Microclimatic Growth Rates of Batrachochytrium salamandrivorans under Current and Future Climates: A Very High Spatial Resolution SDM for Bsal and Salamandra salamandra (Linnaeus, 1758) within Forest Habitats of the European Hotspot Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Mechanistic SDMs for Batrachochytrium salamandrivorans
2.3. Correlative SDMs for S. salamandra
2.4. Niche Quantification
3. Results
3.1. Microclimatic Habitat Suitability for S. salamandra and B. salamandrivorans
3.2. Niche Quantification
4. Discussion
4.1. Current Situation
4.2. Future Scenarios
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IUCN Red List. Available online: https://www.iucnredlist.org/ (accessed on 12 August 2024).
- Hammer, A.J.; McDonnell, M.J. Amphibian ecology and conservation in the urbanising world: A review. Biol. Conserv. 2008, 141, 2432–2449. [Google Scholar] [CrossRef]
- Polo-Cavia, N.; Burraco, P.; Gomez-Mestre, I. Low levels of chemical anthropogenic pollution may threaten amphibians by impairing predator recognition. Aquat. Toxicol. 2016, 172, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Snow, N.P.; Witmer, G. American bullfrogs as invasive species: A review of the introduction, subsequent problems, management options, and future directions. Proc. Vertebr. Pest Conf. 2010, 24, 86–89. [Google Scholar] [CrossRef]
- Blaustein, A.R.; Walls, S.C.; Bancroft, B.A.; Lawler, J.J.; Searle, C.L.; Gervasi, S.S. Direct and indirect effects of climate change on amphibian populations. Diversity 2010, 2, 281–313. [Google Scholar] [CrossRef]
- Fu, M.; Waldman, B. Novel chytrid pathogen variants and the global amphibian pet trade. Conserv. Biol. 2022, 36, e13938. [Google Scholar] [CrossRef]
- Martel, A.; Blooi, M.; Adriansen, C.; van Rooij, P.; Beukema, W.; Fisher, M.C.; Farrer, R.A.; Schmidt, B.R.; Tobler, U.; Goka, K.; et al. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 2014, 346, 630–631. [Google Scholar] [CrossRef]
- Laking, A.E.; Ngo, H.N.; Pasmans, F.; Martel, A.; Nguyen, T.T. Batrachochytrium salamandrivorans is the predominant chytrid fungus in Vietnamese salamanders. Sci. Rep. 2017, 7, 44443. [Google Scholar] [CrossRef]
- Nguyen, T.T.; van Nguyen, T.; Ziegler, T.; Pasmans, F.; Martel, A. Trade in wild anurans vectors the urodelan pathogen Batrachochytrium salamandrivorans into Europe. Amphib. Reptil. 2017, 38, 554–556. [Google Scholar] [CrossRef]
- Farrer, R.A. Batrachochytrium salamandrivorans. Trends Microbiol. 2019, 27, 892–893. [Google Scholar] [CrossRef]
- Van Rooij, P.; Martel, A.; Haesebrouck, F.; Pasmans, F. Amphibian chytridiomycosis: A review with focus on fungus-host interactions. J. Vet. Res. 2015, 46, 137. [Google Scholar] [CrossRef]
- Martel, A.; Spitzen-van der Sluijs, A.; Blooi, M.; Bert, W.; Ducatelle, R.; Fisher, M.C.; Woeltjes, A.; Bosman, W.; Chiers, K.; Bossuyt, F.; et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc. Natl. Acad. Sci. USA 2013, 110, 15325–15329. [Google Scholar] [CrossRef]
- Kwet, A. Reptilien & Amphibien Europas; Franckh-Kosmos Verlags-GmbH & Co. KG: Stuttgart, Germany, 2022. [Google Scholar]
- Wagner, N.; Harms, W.; Hildebrandt, F.; Martens, A.; Ong, S.L.; Wallrich, K.; Lötters, S.; Veith, M. Do habitat preferences of European fire salamander (Salamandra salamandra) larvae differ among landscapes? A case study from Western Germany. Salamandra 2020, 56, 254–264. [Google Scholar]
- Börder, M.; Karlsson, A.; Sinsch, U. Bestandsdichte, Arealnutzung und Gefährdung einer Feuersalamander-Population (Salamandra salamandra) im Stadtgebiet von Koblenz (Rheinland-Pfalz). Z. Feldherp. 2011, 18, 99–116. [Google Scholar]
- IUCN Red List. IUCN SSC Amphibian Specialist Group. 2023. Salamandra salamandra. The IUCN Red List of Threatened Species 2023: e.T59467A219148292. Available online: https://www.iucnredlist.org/species/59467/219148292 (accessed on 6 February 2024).
