoing studies indicate that frog (Xenopus laevis) macrophages differentiated by recombinant forms of CSF1 and IL34 are functionally distinct. Accordingly, we explored the roles of X. laevis CSF1- and IL34-macrophages in anti-Bd defenses. Enriching cutaneous IL34-macrophages, but not CSF1-macrophages, resulted in significant anti-Bd protection. In vitro analysis of frog macrophage-Bd interactions indicated that both macrophage subsets phagocytosed Bd. However, IL34-macrophages cocultured with Bd exhibited greater pro-inflammatory gene expression, whereas CSF1-macrophages cocultured with Bd showed greater immunosuppressive gene expression profiles. Concurrently, Bd-cocultured with CSF1-macrophages, but not IL34-macrophages, possessed elevated expression of genes associated with immune evasion. This work marks a step forward in our understanding of the roles of frog macrophage subsets in antifungal defenses. Full article
(This article belongs to the Special Issue Fungal Diseases in Animals, 3rd Edition)
Show Figures

Figure 1

14 pages, 5615 KiB  
Article
In Vitro Infection Model Using A6 Cells Sets the Stage for Host–Batrachochytrium salamandrivorans Exploration
by Elin Verbrugghe, Frank Pasmans and An Martel
J. Fungi 2025, 11(2), 156; https://doi.org/10.3390/jof11020156 - 18 Feb 2025
Viewed by 889
Abstract
The chytrid fungus Batrachochytrium salamandrivorans (Bsal) poses a significant threat to amphibian biodiversity, driving severe declines in salamander populations in Europe. While understanding the host–pathogen interaction may yield novel avenues for disease mitigation, effective in vitro models are currently lacking. We here develop [...] Read more.
The chytrid fungus Batrachochytrium salamandrivorans (Bsal) poses a significant threat to amphibian biodiversity, driving severe declines in salamander populations in Europe. While understanding the host–pathogen interaction may yield novel avenues for disease mitigation, effective in vitro models are currently lacking. We here develop a cell-culture-based model using A6 cells to reproduce the complete life cycle of Bsal in vitro, encompassing key stages such as β-galactose-associated cell attachment, active host cell penetration, intracellular maturation, host cell death, and Bsal release. Using imaging techniques, we provide evidence that Bsal penetrates A6 cells through a mechanism independent of conventional host actin dynamics. Our comparative analysis reveals that Bsal infection closely mirrors responses observed in native salamander skin tissues, validating the A6 cell line as an effective surrogate for in vivo studies. This research enhances our understanding of Bsal’s pathogenicity and emphasizes the potential of the A6 cell model for future studies. Full article
(This article belongs to the Special Issue Fungal Diseases in Animals, 3rd Edition)
Show Figures

Figure 1

16 pages, 3751 KiB  
Article
Analysis of Reproductive Strategies and Immunological Interactions in Batrachochytrium dendrobatidis-Resistant Japanese Tree Frogs
by Ji-Eun Lee, Jun-Kyu Park and Yuno Do
Animals 2025, 15(2), 154; https://doi.org/10.3390/ani15020154 - 9 Jan 2025
Cited by 2 | Viewed by 971
Abstract
The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), has been implicated as an agent of acute declines in amphibian populations worldwide. East Asian amphibians have been coexisting with Bd for long periods and thus are considered resistant; among the many is the [...] Read more.
The amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), has been implicated as an agent of acute declines in amphibian populations worldwide. East Asian amphibians have been coexisting with Bd for long periods and thus are considered resistant; among the many is the Japanese tree frog, Dryophytes japonicus. Our study focused Bd infection effects on reproductive behaviors and physiological parameters in D. japonicus as a function of better understanding the chronic effect of the disease on long-term population viability. During the peak breeding season, we captured 70 males and quantified the chorus size, calling behaviors, physiological states, innate immunity, and sperm quality of individuals. In a simple comparison, all parameters were not significantly different. However, in the NMDS analysis, we were able to confirm subtle trends in some items according to infection and correlations between several items. Importantly, sperm density and sperm vitality tend to increase with Bd infection load, suggesting increased reproductive effort following infection. Additionally, this analysis indicated that innate immunity was positively related to Bd infection intensities, indicating the activation of immunity upon infection. These findings indicate that Bd-resistant D. japonicus maintains reproductive capabilities and physio-logical stability despite Bd infection, likely due to a co-evolved immune system. The present work offers insight into how amphibian populations may have some endurance in the presence of Bd and points out the importance of studying resistant species as a means to understand long-term ecological effects. Our results suggest that resistance to Bd may not simply prevent cata-strophic declines but actively contribute to the dynamics of Bd prevalence in amphibian communities, and confer implications for conservation strategies. Full article
(This article belongs to the Section Herpetology)
Show Figures

