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Abstract: Amphibians are the most threatened group of vertebrates. While habitat loss poses the
greatest threat to amphibians, a spreading fungal disease caused by Batrachochytrium dendrobatidis
Longcore, Pessier & D.K. Nichols 1999 (Bd) is seriously affecting an increasing number of species.
Although Bd is widely prevalent, there are identifiable heterogeneities in the pathogen’s distribution
that are linked to environmental parameters. Our objective was to identify conditions that affect the
geographic distribution of this pathogen using species distribution models (SDMs) with a special
focus on Eastern Europe. SDMs can help identify hotspots for future outbreaks of Bd but perhaps
more importantly identify locations that may be environmental refuges (“coldspots”) from infection.
In general, climate is considered a major factor driving amphibian disease dynamics, but temperature
in particular has received increased attention. Here, 42 environmental raster layers containing data
on climate, soil, and human impact were used. The mean annual temperature range (or ‘continen-
tality’) was found to have the strongest constraint on the geographic distribution of this pathogen.
The modeling allowed to distinguish presumable locations that may be environmental refuges
from infection and set up a framework to guide future search (sampling) of chytridiomycosis in
Eastern Europe.

Keywords: amphibia; fungal diseases; spreading; infection; pathogen; GIS modeling; species
distribution modelling

1. Introduction

Amphibians are the most sensitive group of vertebrates—41% of currently known
species are threatened with extinction [1–3]. Although habitat loss clearly poses the great-
est threat to amphibians, a fungal disease threat (Batrachochytrium dendrobatidis Longcore,
Pessier & D.K. Nichols 1999) has affected an increasing number of species [4]. This dis-
ease caused by the chytrid fungus B. dendrobatidis (Bd) has been linked to the declines
in amphibian species globally and represents the greatest documented loss in biodiver-
sity attributable to a pathogen [5]. A hypervirulent and globally distributed pandemic
lineage (B. dendrobatidis-GPL) is considered the leading cause of population reduction in
amphibians [6].

The Bd fungus has a wide geographical and host range in Europe; however, there
currently is still a lack of complete understanding regarding the potential impacts of the
amphibian communities. As of now, it has been registered in almost all Anura species
in 26 European countries [7]. The susceptibility of various amphibian species across
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Europe is still not fully understood, but declines in populations of species such as the
common midwife toad (Alytes obstetricans (Laurenti, 1768)) and the common toad (Bufo bufo
(Linnaeus, 1758)) [8]. In other species in which the fungus presence has been confirmed,
infection with Bd does not always result in disease development, which could explain why
mass die-offs of amphibians such as those observed in other parts of the world have not
been seen [9]. Some species of anurans have limited immunity to Bd, while others such
as water frogs (Pelophylax spp.) exhibit tolerance [10,11]. Some research also showed that
populations of the yellow-bellied toad (Bombina variegata (Linnaeus 1758)) can coexist with
Bd. However, the future safety of these toads may be compromised due to the potential
effects of climate change and other environmental factors. The absence of widespread
die-offs in many areas of Europe may be attributed to the fact that Bd has multiple strains
with varying levels of virulence [12].

Although Bd is widely prevalent, there are identifiable heterogeneities in the pathogen’s
distribution that have been linked to environmental parameters [12]. In this respect, species
distribution models (SDMs) have proven to be useful tools for predicting Bd distribution
and elucidating the importance of a wide range of environmental covariates considered to
affect Bd occurrence. Based on published data on B. dendrobatidis occurrence, SDMs can be
used to evaluate the factors affecting its occurrence and predict its distribution [13–15]. The
first developed Bd SDMs were global in scope [16,17].

It is well known that one major assumption of SDMs is that the species being modeled
is in equilibrium with its environment. Considering invasive species, their distribution
today may not be in equilibrium with current environmental conditions, and it may take
centuries or millennia for invasive species to stabilize. However, global or other large-scale
SDMs may provide overarching clues to Bd climate niche characteristics, and downscaled
models such as those at the continental scale show that different climate metrics can be
important predictors of Bd occurrence at finer spatial scales [17]. By considering geographi-
cally more restricted areas such as Ukraine or Eastern Europe, we anticipate obtaining a
better view on Bd niche requirements that will aid us in reaching our objectives. Never-
theless, despite this reservation, habitat suitability models have been shown to be highly
predictive [18,19].