- Wilkinson, A.; Hloch, A.; Mueller-Paul, J.; Huber, L. The effect of brumation on memory retention. Sci. Rep. 2017, 7, 40079. [Google Scholar] [CrossRef] [PubMed]
- Bogaerts, S.; Lötters, S.; Spitzen-van der Sluijs, A.; Preiβler, K.; Caspers, B.; Oswald, P.; Michaels, C.; ter Meulen, T.; Reinhardt, T.; Martel, A.; et al. Best Practice Guidelines (Striped) Fire Salamander, Salamandra salamandra (Terrestris); EAZA Amphibian Taxon Advisory Group: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Catenazzi, A. Ecological implications of metabolic compensation at low temperatures in salamanders. PeerJ 2016, 4, e2072. [Google Scholar] [CrossRef]
- Lötters, S.; Veith, M.; Wagner, N.; Martel, A.; Pasmans, F. Bsal-driven salamander mortality pre-dates the European index outbreak. Salamandra 2020, 56, 239–242. [Google Scholar]
- Spitzen-van der Sluijs, A.; Spikmans, F.; Bosman, W.; de Zeeuw, M.; van der Meij, T.; Goverse, E.; Kik, M.; Pasmans, F.; Martel, A. Rapid enigmatic decline drives the fire salamander (Salamandra salamandra) to the edge of extinction in The Netherlands. Amphib. Reptil. 2013, 34, 233–239. [Google Scholar] [CrossRef]
- Stegen, G.; Pasmans, F.; Schmidt, B.R.; Rouffaer, L.O.; van Praet, S.; Schaub, M.; Canessa, S.; Laudelout, A.; Kinet, T.; Adriaensen, C.; et al. Drivers of salamander extirpation mediated by Batrachochytrium salamandrivorans. Nature 2017, 544, 353–356. [Google Scholar] [CrossRef]
- Spitzen-van der Sluijs, A.; Martel, A.; Asselberghs, J.; Bales, E.L.; Beukema, W.; Bletz, M.C.; Dalbeck, L.; Goverse, E.; Kerres, A.; Kniet, T.; et al. Expanding distribution of lethal amphibian fungus Batrachochytrium salamandrivorans in Europe. Emerg. Infect. Dis. 2016, 22, 1286. [Google Scholar] [CrossRef]
- Dalbeck, L.; Düssel-Siebert, H.; Kerres, A.; Kirst, K.; Koch, A.; Lötters, S.; Ohlhoff, D.; Sabino-Pinto, J.; Preißler, K.; Schulte, U.; et al. Die Salamanderpest und ihr Erreger Batrachochytrium salamandrivorans (Bsal): Aktueller Stand in Deutschland. Z. Feldherp. 2018, 25, 1–22. [Google Scholar]
- Lötters, S.; Wagner, N.; Albaladejo, G.; Böning, P.; Dalbeck, L.; Düssel, H.; Feldmeier, S.; Guschal, M.; Kirst, K.; Ohlhoff, D.; et al. The amphibian pathogen Batrachochytrium salamandrivorans in the hotspot of its European invasive range: Past–present–future. Salamandra 2020, 56, 173–188. [Google Scholar]
- Schulz, V.; Schulz, A.; Klamke, M.; Preissler, K.; Sabino-Pinto, J.; Müsken, M.; Schlüpmann, M.; Heldt, L.; Kamprad, F.; Enss, J.; et al. Batrachochytrium salamandrivorans in the Ruhr District, Germany: History, distribution, decline dynamics and disease symptoms of the salamander plague. Salamandra 2020, 56, 189–214. [Google Scholar]
- European Commission. Mitigating a New Infectious Disease in Salamanders to Counteract the Loss of European Biodiversity. Report, Tender ENV.B.3/SER/2016/0028, 2021. Available online: http://bsaleurope.com/wp-content/uploads/2021/03/Report_ENV.B.3-SER-2016-0028.pdf (accessed on 13 August 2024).
- Bezirksregierung Arnsberg. Available online: https://www.bra.nrw.de/presse/massensterben-von-feuersalamandern-im-arnsberger-wald-bei-oeventrop-undfreienohl#:~:text=Im%20Bereich%20Oeventrop%20und%20Freienohl,und%20sterben%20nach%20kurzer%20Krankheitsdauer (accessed on 3 May 2022).