Figure 1

14 pages, 7223 KiB  
Article
Microclimatic Growth Rates of Batrachochytrium salamandrivorans under Current and Future Climates: A Very High Spatial Resolution SDM for Bsal and Salamandra salamandra (Linnaeus, 1758) within Forest Habitats of the European Hotspot Area
by Felix Deiß, Philipp Ginal and Dennis Rödder
Diversity 2024, 16(8), 510; https://doi.org/10.3390/d16080510 - 22 Aug 2024
Cited by 1 | Viewed by 2059
Abstract
Chytridiomycosis is one of the greatest threats to the diversity of amphibians worldwide. Caused by the chytrid fungus Batrachochytrium salamandrivorans (Bsal), it plays a decisive role in species declines. Bsal is particularly harmful to the European fire salamander (Salamandra salamandra), causing [...] Read more.
Chytridiomycosis is one of the greatest threats to the diversity of amphibians worldwide. Caused by the chytrid fungus Batrachochytrium salamandrivorans (Bsal), it plays a decisive role in species declines. Bsal is particularly harmful to the European fire salamander (Salamandra salamandra), causing ulcerations, anorexia and ataxia, which ultimately lead to death. While most studies have focused on the geographic expansion of the pathogen, there is little high-resolution information available. Therefore, we chose a three-step approach in this study: We (I) used a mechanistic distribution model to project the microclimatic growth rate of Bsal within its invasive range on a spatially very high resolution (25 m). We (II) used a correlative distribution model to predict the potential distribution of S. salamandra and (III) applied n-dimensional hypervolumes to quantify the realized microclimatic niches of both species and examine their overlaps. We estimated future trends based on comparisons among three climate scenarios, the current microclimatic conditions and a +2 °C and +4 °C global mean temperature scenario. We demonstrated that Bsal finds suitable growth conditions everywhere within our study area, thus putting S. salamandra at high risk. However, climate change could lead to less suitable thermal conditions for Bsal, possibly providing a loophole for S. salamandra. Full article
Show Figures

Figure 1

18 pages, 12801 KiB  
Article
Effects of Different Agricultural Waste Composts on Cabbage Yield and Rhizosphere Environment
by Jue Wang, Bo Zhang, Jie Wang, Guobin Zhang, Zhibin Yue, Linli Hu, Jihua Yu and Zeci Liu
Agronomy 2024, 14(3), 413; https://doi.org/10.3390/agronomy14030413 - 21 Feb 2024
Cited by 8 | Viewed by 2698
Abstract
The return of agricultural waste to the field is one of the most effective strategies of increasing crop yield, improving the soil’s physicochemical properties, and improving the soil rhizosphere environment. In the present study, sheep manure (SM), cow manure (CM), tail vegetable (TV), [...] Read more.
The return of agricultural waste to the field is one of the most effective strategies of increasing crop yield, improving the soil’s physicochemical properties, and improving the soil rhizosphere environment. In the present study, sheep manure (SM), cow manure (CM), tail vegetable (TV), mushroom residue (MR), and corn straw (CS) were used as raw materials, and no fertilization (CK1) and local commercial organic fertilizer (CK2) treatments were used as controls. Eight composts were set up using specific mass ratios of different compost materials. After fermentation, field experiments were conducted to determine the cabbage yield, soil’s physicochemical properties, and soil rhizosphere conditions. The eight composts increased the soil organic matter and nutrient contents significantly. Among the eight fermentation formulas, T6 (CM:CS:TV:SM = 1:1:2:6), T7 (MR:CS:TV:SM = 1:1:2:6), and T8 (CM:MR:CS:TV:SM = 1:1:1:2:5) were relatively effective. Therefore, high-throughput sequencing was performed on T6, T7, T8, CK1, and CK2. T6, T7, and T8 exhibited increased relative abundance of Proteobacteria, Actinomycetes, and Firmicutes, while the Acidobacteria abundance was decreased. In addition, Ascomycota’s and Basidiomycetes’ relative abundance decreased, and the oil chytrid and mortierella increased. The microbial community structure was affected significantly by pH, electrical conductivity, available potassium, available nitrogen, and organic matter. In general, the three composts increased yield by improving the soil’s physicochemical properties, fertility, and microbial community structure. Among them, T6 had the most significant effect and is the optimal formula for use as a local organic cabbage fertilizer, and it could facilitate sustainable agricultural development. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