Early detection and rapid response to incoming aliens are required for a successful
management response [20]. Early-response strategies involve surveying risk areas under
threat of invasion. SDMs help to identify such areas at risk that are suitable for the
establishment of alien species, for instance by matching suitable climate conditions [21].
Identifying areas where a species is more likely to occur can also be used to guide sampling
protocols and prioritizing areas of study [22]. Our objectives were to:

(1) Identify priority survey areas in Eastern Europe (with a special focus on Ukraine)
where future outbreaks of Bd could occur (“hotspots”), but perhaps what was equally
important was the recognition of locations that may be environmental refuges
(“coldspots”) from infection (especially for amphibians that have certain sensitive
conservation status) [23];

(2) Identify bioclimatic and other environmental conditions that constrain the geographic
distribution of this pathogen in the study area.

It is necessary to mention that global or other large-scale SDMs may provide overar-
ching clues to Bd climate niche characteristics, but downscaled models such as those at
the continental scale show that different climate metrics can be important predictors of Bd
occurrence at finer spatial scales. Hence, the scale of Ukraine or Eastern Europe is a much
finer spatial scale than previously addressed by those recent large models, which makes
this study exactly the next needed step.

Undoubtedly, recognizing both “hot-” and “coldspots” are essential for proactive
conservation planning [6].
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2. Materials and Methods

As input, standard distribution models (SDMs) require georeferenced biodiversity
observations. The globally dominant lineage is the pandemic one, while other lineages are
of limited distribution or known transmission routes [24]. Therefore, this study did not
take into account the lineage identity of positive samples for which there is yet insufficient
data. Additionally, the lineages of Bd are not well mapped, resulting in a lack of necessary
data for analysis. Localities for Bd were gathered from GBIF [25] and the literature [26–35].
Using quantitative PCR as described in [36], 20 new records of Bd from Belarus were added
to the unpublished database of (A. A. Kulikova. To account for sampling bias, we used
the nearest neighbor distance method (‘ntbox’ package in R; Osorio-Olvera et al., 2020) for
thinning the data [37].

Because many limitations are associated with SDM projections, particularly when
it comes to building an SDM for a species expanding its home range in a new area [38],
we employed for the analysis only records of European localities. In addition, a global
description of the niche does not account for the specificities of local invasive ranges (local
environment, local biotic interactions, and specific human uses) [39]. Studies using records
solely from the invasive range have demonstrated the ability to make adequate predictions
regarding the expansion of invasive alien species [40–42].

SDMs commonly utilize associations between environmental variables and known
species-occurrence records to identify environmental conditions within which populations
can be maintained. SDMs extrapolate in situ habitats to identify geographic regions that
have similar combinations of these values [43]. SDMs may be primarily climate-driven,
meaning that the variables used to develop them typically portray climatic factors [44]. In
this study, several types of environmental variables besides climatic at a geodetic resolution
of 2.5 arc minutes were used as proxies for the fundamental niche [45].

First, 19 bioclimatic variables were downloaded from the WorldClim website
(http://www.worldclim.com/version2 (accessed on 12 November 2022)) indicating a
general trend of precipitation and temperature as well as extremity and seasonality of tem-
perature [46]. However, we excluded four variables (bio8, bio9, bio18, and bio19) owing to
their known spatial artifacts when following the protocol implemented in previous similar
studies [47,48]. Other “quarter” variables were removed as well because they were highly
correlated with monthly values and largely carried redundant information.

Second, our model included a set of 16 climate and two topographic variables (the
ENVIREM dataset downloaded from http://envirem.github.io (accessed on 20 January
2023); Table 1), many of which were likely to have direct relevance to ecological or phys-
iological processes determining species distributions [49–52]. The included topographic
variables were potentially important as well because they could modify the effect of the
climate descriptors.

Table 1. Groups of intercorrelated variables from the considered environmental datasets.

Groups of Intercorrelated Variables from the WorldClim v.2 Dataset at a Cutoff of 0.7

Cluster Group Bioclimatic Variables (Codes)

1. Temperature Seasonality (bio4) *, Temperature Annual Range (bio7)

2. Annual Precipitation (bio12) *, Precipitation of Wettest Month (bio13)

3. Annual Mean Temperature (bio1), Isothermality (bio3), Min. Temperature
of Coldest Month (bio6) *

4. Mean Diurnal Range (bio2), Max. Temperature of Warmest Month (bio5) *

5. Precipitation of Driest Month (bio14), Precipitation Seasonality (bio15) *

*—Selected variable

http://www.worldclim.com/version2
http://envirem.github.io
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Table 1. Cont.