- Martel, A.; Vila-Escale, M.; Fernández-Giberteau, D.; Martinez-Silvestre, A.; Canessa, S.; van Praet, S.; Pannon, P.; Chiers, K.; Ferran, A.; Kelly, M.; et al. Integral chain management of wildlife diseases. Conserv. Lett. 2020, 13, e12707. [Google Scholar] [CrossRef]
- Bayrisches Landesamt für Umwelt. Available online: https://www.lfu.bayern.de/pressemitteilungen/c/1388268/17-20-hautpilz-bei-feuersalamander-nachgewiesen (accessed on 3 May 2022).
- Canessa, S.; Bozzuto, C.; Campbell Grant, E.H.; Cruickshank, S.S.; Fisher, M.C.; Koella, J.C.; Lötters, S.; Martel, A.; Pasmans, F.; Scheele, B.C.; et al. Decision-making for mitigating wildlife diseases: From theory to practice for an emerging fungal pathogen of amphibians. J. Appl. Ecol. 2018, 55, 1987–1996. [Google Scholar] [CrossRef]
- Blooi, M.; Martel, A.; Haesebrouck, F.; Vercammen, F.; Bonte, D.; Pasmans, F. Treatment of urodelans based on temperature dependent infection dynamics of Batrachochytrium salamandrivorans. Sci. Rep. 2015, 5, 8037. [Google Scholar] [CrossRef] [PubMed]
- Carter, E.D.; Bletz, M.C.; le Sage, M.; la Bumbard, B.; Rollins-Smith, L.A.; Woodhams, D.C.; Miller, D.L.; Gray, M.J. Winter is coming–Temperature affects immune defenses and susceptibility to Batrachochytrium salamandrivorans. PLoS Pathog. 2021, 17, e1009234. [Google Scholar] [CrossRef]
- Beukema, W.; Pasmans, F.; van Praet, S.; Ferri-Yáñez, F.; Kelly, M.; Laking, A.E.; Jesse, E.; Speybroeck, J.; Verheyen, K.; Lens, L.; et al. Microclimate limits thermal behaviour favourable to disease control in a nocturnal amphibian. Ecol. Lett. 2021, 24, 27–37. [Google Scholar] [CrossRef]
- IPCC Sixth Assessment Report. Available online: https://www.ipcc.ch/report/ar6/wg1/ (accessed on 12 August 2024).
- Diffenbaugh, N.S.; Barnes, E.A. Data-driven predictions of the time remaining until critical global warming thresholds are reached. Proc. Natl. Acad. Sci. USA 2023, 120, e2207183120. [Google Scholar] [CrossRef]
- Rödder, D.; Schmidtlein, S.; Veith, M.; Lötters, S. Alien invasive Slider turtle in unpredicted habitat: A matter of niche shift or predictors studied? PLoS ONE 2009, 4, e7843. [Google Scholar] [CrossRef]
- Fourcade, Y.; Besnard, A.G.; Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob. Ecol. Biogeogr. 2018, 27, 245–256. [Google Scholar] [CrossRef]
- Broennimann, O.; Treier, U.A.; Müller-Schärer, H.; Thuiller, W.; Peterson, A.T.; Guisan, A. Evidence of climatic niche shift during biological invasion. Ecol. Lett. 2007, 10, 701–709. [Google Scholar] [CrossRef]
- Naiman, R.J.; Décamps, H.; McClain, M.E.; Likens, G.E. Riparia—Ecology, Conservation and Management of Streamside Communities; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Deutsch, C.A.; Tewksbury, J.J.; Huey, R.B.; Sheldon, K.S.; Ghalambor, C.K.; Haak, D.C.; Martin, P.R. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. USA 2008, 105, 6668–6672. [Google Scholar] [CrossRef]
- Rodriguez-Sanchez, F. rSDM: Species Distribution and Niche Modelling in R. R Package, version 0.3.9. 2022. Available online: https://github.com/Pakillo/rSDM (accessed on 13 August 2024).
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef]
- Qin, Y.; Abatzoglou, J.T.; Siebert, S.; Huning, L.S.; AghaKouchak, A.; Mankin, J.S.; Hong, C.; Tong, D.; Davis, S.J.; Mueller, N.D. Agricultural risks from changing snowmelt. Nat. Clim. Chang. 2020, 10, 459–465. [Google Scholar] [CrossRef]
- Haesen, S.; Lembrechts, J.J.; de Frenne, P.; Lenoir, J.; Aalto, J.; Ashcroft, M.B.; Kopecky, M.; Luoto, M.; Maclean, I.; Nijs, I.; et al. ForestTemp–Sub-canopy microclimate temperatures of European forests. Glob. Chang. Biol. 2021, 27, 6307–6319. [Google Scholar] [CrossRef]
- Evans, T.G.; Diamond, S.E.; Kelly, M.W. Mechanistic species distribution modelling as a link between physiology and conservation. Conserv. Physiol. 2015, 3, cov056. [Google Scholar] [CrossRef]
- Maclean, I.M.D.; Mosedale, J.R.; Bennie, J.J. Microclima: An R package for modelling meso- and microclimate. Methods Ecol. Evol. 2018, 10, 280–290. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Phillips, S.; Leathwick, J.; Elith, J. Dismo: Species Distribution Modeling. R Package, Version 1.3-9. 2022. Available online: https://CRAN.R-project.org/package=dismo (accessed on 13 August 2024).