12 pages, 2500 KiB  
Article
The Binding, Infection, and Promoted Growth of Batrachochytrium dendrobatidis by the Ranavirus FV3
by Francisco De Jesús Andino, Anton Davydenko, Rebecca J. Webb and Jacques Robert
Viruses 2024, 16(1), 154; https://doi.org/10.3390/v16010154 - 20 Jan 2024
Cited by 2 | Viewed by 3087
Abstract
Increasing reports suggest the occurrence of co-infection between Ranaviruses such as Frog Virus 3 (FV3) and the chytrid fungus Batrachochytrium dendrobatidis (Bd) in various amphibian species. However, the potential direct interaction of these two pathogens has not been examined to date. In this [...] Read more.
Increasing reports suggest the occurrence of co-infection between Ranaviruses such as Frog Virus 3 (FV3) and the chytrid fungus Batrachochytrium dendrobatidis (Bd) in various amphibian species. However, the potential direct interaction of these two pathogens has not been examined to date. In this study, we investigated whether FV3 can interact with Bd in vitro using qPCR, conventional microscopy, and immunofluorescent microscopy. Our results reveal the unexpected ability of FV3 to bind, promote aggregation, productively infect, and significantly increase Bd growth in vitro. To extend these results in vivo, we assessed the impact of FV3 on Xenopus tropicalis frogs previously infected with Bd. Consistent with in vitro results, FV3 exposure to previously Bd-infected X. tropicalis significantly increased Bd loads and decreased the host’s survival. Full article
(This article belongs to the Special Issue Iridoviruses)
Show Figures

Figure 1

17 pages, 1425 KiB  
Review
Importance of Genetic–Fitness Correlations for the Conservation of Amphibians
by Heike Pröhl and Ariel Rodríguez
Animals 2023, 13(22), 3564; https://doi.org/10.3390/ani13223564 - 18 Nov 2023
Cited by 5 | Viewed by 1955
Abstract
Endangered animals suffer from isolation of their habitats. Isolation leads to a reduction in population size as well as a decrease in genetic diversity and a concomitant increase in the risk of extinction. Amphibians are the most endangered vertebrate class. Besides habitat loss, [...] Read more.
Endangered animals suffer from isolation of their habitats. Isolation leads to a reduction in population size as well as a decrease in genetic diversity and a concomitant increase in the risk of extinction. Amphibians are the most endangered vertebrate class. Besides habitat loss, fragmentation and isolation, amphibians are threatened by emerging diseases e.g., chytrid fungus or Ranavirus. By employing experiments, researchers investigate whether changes in genetic diversity within or among isolated populations affect amphibian fitness. While genetic diversity estimates are based on molecular markers, typically microsatellites, fitness is mostly measured as tadpole performance in rearing experiments often under varying environmental conditions. Tadpole performances (e.g., body mass, growth rate and survival) have been found to be negatively affected by low genetic diversity, as several studies have found a positive association between genetic diversity and these fitness traits. Moreover, infection with pathogens also seems to be more likely in individuals or populations with lower genetic diversity. Overall, these genetic–fitness correlations seem to be more pronounced or detectable in smaller, declining populations but not in larger populations. Genomic studies, which sample a larger fraction of the genome, are still scarce in the conservation genetic literature on amphibians. These are likely to increase in upcoming years and may reveal adaptive variants that protect against dangerous pathogens or environmental changes. Altogether, genetic–fitness correlation studies should be a priority in order to develop effective management plans for the genetic rescue of isolated, imperilled amphibian populations. Full article
(This article belongs to the Special Issue Evolution, Diversity, and Conservation of Herpetofauna)
Show Figures