Groups of Intercorrelated Variables from the ENVIREM Dataset at a Cutoff of 0.7

Cluster Group ENVIREM Variables

1. Topographic wetness index *, terrain roughness index

2. Continentality *

3. Mean monthly PET1 of the wettest quarter *

4.

Growing degree days with mean temperature greater than 0 ◦C *, growing
degree days with mean temperature greater than 5 ◦C, max. temperature
of the coldest month, number of months with mean temp greater than 10
◦C, mean monthly PET of coldest quarter, mean monthly PET of driest

quarter, thermicity index

5. Emberger’s pluviothermic quotient, PET seasonality *

6. Annual PET *, Thornthwaite aridity index, climatic moisture index, min.
temp. of the warmest month, mean monthly PET of warmest quarter

*—Selected variable; PET1—potential evapotranspiration

Groups of Intercorrelated Topographical Variables from the EarthEnv Dataset at a Cutoff
of 0.7

Cluster Group Topographical Variables

1. Aspect cosine (mean) *

2. Northness (mean) *

3. Aspect sine (mean), eastness (mean) *

4. Topographic position index (mean) *

5. Roughness (min), slope (min), terrain ruggedness index (min) *

6. Elevation (min, max, mean *)

7.

Aspect cosine (min, max), aspect sine (min, max), eastness (min, max),
eastness (min, max), northness (min, max), roughness (max, mean), slope
(max, mean *), topographic position index (min, max), terrain ruggedness

index (max, mean)

*—Selected variable

Groups of Intercorrelated Land Cover Variables from the EarthEnv Dataset at a Cutoff of 0.7

Cluster Group Land Cover Variables

1. Evergreen/Deciduous Needleleaf Trees *

2. Evergreen Broadleaf Trees *

3. Deciduous Broadleaf Trees *

4. Mixed/Other Trees *, Snow/Ice

5. Shrubs *

6. Herbaceous Vegetation, Cultivated and Managed Vegetation *

7. Regularly Flooded Vegetation *

8. Urban/Built-up *

9. Barren *

10. Open Water *
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Table 1. Cont.

*—Selected variable

Groups of Intercorrelated Soil Feature Variables from the Land-Atmosphere Interaction
Research Group Dataset at a Cutoff of 0.7

Cluster Group Soil Feature Variables

1 Bulk density *

2 Cation exchange capacity *

3 Clay content *

4 Gravel content *

5 Organic carbon *

6 pH (H2O) *, pH (KCl)

7 Sand content *

8 Silt content *
*—Selected variable.

Third, topography as measured by elevation and its derived variables (e.g., slope and
aspect) was key for characterizing spatial heterogeneity and the abiotic environment in a
given area, subsequently driving hydrological, geomorphological, and biological processes.
All developed variables were available for download and visualization at the EarthEnv
project site (http://www.earthenv.org/topography (accessed on 21 January 2023)) [52].

Fourth, metrics of land cover were included in our models [53] (Table 1). Land cover
information offers a powerful first-order proxy for locally expected biodiversity and eco-
logical processes [54]. Land cover is also considered relevant in models aimed at predicting
species distributions because it adds realistic information on habitat fragmentation and
human influence, which are not represented in more commonly used sets of climatic vari-
ables [55]. Consensus information on the prevalence of 12 land cover classes across the globe
was downloaded from the EarthEnv project site (https://www.earthenv.org/landcover
(accessed on 25 January 2023)) [56].

Finally, soil variables were included in our analyses. We assumed that the integration
of soil factors in SDMs could help improve our understanding of factors that limit the
Bd distribution range. These comprised 9 layers of soil physical and chemical properties
recommended or previously used for building SDMs [57–59]. Soil grids were obtained
from the Land-Atmosphere Interaction Research Group at Sun Yatsen University [60].
The values of the first five layers (0–49 cm) in the profile were derived and averaged for
subsequent modeling.

