Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = chum salmon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
59 pages, 51081 KiB  
Article
Ultrastructural Study and Immunohistochemical Characteristics of Mesencephalic Tegmentum in Juvenile Chum Salmon (Oncorhynchus keta) Brain After Acute Traumatic Injury
by Evgeniya V. Pushchina, Evgeniya A. Pimenova, Ilya A. Kapustyanov and Mariya E. Bykova
Int. J. Mol. Sci. 2025, 26(2), 644; https://doi.org/10.3390/ijms26020644 - 14 Jan 2025
Viewed by 1284
Abstract
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon (Oncorhynchus keta) was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of fasciculus longitudinalis medialis (NFLM), and the nucleus of the oculomotor [...] Read more.
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon (Oncorhynchus keta) was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of fasciculus longitudinalis medialis (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro–glial relationships in them. Neurons of three size types with a high metabolic rate, characterized by the presence of numerous mitochondria, polyribosomes, Golgi apparatus, and cytoplasmic inclusions (vacuoles, lipid droplets, and dense bodies), were distinguished. It was found that large interneurons of the NFLM formed contacts with protoplasmic astrocytes. Excitatory synaptic structures were identified in the tegmentum and their detailed characteristic are provided for the first time. Microglia-like cells were found in the NIII. The ultrastructural characteristics of neurogenic zones of the tegmentum of juvenile chum salmon were also determined for the first time. In the neurogenic zones of the tegmentum, adult-type neural stem progenitor cells (aNSPCs) corresponding to cells of types III and IVa Danio rerio. In the neurogenic zones of the tegmentum, neuroepithelial-like cells (NECs) corresponding to cells previously described from the zebrafish cerebellum were found and characterized. In the tegmentum of juvenile chum salmon, patterns of paracrine neurosecretion were observed and their ultrastructural characteristics were recorded. Patterns of apoptosis in large neurons of the tegmentum were examined by TEM. Using immunohistochemical (IHC) labeling of the brain lipid-binding protein (BLBP) and aromatase B (AroB), patterns of their expression in the tegmentum of intact animals and in the post-traumatic period after acute injury to the medulla oblongata were characterized. The response to brainstem injury in chum salmon was found to activate multiple signaling pathways, which significantly increases the BLBP and AroB expression in various regions of the tegmentum and valvula cerebelli. However, post-traumatic patterns of BLBP and AroB localizations are not the same. In addition to a general increase in BLBP expression in the tegmental parenchyma, BLBP overexpression was observed in the rostro-lateral tegmental neurogenic zone (RLTNZ), while AroB expression in the RLTNZ was completely absent. Another difference was the peripheral overexpression of AroB and the formation of dense reactive clusters in the ventro-medial zone of the tegmentum. Thus, in the post-traumatic period, various pathways were activated whose components were putative candidates for inducers of the “astrocyte-like” response in the juvenile chum salmon brain that are similar to those present in the mammalian brain. In this case, BLBP acted as a factor enhancing the differentiation of both radial glia and neurons. Estradiol from AroB+ astrocytes exerted paracrine neuroprotective effects through the potential inhibition of inflammatory processes. These results indicate a new role for neuronal aromatization as a mechanism preventing the development of neuroinflammation. Moreover, our findings support the hypothesis that BLBP is a factor enhancing neuronal and glial differentiation in the post-traumatic period in the chum salmon brain. Full article
(This article belongs to the Special Issue Molecular Research on Brain Injury)
Show Figures

Figure 1

11 pages, 2222 KiB  
Article
First Report of Bacterial Kidney Disease (BKD) Caused by Renibacterium salmoninarum in Chum Salmon (Oncorhynchus keta) Farmed in South Korea
by Kyoung-Hui Kong, In-Ha Gong, Sung-Ju Jung, Myung-Joo Oh, Myung-Hwa Jung, Hyun-Ja Han, Hyoung Jun Kim and Wi-Sik Kim
Microorganisms 2024, 12(11), 2329; https://doi.org/10.3390/microorganisms12112329 - 15 Nov 2024
Viewed by 1428
Abstract
In 2021, a prominent increase in mortality was observed in juvenile and subadult cultured chum salmon (Oncorhynchus keta) on a mariculture farm in Jeollanam-do Province, South Korea. The affected fish displayed distinct symptoms: pale gills, petechial hemorrhages in the muscles, and [...] Read more.
In 2021, a prominent increase in mortality was observed in juvenile and subadult cultured chum salmon (Oncorhynchus keta) on a mariculture farm in Jeollanam-do Province, South Korea. The affected fish displayed distinct symptoms: pale gills, petechial hemorrhages in the muscles, and white nodules on the kidneys. Infectious pancreatic necrosis virus (IPNV) was cultured from some fish samples using fish cell lines. Bacteria were isolated from various fish tissues using kidney disease medium-two (KDM-2) culture medium. By detecting and sequencing the 16S rRNA gene using DNA extracted from the kidneys of the infected fish via PCR, the isolated bacteria were identified as Renibacterium salmoninarum. Histopathological examination primarily focused on hematopoietic tissues of kidneys and revealed clear evidence of severe necrosis and granulomatous changes. Additionally, nuclei with peripherally displaced chromatin were abundant in the kidneys of affected fish. These findings suggest that mass mortality of chum salmon was caused by R. salmoninarum, which induced typical bacterial kidney disease (BKD) symptoms, without IPNV infection. This represents the first outbreak of BKD attributed to R. salmoninarum infection in farmed chum salmon in South Korea. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