Figure 1

13 pages, 3953 KiB  
Article
Ecological Barriers for an Amphibian Pathogen: A Narrow Ecological Niche for Batrachochytrium salamandrivorans in an Asian Chytrid Hotspot
by Dan Sun, Gajaba Ellepola, Jayampathi Herath and Madhava Meegaskumbura
J. Fungi 2023, 9(9), 911; https://doi.org/10.3390/jof9090911 - 8 Sep 2023
Cited by 3 | Viewed by 3465
Abstract
The chytrid fungal pathogens Batrachochytrium salamandrivorans (Bsal) and B. dendrobatidis (Bd) are driving amphibian extinctions and population declines worldwide. As their origins are believed to be in East/Southeast Asia, this region is crucial for understanding their ecology. However, Bsal [...] Read more.
The chytrid fungal pathogens Batrachochytrium salamandrivorans (Bsal) and B. dendrobatidis (Bd) are driving amphibian extinctions and population declines worldwide. As their origins are believed to be in East/Southeast Asia, this region is crucial for understanding their ecology. However, Bsal screening is relatively limited in this region, particularly in hotspots where Bd lineage diversity is high. To address this gap, we conducted an extensive Bsal screening involving 1101 individuals from 36 amphibian species, spanning 17 natural locations and four captive facilities in the biodiversity-rich Guangxi Zhuang Autonomous Region (GAR). Our PCR assays yielded unexpected results, revealing the complete absence of Bsal in all tested samples including 51 individuals with Bd presence. To understand the potential distribution of Bsal, we created niche models, utilizing existing occurrence records from both Asia and Europe. These models estimated potential suitable habitats for Bsal largely in the northern and southwestern parts of the GAR. Although Bsal was absent in our samples, the niche models identified 10 study sites as being potentially suitable for this pathogen. Interestingly, out of these 10 sites, Bd was detected at 8. This suggests that Bsal and Bd could possibly co-exist in these habitats, if Bsal were present. Several factors seem to influence the distribution of Bsal in Asia, including variations in temperature, local caudate species diversity, elevation, and human population density. However, it is climate-related factors that hold the greatest significance, accounting for a notable 60% contribution. The models propose that the specific climatic conditions of arid regions, primarily seen in the GAR, play a major role in the distribution of Bsal. Considering the increased pathogenicity of Bsal at stable and cooler temperatures (10–15 °C), species-dependent variations, and the potential for seasonal Bd-Bsal interactions, we emphasize the importance of periodic monitoring for Bsal within its projected range in the GAR. Our study provides deeper insights into Bsal’s ecological niche and the knowledge generated will facilitate conservation efforts in amphibian populations devastated by chytrid pathogens across other regions of the world. Full article
(This article belongs to the Special Issue Fungal Diseases in Animals, 2nd Edition)
Show Figures