Predictors often show high collinearity, and most SDM approaches require the se-
lection of one among those strongly correlated [61]. In order to carry out such selec-
tion, the ‘removeCollinearity’ function in the ‘virtualspecies’ R (v. 3.3.3) package was
employed [62]. This function analyzes the correlation among predictors, and using a
0.7 cut-off [63] returned a vector containing the names of those that were not colinear. It
also grouped predictor variables according to their degree of collinearity, so from each such
group consisting of two or more variables, those putatively most relevant to Bd could be
selected. Because predictor variables are commonly skewed or have outliers, the Spearman
correlation method was applied.

Today, a number of modeling approaches are at hand [64] depending on the environ-
mental questions and available data; in particular, presences and absences. However, in
the case of an emerging disease, the use of presence-only data is crucial to avoid possible
complications due to false negatives and temporal variations in pathogen prevalence [65].
Therefore, a presence-only approach was chosen.

SDMs were generated by employing Bayesian additive regression trees (BARTs), a
cutting-edge technique in this field. Running SDMs with BARTs has been substantially
facilitated by the development of the R (v. 3.3.3) package ‘embarcadero’ [66], which is

http://www.earthenv.org/topography
https://www.earthenv.org/landcover
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highly effective at identifying informative subsets of predictors. The package includes
methods for generating and plotting response curves, illustrating the effect of selected
variables on habitat suitability. The algorithm computes habitat suitability values ranging
from 0 for a fully non-suitable habitat to 1 for a fully suitable habitat.

Then, ‘Boruta’, one of the most effective predictor selection algorithms implemented
in R (v. 3.3.3) [67], was used to create a custom-made set of predictors for building a
consensus model.

To prepare the input, we used pre-modeling functions from the ‘flexsdm’ R (v. 3.3.3)
package [68]. The calibration area was defined using buffers around presence points.
Because Bd is effective at dispersing, relatively large 500 km buffers were chosen [27].
Filtering the occurrence data was used to reduce sample bias by randomly removing points
where they were dense (oversampling) in the environmental and geographical spaces.

The models were evaluated using the area under the receiver operating character-
istic curve (AUC) [44] and the true skill statistic (TSS) [69]. AUC scores range from
0 to 1 (with 0 for systematically wrong model predictions and 1 for systematically perfect
model predictions); AUC values 0.7 to 0.8 are considered acceptable, while values > 0.8 are
considered to be good to excellent. TSS values range from −1 to +1 (with −1 corresponding
to systematically wrong predictions and +1 to systematically correct predictions) [70].

TSS values <0.4 are considered poor, 0.4–0.8 useful, and >0.8 are good to excellent.
Because AUC has its drawbacks [71], we employed the continuous Boyce index, which
only requires presences and measures how much model predictions differ from random
distribution of the observed presences across the prediction gradients [72]. Thus, it is
an appropriate metric in the case of presence-only models. It is continuous and varies
between −1 and +1. Positive values indicate a model that presents predictions that are
consistent with the distribution of presences in the evaluation dataset, values close to zero
mean that the model is not different from a random model, and negative values indicate
counter predictions [73]. Evaluation metrics were calculated using the script posted by
A.M. Barbosa on R-bloggers (https://www.r-bloggers.com/2022/05/model-evaluation-
with-presence-points-and-raster-predictions/ (accessed on 7 January 2023)).

For guidance regarding the search for Bd and distinguishing areas in Ukraine where
the pathogen most possibly might occur, the consensus distribution model was categorized
into three frequency distribution classes (i.e., low, medium, and high) using Jenks’ natural
breaks classification, which (like k-means clustering) maximizes the variance between
classes while minimizing the variance within classes [74].

We used a 50% habitat suitability threshold [75] as a cut-off above which responses of
the most contributive variables could be analyzed in terms of their impact on
habitat suitability.

Maps of habitat suitability in the GeoTIFF format were processed and visualized in
SAGA GIS (v.2.14) [75]; statistical data was analyzed using the PAST software (v. 4.03)
package [76] and/or the R environment (v. 3.3.3) [77].

3. Results and Discussion

The update of published and unpublished Bd-occurrence data yielded a total of
234 non-duplicate georeferenced records across Europe. The results of grouping predictor
variables according to their degree of collinearity at a cutoff of 0.7 yielded a subset of
metrics included in the analyses (Table 1). Variables selected for checking their relevance
for Bd are marked with an asterisk.

3.1. SDMs Based on Selected WorldClim v.2 Predictors

Using the pre-modeling functions from the ‘flexsdm’ R package, the number of pres-
ence records was reduced to 114. The BART model showed a very good performance with
a Boyce index of 0.951 and an AUC and TSS of 0.824 and 0.525, respectively.