12 pages, 2909 KiB  
Review
Exploring Fish Parvalbumins through Allergen Names and Gene Identities
by Johannes M. Dijkstra, Annette Kuehn, Eiji Sugihara and Yasuto Kondo
Genes 2024, 15(10), 1337; https://doi.org/10.3390/genes15101337 - 18 Oct 2024
Viewed by 1506
Abstract
Parvalbumins are the main source of food allergies in fish meat, with each fish possessing multiple different parvalbumins. The naming convention of these allergens in terms of allergen codes (numbers) is species-specific. Allergen codes for parvalbumin isoallergens and allergen variants are based on [...] Read more.
Parvalbumins are the main source of food allergies in fish meat, with each fish possessing multiple different parvalbumins. The naming convention of these allergens in terms of allergen codes (numbers) is species-specific. Allergen codes for parvalbumin isoallergens and allergen variants are based on sequence identities relative to the first parvalbumin allergen discovered in that particular species. This means that parvalbumins with similar allergen codes, such as catfish Pan h 1.0201 and redfish Seb m 1.0201, are not necessarily the most similar proteins, or encoded by the same gene. Here, we aim to elucidate the molecular basis of parvalbumins. We explain the complicated genetics of fish parvalbumins in an accessible manner for fish allergen researchers. Teleost or modern bony fish, which include most commercial fish species, have varying numbers of up to 22 parvalbumin genes. All have derived from ten parvalbumin genes in their common ancestor. We have named these ten genes “parvalbumin 1-to-10” (PVALB1-to-PVALB10), building on earlier nomenclature established for zebrafish. For duplicated genes, we use variant names such as, for example, “PVALB2A and PVALB2B”. As illustrative examples of our gene identification system, we systematically analyze all parvalbumin genes in two common allergy-inducing species in Japan: red seabream (Pagrus major) and chum salmon (Oncorhynchus keta). We also provide gene identifications for known parvalbumin allergens in various fish species. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

18 pages, 6603 KiB  
Article
Comparison of Structural and Physicochemical Characteristics of Skin Collagen from Chum Salmon (Cold-Water Fish) and Nile Tilapia (Warm-Water Fish)
by Yan Zheng, Yushuang Li, Cong Ke, Xiyuan Gao, Zhiyu Liu and Junde Chen
Foods 2024, 13(8), 1213; https://doi.org/10.3390/foods13081213 - 16 Apr 2024
Cited by 4 | Viewed by 2507
Abstract
This study compared collagens from cold-water and warm-water fish for their structural, rheological, and functional properties, and explored their potential applications, aiming to realize the high-value utilization of marine biological resources. To this end, chum salmon skin collagen (CSSC) and Nile tilapia skin [...] Read more.
This study compared collagens from cold-water and warm-water fish for their structural, rheological, and functional properties, and explored their potential applications, aiming to realize the high-value utilization of marine biological resources. To this end, chum salmon skin collagen (CSSC) and Nile tilapia skin collagen (NTSC) were both successfully extracted. Collagens from the two species had different primary and secondary structures, with NTSC having a higher molecular weight, imino acid content, and α-helices and β-turns content. The denaturation temperatures were 12.01 °C for CSSC and 31.31 °C for NTSC. CSSC was dominated by viscous behavior and its structure varied with temperature, while NTSC was dominated by elastic behavior and its structure remained stable with temperature. Both collagens had good oil holding capacity, foaming capacity, and emulsifying activity, but NTSC had better water holding capacity and foaming and emulsifying stability. Their different properties make CSSC more suitable for the preservation of frozen and chilled foods and the production of sparkling beverages, and give NTSC greater potential in biofunctional materials and solid food processing. Full article
(This article belongs to the Special Issue High-Value Utilization of Marine Biological Resources)
Show Figures