Figure 1

12 pages, 3085 KiB  
Article
The Unicellular, Parasitic Fungi, Sanchytriomycota, Possess a DNA Sequence Possibly Encoding a Long Tubulin Polymerization Promoting Protein (TPPP) but Not a Fungal-Type One
by Ferenc Orosz
Microorganisms 2023, 11(8), 2029; https://doi.org/10.3390/microorganisms11082029 - 7 Aug 2023
Viewed by 1649
Abstract
The unicellular, parasitic fungi of the phylum Sanchytriomycota (sanchytrids) were discovered a few years ago. These unusual chytrid-like fungi parasitize algae. The zoospores of the species of the phylum contain an extremely long kinetosome composed of microtubular singlets or doublets and a non-motile [...] Read more.
The unicellular, parasitic fungi of the phylum Sanchytriomycota (sanchytrids) were discovered a few years ago. These unusual chytrid-like fungi parasitize algae. The zoospores of the species of the phylum contain an extremely long kinetosome composed of microtubular singlets or doublets and a non-motile pseudocilium (i.e., a reduced posterior flagellum). Fungi provide an ideal opportunity to test and confirm the correlation between the occurrence of flagellar proteins (the ciliome) and that of the eukaryotic cilium/flagellum since the flagellum occurs in the early-branching phyla and not in terrestrial fungi. Tubulin polymerization promoting protein (TPPP)-like proteins, which contain a p25alpha domain, were also suggested to belong to the ciliome and are present in flagellated fungi. Although sanchytrids have lost many of the flagellar proteins, here it is shown that they possess a DNA sequence possibly encoding long (animal-type) TPPP, but not the fungal-type one characteristic of chytrid fungi. Phylogenetic analysis of p25alpha domains placed sanchytrids into a sister position to Blastocladiomycota, similarly to species phylogeny, with maximal support. Full article
(This article belongs to the Special Issue 10th Anniversary of Microorganisms: Past, Present and Future)
Show Figures

Figure 1

18 pages, 5604 KiB  
Article
Conserved Evolution of MHC Supertypes among Japanese Frogs Suggests Selection for Bd Resistance
by Quintin Lau, Takeshi Igawa, Tiffany A. Kosch, Anik B. Dharmayanthi, Lee Berger, Lee F. Skerratt and Yoko Satta
Animals 2023, 13(13), 2121; https://doi.org/10.3390/ani13132121 - 27 Jun 2023
Cited by 2 | Viewed by 2416
Abstract
The chytrid fungus Batrachochytrium dendrobatidis (Bd) is a major threat to amphibians, yet there are no reports of major disease impacts in East Asian frogs. Genetic variation of the major histocompatibility complex (MHC) has been associated with resistance to Bd in frogs from [...] Read more.
The chytrid fungus Batrachochytrium dendrobatidis (Bd) is a major threat to amphibians, yet there are no reports of major disease impacts in East Asian frogs. Genetic variation of the major histocompatibility complex (MHC) has been associated with resistance to Bd in frogs from East Asia and worldwide. Using transcriptomic data collated from 11 Japanese frog species (one individual per species), we isolated MHC class I and IIb sequences and validated using molecular cloning. We then compared MHC from Japanese frogs and other species worldwide, with varying Bd susceptibility. Supertyping analysis, which groups MHC alleles based on physicochemical properties of peptide binding sites, identified that all examined East Asian frogs contained at least one MHC-IIb allele belonging to supertype ST-1. This indicates that, despite the large divergence times between some Japanese frogs (up to 145 million years), particular functional properties in the peptide binding sites of MHC-II are conserved among East Asian frogs. Furthermore, preliminary analysis using NetMHCIIpan-4.0, which predicts potential Bd-peptide binding ability, suggests that MHC-IIb ST-1 and ST-2 have higher overall peptide binding ability than other supertypes, irrespective of whether the peptides are derived from Bd, other fungi, or bacteria. Our findings suggest that MHC-IIb among East Asian frogs may have co-evolved under the same selective pressure. Given that Bd originated in this region, it may be a major driver of MHC evolution in East Asian frogs. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 6889 KiB  
Article
Modeling the Distribution of the Chytrid Fungus Batrachochytrium dendrobatidis with Special Reference to Ukraine
by Volodymyr Tytar, Oksana Nekrasova, Mihails Pupins, Arturs Skute, Muza Kirjušina, Evita Gravele, Ligita Mezaraupe, Oleksii Marushchak, Andris Čeirāns, Iryna Kozynenko and Alena A. Kulikova
J. Fungi 2023, 9(6), 607; https://doi.org/10.3390/jof9060607 - 25 May 2023
Cited by 5 | Viewed by 3073
Abstract
Amphibians are the most threatened group of vertebrates. While habitat loss poses the greatest threat to amphibians, a spreading fungal disease caused by Batrachochytrium dendrobatidis Longcore, Pessier & D.K. Nichols 1999 (Bd) is seriously affecting an increasing number of species. Although Bd is [...] Read more.
Amphibians are the most threatened group of vertebrates. While habitat loss poses the greatest threat to amphibians, a spreading fungal disease caused by Batrachochytrium dendrobatidis Longcore, Pessier & D.K. Nichols 1999 (Bd) is seriously affecting an increasing number of species. Although Bd is widely prevalent, there are identifiable heterogeneities in the pathogen’s distribution that are linked to environmental parameters. Our objective was to identify conditions that affect the geographic distribution of this pathogen using species distribution models (SDMs) with a special focus on Eastern Europe. SDMs can help identify hotspots for future outbreaks of Bd but perhaps more importantly identify locations that may be environmental refuges (“coldspots”) from infection. In general, climate is considered a major factor driving amphibian disease dynamics, but temperature in particular has received increased attention. Here, 42 environmental raster layers containing data on climate, soil, and human impact were used. The mean annual temperature range (or ‘continentality’) was found to have the strongest constraint on the geographic distribution of this pathogen. The modeling allowed to distinguish presumable locations that may be environmental refuges from infection and set up a framework to guide future search (sampling) of chytridiomycosis in Eastern Europe. Full article
(This article belongs to the Special Issue Fungal Diseases in Animals, 2nd Edition)
Show Figures