The BART model indicated the importance of Temperature Seasonality, Annual Precip-
itation, and the Min. Temperature of Coldest Month (Figure 1) in predicting the occurrence

https://www.r-bloggers.com/2022/05/model-evaluation-with-presence-points-and-raster-predictions/
https://www.r-bloggers.com/2022/05/model-evaluation-with-presence-points-and-raster-predictions/
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of Bd. Temperature Seasonality is a measure (in units of standard deviation (SD)) of temper-
ature variability over the course of a year. Figure 1A depicts that increasing the variability
in temperature first established a hump-shaped relationship with habitat suitability within
a certain interval (using a 50% threshold, that would be approximately between 4000 and
8000 units) (Figure 1A). Further increasing variability produced a sharp negative effect.
Notably, Temperature Seasonality was highly correlated with Temperature Annual Range,
a surrogate for ‘continentality’ [78], and in the study area, both exhibited a strong longi-
tudinal gradient with values increasing toward the east. Regarding Annual Precipitation
(Figure 1B), rising values were found as low precipitation values increased until reaching
the mark of around 600 mm, after which the curve steadily approached precipitation val-
ues for which habitat suitability was the highest. Previously, Annual Precipitation was
found along with Annual Mean Temperature to highly influence the distribution of Bd [24].
Other studies, in addition to stressing the importance of annual precipitation, reported
the optimum rainfall for Bd to be between 1500 and 2500 mm a year [79,80] or at an initial
modal maximum of around 1200–1400 mm realistic for the European study area [81]. In
any event, the graph in Figure 1B leads to similar conclusions.
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In terms of the Min. Temperature of Coldest Month (Figure 2A), habitat suitability
remained low before reaching a 50% threshold in a period after −9 ◦C, which was well
below the critical thermal minima of +4 ◦C [82]. In other places (for instance, the USA
(WY, ME, CO, and CA), Bd localities reach the lowest coldest temperatures—down to
−19.6 ◦C [74]. However, the pathogen is hardly exposed to such temperatures because
Bd is strongly associated with aquatic habitats and host species that hibernate in aquatic
microhabitats rather than terrestrial [83]. Therefore, the fungus is largely buffered from
such extreme external conditions.
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3.2. SDMs Based on Selected ENVIREM Predictors

After performing the pre-modeling functions, the number of presence records was
reduced to 161. The model showed a very good performance with a Boyce index of 0.971,
AUC = 0.793, and TSS = 0.471.

The BART algorithm distinguished ‘Continentality’ and ‘Annual potential evapotran-
spiration’ as important predictors. ‘Continentality’ (or the same as Temperature Annual
Range from the WorldClim v.2 dataset) is influenced by distance from oceans; i.e., it is a
proxy of maritimity and actual Continentality [84]. The response curve for this variable
presented in Figure 2B shows a general hump-shaped relationship with habitat suitability
(Figure 2B). Using the 50% habitat suitability threshold, suitable conditions for Bd were the-
oretically found between +17 and +24 ◦C, after which the response curve sharply declined
to a negligible level. Maritimity below +17 ◦C, as found in much of the Atlantic biogeo-
graphical region of Europe [85], appeared unfavorable for the pathogen (likely because of
the June–July temperatures), whereas toward the east (roughly beyond the longitude of
26◦ E) the limiting factor was freezing winter temperatures; this exhibited itself in a pro-
found way as shown by the steeply declining response curve.

‘Annual potential evapotranspiration’ relates to the ability of the atmosphere to remove
water through evapotranspiration processes and is strongly influenced by temperature [86].
It is regarded as an index meant to represent available environmental energies and ecosys-
tem productivity [87]. Based on Figure 3A, it can be deduced that suitable conditions
for Bd were apparently found (once again using the 50% threshold) between 460 and
900 mm/year, after which the response curve continued to rapidly decline (Figure 3A).
Places with high rates of ‘Annual potential evapotranspiration’ appeared to be less suitable
for the pathogen. Using the ‘contour lines’ module in SAGA GIS, it could be shown that
these areas were located primarily in Southern Europe (below a latitude of approximately
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47◦ N). In a related manner, the minimum monthly potential evapotranspiration was found
to be an important driving factor of spatial patterns of amphibian chytridiomycosis [88].
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3.3. SDMs Based on Selected Topographical Variables from the EarthEnv Dataset