- Poisot, T. The digitize package: Extracting numerical data from scatterplots. R J. 2011, 3, 25–26. [Google Scholar] [CrossRef]
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.G.; Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005, 25, 1965–1978. [Google Scholar] [CrossRef]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modelling with Raster Data. R Package, Version 3.5-29. 2022. Available online: https://CRAN.R-project.org/package=raster (accessed on 13 August 2024).
- Folashade, D.; Microsoft Corporation; Weston, S.; Tenenbaum, D. DoParallel: Foreach Parallel Adaptor for the ‘Parallel’ Package. R Package, Version 1.0.17. 2022. Available online: https://CRAN.R-project.org/package=doParallel (accessed on 13 August 2024).
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Barber, R.A.; Ball, S.G.; Morris, R.K.; Gilbert, F. Target-group backgrounds prove effective at correcting sampling bias in Maxent models. Divers. Distrib. 2022, 28, 128–141. [Google Scholar] [CrossRef]
- Mandrekar, J.N. Receiver operating characteristic curve in diagnostic test assessment. J. Thorac. Oncol. 2010, 5, 1315–1316. [Google Scholar] [CrossRef] [PubMed]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J. A brief tutorial on Maxent. ATT Res. 2005, 190, 231–259. [Google Scholar]
- Ginal, P.; Tan, W.C.; Rödder, D. Invasive risk assessment and expansion of the realized niche of the Oriental Garden Lizard Calotes versicolor species complex (Daudin, 1802). Front. Biogeogr. 2022, 14, e54299. [Google Scholar] [CrossRef]
- Cavanaugh, J.E.; Neath, A.A. The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdiscip. Rev. Comput. Stat. 2019, 11, e1460. [Google Scholar] [CrossRef]
- Blonder, B.; Morrow, C.B.; Harris, D.J.; Brown, S.; Butruille, G.; Laini, A.; Chen, D. Hypervolume: High Dimensional Geometry, Set Operations, Projection, and Inference Using Kernel Density Estimation, Support Vector Machines, and Convex Hulls. R Package, Version 3.1.0.. 2022. Available online: https://cran.r-project.org/web/packages/hypervolume/hypervolume.pdf (accessed on 13 August 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Blonder, B.; Lamanna, C.; Violle, C.; Enquist, B.J. The n-dimensional hypervolume. Glob. Ecol. Biogeogr. 2014, 23, 595–609. [Google Scholar] [CrossRef]
- De Frenne, P.; Lenoir, J.; Luoto, M.; Scheffers, B.R.; Zellweger, F.; Aalto, J.; Ashcroft, M.B.; Christiansen, D.M.; Decocq, G.; de Pauw, K.; et al. Forest microclimates and climate change: Importance, drivers and future research agenda. Glob. Chang. Biol. 2021, 27, 2279–2297. [Google Scholar] [CrossRef]
- Kearney, M.; Shine, R.; Porter, W.P. The potential for behavioral thermoregulation to buffer “cold-blooded” animals against climate warming. Proc. Natl. Acad. Sci. USA 2009, 106, 3835–3840. [Google Scholar] [CrossRef]
- Malagon, D.A.; Melara, L.A.; Prosper, O.F.; Lenhart, S.; Carter, E.D.; Fordyce, J.A.; Peterson, A.C.; Miller, D.L.; Gray, M.J. Host density and habitat structure influence host contact rates and Batrachochytrium salamandrivorans transmission. Sci. Rep. 2020, 10, 5584. [Google Scholar] [CrossRef]
- Carter, E.D.; DeMarchi, J.A.; Wilber, M.Q.; Miller, D.L.; Gray, M.J. Batrachochytrium salamandrivorans is necronotic: Carcasses could play a role in Bsal transmission. Front. Amphib. Reptile Sci. 2024, 2, 1284608. [Google Scholar] [CrossRef]