Figure 1

23 pages, 3745 KiB  
Review
Chytrids in Soil Environments: Unique Adaptations and Distributions
by Deirdre G. Hanrahan-Tan, Osu Lilje and Linda Henderson
Encyclopedia 2023, 3(2), 642-664; https://doi.org/10.3390/encyclopedia3020046 - 18 May 2023
Cited by 17 | Viewed by 6235
Abstract
Chytridiomycota (zoosporic true fungi) have a consistent presence in soils and have been frequently identified within many diverse terrestrial environments. However, Chytridiomycota and other early-diverging fungi have low representation in whole-genome sequencing databases compared to Dikarya. New molecular techniques have provided insights into [...] Read more.
Chytridiomycota (zoosporic true fungi) have a consistent presence in soils and have been frequently identified within many diverse terrestrial environments. However, Chytridiomycota and other early-diverging fungi have low representation in whole-genome sequencing databases compared to Dikarya. New molecular techniques have provided insights into the diversity and abundance of chytrids in soils and the changes in their populations both spatially and temporally. Chytrids complete their life cycle within rapidly changing soil environments where they may be more common within micropores due to protection from predation, desiccation, and extreme temperatures. Reproductive and morphological changes occur in response to environmental changes including pH, fluctuating nutrient concentrations, and metals at levels above toxic thresholds. Rhizoids share some features of hyphae, including the spatial regulation of branching and the ability to attach, adapt to, and proliferate in different substrates, albeit on a microscale. Soil chytrids provide a pool of novel enzymes and proteins which enable a range of lifestyles as saprotrophs or parasites, but also can be utilised as alternative tools with some biotechnological applications. Thus, 3D live-cell imaging and micromodels such as MicroCT may provide insight into zoospore functions and rhizoid plasticity, respectively, in response to various conditions. A combination of classical techniques of soil chytrid baiting with simultaneous molecular and ecological data will provide insights into temporal population changes in response to environmental change. The authors emphasise the need to review and improve DNA-based methodologies for identifying and quantifying chytrids within the soil microbiome to expand our knowledge of their taxonomy, abundance, diversity, and functionality within soil environments. Full article
(This article belongs to the Collection Encyclopedia of Fungi)
Show Figures