Filtering the number of presence records reduced them to 138. The BART model
showed an acceptable performance with the continuous Boyce index reaching 0.778 and
an AUC and TSS of 0.766 and 0.396, respectively. The BART algorithm highlighted ‘Slope’
as the most important predictor. It is worth noting here that elevation is amongst the
topographical variables repeatedly considered important for shaping the distribution of Bd.
Findings in this respect ranged from establishing evidence of a positive correlation of the
pathogen occurrence with elevation [89,90] to the negation of any such correlation [91]. In
our case, it was notable that the BART algorithm fully excluded ‘elevation’ from the model.

K.M. Kriger and J.-M. Hero (2007) found a greater prevalence of Bd infection among
stream-breeding amphibians in Australia and suggested that dissemination of the pathogen
is greatly assisted by flowing water linked to slope gradient [92]. This could occur because
flagellated zoospores of Bd rarely swim more than 2 cm prior to encysting [85]. Besides
that, the fungus prefers cool temperatures [85,92] and thus should grow better in streams
rather than in stagnant water bodies. In another study, the odds of being threatened by
Bd were found to be five times higher in stream microhabitats [93]. In our case, habitat
suitability noticeably increased with ‘slope’ and reached a maximum at around 25–26%
(Figure 3B). Interestingly, the results of a special study showed that runoff increased as
slope gradient reached a critical point of 25%, then runoff decreased [94].

3.4. SDMs Based on Selected Land Cover Variables from the EarthEnv Dataset

After filtering, the number of presence records was reduced to 184. The BART model
showed a good performance with the continuous Boyce index reaching 0.937 and an AUC
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and TSS of 0.832 and 0.536, respectively. The BART model strongly highlighted ‘Open
water’ and ‘Cultivated and Managed Vegetation’ as important predictors (Figure 4).
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Because life cycles of both the pathogen and its hosts are dependent on the availability
of water, it was no surprise that the percentage of open water in the landscape was an
influential factor. However, in excess it negatively impacted Bd habitat suitability. In
this respect, an optimum was reached at around 28%, after which the response curve
underwent a gradual decline (Figure 4A). A similar hump-shaped relationship was found
between the percentage of land covered with cultivated and managed vegetation; in other
words, crop- and farmland and habitat suitability (Figure 4B). Impacts of land-use changes
from increased agricultural production are commonly considered negative because they
usually alter the habitat physically or chemically such that survival of resident organisms
is questionable [95]. This can apply to both Bd and its amphibian hosts. For instance,
pesticides can inhibit the immune response in amphibians, making them more susceptible
to disease [96], but on the other hand certain fungicides are capable of reducing the number
of Bd zoospores on frogs [97].

Nevertheless, initially the increase in the percentage of crop- and farmland in the
landscape favored Bd habitat suitability, which apparently was mediated by the hosts
while there was still a substantial amount of natural habitat. Amphibians have been found
breeding in a variety of habitats that are substantially different from their former natural
breeding habitats. In this respect, agricultural landscapes are of no exception [98], and the
corresponding human infrastructure has been shown to provide beneficial environments
to amphibian species [99,100]. Even so, a further increase of the percentage of crop- and
farmland in the landscape (beyond approximately 60%) leads to a sharp drop in habitat
suitability (assuming that heavily exploited agricultural areas are not fit for the pathogen).
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3.5. SDMs Based on Selected Soil Feature Variables from the Land-Atmosphere Interaction
Research Group Dataset

Filtering the number of presence records reduced them to 181. The BART model
showed a good performance with the continuous Boyce index reaching 0.975 and an AUC
and TSS of 0.795 and 0.468, respectively. In terms of top importance, the algorithm pointed
toward the concentration of hydrogen ions (pH) (Figure 5).
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Figure 5. Partial response curve for concentration of hydrogen ions (pH × 10).

The partial response curve illustrating the relationship between acidity/basicity and
habitat suitability (Figure 5) indicated the best conditions were in the range of pH between
5.5 and 6.5 (with an optimum found around pH 6). This does not mean the pathogen cannot
occur in the field beyond this range. If it does, apparently this occurs under less favorable
conditions. Experimentally isolates of Bd have been shown to have the most growth at
pH 6–7, less growth at pH 8, and minimal growth at pH 4 and 5 [82].