- Gilbert, M.J.; Spitzen-van der Sluijs, A.; Canessa, F.; Bosch, J.; Cunningham, A.; Grasselli, E.; Laudelout, A.; Lötters, S.; Miaud, C.; Salvidio, S.; et al. Mitigating Batrachochytrium salamandrivorans in Europe. In Batrachochytrium salamandrivorans Action Plan for European Urodeles; European Commission: Nijmegen, The Netherlands, 2020. [Google Scholar]
- Beukema, W.; Erens, J.; Schulz, V.; Stegen, G.; Spitzen-van der Sluijs, A.; Stark, T.; Laudelout, A.; Kinet, T.; Kirschey, T.; Poulain, M.; et al. Landscape epidemiology of Batrachochytrium salamandrivorans: Reconciling data limitations and conservation urgency. Ecol. Appl. 2021, 31, e02342. [Google Scholar] [CrossRef] [PubMed]
- Yap, T.A.; Nguyen, N.T.; Serr, M.; Shepack, A.; Vredenburg, V.T. Batrachochytrium salamandrivorans and the risk of a second amphibian pandemic. EcoHealth 2017, 14, 851–864. [Google Scholar] [CrossRef] [PubMed]
- Sabino-Pinto, J.; Veith, M.; Vences, M.; Steinfartz, S. Asymptomatic infection of the fungal pathogen Batrachochytrium salamandrivorans in captivity. Sci. Rep. 2018, 8, 11767. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Quiring, S.M.; Pena-Gallardo, M.; Yuan, S.; Dominguez-Castro, F. A review of environmental droughts: Increased risk under global warming? Earth Sci. Rev. 2020, 201, 102953. [Google Scholar] [CrossRef]
Climate Parameter | Bioclimatic Variables | PC1 | PC2 | PC3 |
---|---|---|---|---|
Annual mean temperature | bio1 | 0.43 | 0.73 | 0.11 |
Temperature seasonality | bio4 | −0.89 | −0.21 | −0.03 |
Mean temperature of the warmest month | bio5 | −0.33 | 0.63 | 0.59 |
Mean temperature of the coldest month | bio6 | 0.95 | 0.10 | −0.07 |
Temperature annual range | bio7 | −0.96 | 0.02 | 0.18 |
Mean temperature of warmest quarter | bio10 | −0.07 | 0.64 | −0.73 |
Mean temperature of coldest quarter | bio11 | 0.86 | 0.07 | 0.36 |
Eigenvalues | 3.65 | 1.40 | 1.06 | |
Explained variance | 52.12 | 20.03 | 15.17 |
Vol1 vs. Vol2 | Vol1 | Vol2 | Jaccard | Sorensen | Frac_Unique_1 | Frac_Unique_2 |
---|---|---|---|---|---|---|
Bsal.pos vs. S. salamandra | 24.79 | 75.14 | 0.30 | 0.46 | 0.08 | 0.70 |
Bsal.neg vs. Bsal.pos | 42.04 | 24.79 | 0.54 | 0.70 | 0.45 | 0.06 |
S.salamandra vs. Background | 75.14 | 152.89 | 0.47 | 0.64 | 0.03 | 0.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deiß, F.; Ginal, P.; Rödder, D. Microclimatic Growth Rates of Batrachochytrium salamandrivorans under Current and Future Climates: A Very High Spatial Resolution SDM for Bsal and Salamandra salamandra (Linnaeus, 1758) within Forest Habitats of the European Hotspot Area. Diversity 2024, 16, 510. https://doi.org/10.3390/d16080510
Deiß F, Ginal P, Rödder D. Microclimatic Growth Rates of Batrachochytrium salamandrivorans under Current and Future Climates: A Very High Spatial Resolution SDM for Bsal and Salamandra salamandra (Linnaeus, 1758) within Forest Habitats of the European Hotspot Area. Diversity. 2024; 16(8):510. https://doi.org/10.3390/d16080510
Chicago/Turabian StyleDeiß, Felix, Philipp Ginal, and Dennis Rödder. 2024. "Microclimatic Growth Rates of Batrachochytrium salamandrivorans under Current and Future Climates: A Very High Spatial Resolution SDM for Bsal and Salamandra salamandra (Linnaeus, 1758) within Forest Habitats of the European Hotspot Area" Diversity 16, no. 8: 510. https://doi.org/10.3390/d16080510
APA StyleDeiß, F., Ginal, P., & Rödder, D. (2024). Microclimatic Growth Rates of Batrachochytrium salamandrivorans under Current and Future Climates: A Very High Spatial Resolution SDM for Bsal and Salamandra salamandra (Linnaeus, 1758) within Forest Habitats of the European Hotspot Area. Diversity, 16(8), 510. https://doi.org/10.3390/d16080510