Figure 1

18 pages, 3143 KiB  
Article
Diversity of DNA Sequences from Pathogenic and Potentially Pathogenic Eukaryotic Microorganisms in Protected Granite Mountain Rocks
by Ismael Velasco-González, Enrique Lara, David Singer, Amaya de Cos-Gandoy, Manuel García-Rodríguez, Antonio Murciano, Blanca Pérez-Uz, Richard Williams, Abel Sanchez-Jimenez and Mercedes Martín-Cereceda
Diversity 2023, 15(5), 594; https://doi.org/10.3390/d15050594 - 25 Apr 2023
Cited by 3 | Viewed by 2193
Abstract
Rain-fed mountain granite rock basins are temporary habitats conditioned by a fluctuating environment and the unpredictability of precipitation or flooding rates. These small highland freshwater habitats remain largely unexplored at the microbial level. The aim of this work is to report the presence [...] Read more.
Rain-fed mountain granite rock basins are temporary habitats conditioned by a fluctuating environment and the unpredictability of precipitation or flooding rates. These small highland freshwater habitats remain largely unexplored at the microbial level. The aim of this work is to report the presence in these habitats of genetic sequences of microbial eukaryotes that are pathogens and potential pathogens of humans, wildlife, cattle, crops as well as of other microorganisms. We sequenced the hypervariable region v4 of the 18S rDNA gene from environmental DNA of sediments taken from 21 rock basins in a National Park in Spain. More than a fifth (21%) of the eukaryotic Operational Taxonomic Units (OTUs) found are ascribed to pathogenic (within 11 Phyla) and potential pathogenic (within 1 phylum, the Chytridiomycota) microorganisms. Some OTUs retrieved are of agro-economic and public health importance (e.g., Pythium spp., Lagenidium spp., Candida spp. and Vermamoeba vermiformis). In 86% of the basins, the most abundant OTUs were affiliated to Chytridiomycota, a broad fungal group including saprozoic and parasitic taxa. Two OTUs affiliated to chytrids were significantly correlated with high concentrations of heavy metals. The high proportion of chytrid-like microbial sequences found emphasises the role of these freshwater habitats for adding knowledge regarding the ecological trade-offs of the still rather unknown Chytridiomycota. Our results show that rain-fed rock basins may be model habitats for the study and surveillance of microbial community dynamics and genetics of (mainly opportunistic) microbial pathogens. Full article
(This article belongs to the Section Microbial Diversity and Culture Collections)
Show Figures

Graphical abstract

18 pages, 4077 KiB  
Article
The Effects of Nitrogen and Phosphorus on Colony Growth and Zoospore Characteristics of Soil Chytridiomycota
by Deirdre G. Hanrahan-Tan, Linda Henderson, Michael A. Kertesz and Osu Lilje
J. Fungi 2022, 8(4), 341; https://doi.org/10.3390/jof8040341 - 24 Mar 2022
Cited by 20 | Viewed by 3523
Abstract
The Chytridiomycota phylum contributes to nutrient cycling and the flow of energy between trophic levels in terrestrial and aquatic ecosystems yet remains poorly described or absent from publications discussing fungal communities in these environments. This study contributes to the understanding of three species [...] Read more.
The Chytridiomycota phylum contributes to nutrient cycling and the flow of energy between trophic levels in terrestrial and aquatic ecosystems yet remains poorly described or absent from publications discussing fungal communities in these environments. This study contributes to the understanding of three species of soil chytrids in vitro—Gaertneriomyces semiglobifer, Spizellomyces sp. and Rhizophlyctis rosea—in the presence of elevated concentrations of nitrogen and phosphorus and with different sources of nitrogen. Colony growth was measured after 4 weeks as dry weight and total protein. To determine the impacts on zoospore reproduction, motility, lipid content, and attachment to organic substrates, 4- and 8-week incubation times were investigated. Whilst all isolates were able to assimilate ammonium as a sole source of nitrogen, nitrate was less preferred or even unsuitable as a nutrient source for G. semiglobifer and R. rosea, respectively. Increasing phosphate concentrations led to diverse responses between isolates. Zoospore production was also variable between isolates, and the parameters for zoospore motility appeared only to be influenced by the phosphate concentration for Spizellomyces sp. and R. rosea. Attachment rates increased for G. semiglobifer in the absence of an inorganic nitrogen source. These findings highlight variability between the adaptive responses utilised by chytrids to persist in a range of environments and provide new techniques to study soil chytrid biomass and zoospore motility by total protein quantification and fluorescent imaging respectively. Full article
Show Figures

Figure 1

Back to TopTop