In summary, evaluation metrics for SDMs built on separate environmental datasets
showed satisfactory results, meaning the applied predictor variables more or less fully
captured habitat characteristics of the fungus species. Perhaps only the model based on
topographic variables showed a relatively reduced performance; its evaluation metrics
were all lower compared to the rest but nevertheless pointed out the importance of ‘Slope’.

Influential predictors as assessed by the BART algorithm were pooled and subjected to
a selection procedure using the R program ‘Boruta’. In the end, the algorithm selected the
following variables: Annual Precipitation, Max. Temperature of Warmest Month, Continen-
tality, Gravel content, Organic carbon, PET seasonality, Evergreen/Deciduous Needleleaf
Trees, Open Water, Deciduous Broadleaf Trees, Cultivated and Managed Vegetation, and
Urban/Built-up. Interestingly, roughly half of these were land cover variables from the
EarthEnv dataset. The final BART algorithm with the combined metrics resulted in two top
predictors: Continentality and Cultivated and Managed Vegetation. The corresponding
SDM (Figure 6) showed a pattern of greater Bd habitat suitability to the west and south of
the area modeled.
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The downscaled Bd habitat map for Ukraine (Figure 7) similarly showed the greatest
Bd habitat suitability to the west with some suitable patches along the Dnipro River, in the
Lower Danube area, and in the Crimea. Since the greatest diversity of amphibian species in
Ukraine is observed in the Carpathians and forest regions [101], the confirmed presence
of Bd tends to be a potential threat to a large proportion of the country’s batrachofauna
(17 of 19 species; excluding Salamandra salamandra (Linnaeus, 1758)). In addition, suitable
patches of habitat for Bd were found along the Dnipro River and in wetlands in the Lower
Danube area.

Sporadic areas in the Crimea could accommodate the fungus as well if it ever reaches
the peninsula (perhaps via the Northern Crimean irrigation canal).

A consensus distribution model (Figure 8) was categorized using Jenks’ natural breaks
classification into three frequency distribution classes: low (habitat suitability between
0.04 and 0.27), medium (between 0.27 and 0.58), and high (between 0.58 and 0.93). Max-
imum values of habitat suitability (>0.9) were observed in the following administrative
regions (oblasts): Ivano-Frankivsk, Transcarpathia, Lviv, Chernivtsi, Ternopil, Volyn, and
Rivne (Figure 8). In summary, regarding the search for Bd, these are areas in Ukraine where
the pathogen most possibly might occur, and focusing on them would reduce the areas
for direct field samplings and facilitate the identification of potential “hotspots” as well
as “coldspots”.
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4. Conclusions

The continuing spread of Bd suggests that the geographic distribution of this pathogen
is greater than currently known. Despite the apparent global invasion of Bd and a corre-
sponding spate of past amphibian losses [84], there are many locations where this disease-
causing pathogen has not yet been detected [102]. The use of broad environmental data
to model the distribution of such a small fungal organism may cause some uncertainty
depending on the geographical and study-variable scales; however, diverse research groups
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are using these tools to model pathogens’ distributions [22,65,103]. Accordingly, ecological
niche modeling (ENM) is an effective way to evaluate how these environmental factors
affect current species distributions [104]. In this study, we focused on an attempt to high-
light important variables shaping the current niche of a pathogenic organism using a
variety of sets of bioclimatic and environmental predictors. The modeling algorithm in
this case pointed toward ‘Continentality’ and ‘Cultivated and Managed Vegetation’ as
comprehensive predictors of Bd distribution, therefore binding in such a way bioclimatic
and human-induced factors. In this respect, unveiling macroscale environmental drivers
of Bd and their interactions is crucial for proper conservation management of amphibians
in the wake of an expanding disease [105,106]. In addition to the need to identify risk
factors facilitating the occurrence of Bd, from a management perspective it is profoundly
important to point out high risk areas of infection that potentially can favor the fungus.
This is particularly substantial for Ukraine, where surveys for detecting the pathogen are
yet to be undertaken.

The results of this study can inform the development of a strategic surveillance and
monitoring program for Ukraine amphibian populations and associated threats (including
Bd) as well as the development of biosecurity priorities to safeguard unique regions
and taxa.

Author Contributions: Conceptualization, O.N., M.P., A.A.K. and V.T.; data curation, O.N., M.P.,
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