Graphical abstract

40 pages, 11791 KiB  
Article
Post-Traumatic Expressions of Aromatase B, Glutamine Synthetase, and Cystathionine-Beta-Synthase in the Cerebellum of Juvenile Chum Salmon, Oncorhynchus keta
by Evgeniya V. Pushchina, Mariya E. Bykova and Anatoly A. Varaksin
Int. J. Mol. Sci. 2024, 25(6), 3299; https://doi.org/10.3390/ijms25063299 - 14 Mar 2024
Cited by 4 | Viewed by 1564
Abstract
In adult fish, neurogenesis occurs in many areas of the brain, including the cerebellum, with the ratio of newly formed cells relative to the total number of brain cells being several orders of magnitude greater than in mammals. Our study aimed to compare [...] Read more.
In adult fish, neurogenesis occurs in many areas of the brain, including the cerebellum, with the ratio of newly formed cells relative to the total number of brain cells being several orders of magnitude greater than in mammals. Our study aimed to compare the expressions of aromatase B (AroB), glutamine synthetase (GS), and cystathionine-beta-synthase (CBS) in the cerebellum of intact juvenile chum salmon, Oncorhynchus keta. To identify the dynamics that determine the involvement of AroB, GS, and CBS in the cellular mechanisms of regeneration, we performed a comprehensive assessment of the expressions of these molecular markers during a long-term primary traumatic brain injury (TBI) and after a repeated acute TBI to the cerebellum of O. keta juveniles. As a result, in intact juveniles, weak or moderate expressions of AroB, GS, and CBS were detected in four cell types, including cells of the neuroepithelial type, migrating, and differentiated cells (graphic abstract, A). At 90 days post injury, local hypercellular areas were found in the molecular layer containing moderately labeled AroB+, GS+, and CBS+ cells of the neuroepithelial type and larger AroB+, GS+, and CBS+ cells (possibly analogous to the reactive glia of mammals); patterns of cells migration and neovascularization were also observed. A repeated TBI caused the number of AroB+, GS+, and CBS+ cells to further increase; an increased intensity of immunolabeling was recorded from all cell types (graphic abstract, C). Thus, the results of this study provide a better understanding of adult neurogenesis in teleost fishes, which is expected to clarify the issue of the reactivation of adult neurogenesis in mammalian species. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Extracerebral Factors Affecting Brain Injury)
Show Figures

Graphical abstract

9 pages, 3693 KiB  
Communication
Influence of Salinity on the Survival Rate of Fertilized Chum Salmon (Oncorhynchus keta) Eggs
by Jong Won Park, Beom Sik Kim, Ju Kyoung Kim, Hae Kun Jung, Hyun Je Park and Chung Il Lee
J. Mar. Sci. Eng. 2024, 12(1), 39; https://doi.org/10.3390/jmse12010039 - 22 Dec 2023
Viewed by 1351
Abstract
Chum salmon (Oncorhynchus keta) exhibit a remarkable ability to adapt to changes in salinity during their life cycle. However, the fertilized egg stages are sensitive to salinity, affecting ontogeny and hatching. This study investigated the effect of salinity (0, 1, 3, [...] Read more.
Chum salmon (Oncorhynchus keta) exhibit a remarkable ability to adapt to changes in salinity during their life cycle. However, the fertilized egg stages are sensitive to salinity, affecting ontogeny and hatching. This study investigated the effect of salinity (0, 1, 3, and 5 PSU) on the survival of two developmental stages (<1 day after fertilization and <1 day after the eyed-egg stage) of fertilized eggs. Based on the experimental results, we assessed the spawning ground environment using the in situ salinity data of the Namdae River from 1997 to 2002, where the largest number of salmon in Korea migrate to spawn. Survival of the <1-day-old fertilized eggs decreased sharply at 3 PSU or more, and all eggs died at 5 PSU. Hatching of the eyed-egg stage occurred under all environmental conditions. After 2010, the salinity of the layer of water in contact with the sediment in the lower reaches of the river increased (>6.9 PSU) with the frequency of high waves. Overall, the function of the lower river in spawning and hatching is weakening. This study enhances our understanding of the effects of climate change, including increased wave activity, on salmon spawning grounds. Full article
(This article belongs to the Special Issue Fish as Bioindicators of the Fresh and Marine Water Ecosystems)
Show Figures

Figure 1

11 pages, 1162 KiB  
Article
The Migratory Biology and Feeding Habits of Downstream-Migrating Juvenile Chum Salmon Oncorhynchus keta in the Amur River of Northeast China
by Jilong Wang, Peilun Li, Wei Liu, Wanqiao Lu and Fujiang Tang
Fishes 2023, 8(9), 458; https://doi.org/10.3390/fishes8090458 - 14 Sep 2023
Viewed by 1597
Abstract
The size of chum salmon juveniles is crucial to their survival. In order to understand the population status and migration patterns of juvenile chum salmon in the waters of the Amur River in China, this study investigated the status of juvenile chum salmon [...] Read more.
The size of chum salmon juveniles is crucial to their survival. In order to understand the population status and migration patterns of juvenile chum salmon in the waters of the Amur River in China, this study investigated the status of juvenile chum salmon resources and their basic biological characteristics in the Amur River and the Ussuri River in China. The results showed that the average catch per unit effort (CPUE) of chum salmon in river margins was 0.140 ind·10−3 m3 for the Amur River and 0.255 ind·10−3 m3 for the Ussuri River. Chum salmon migrate downstream, mainly in mid-May in the Amur River and in early May in the Ussuri River, and no fish was caught in the rivers after June. Most chum salmon migrated when the water was between 10 and 14 °C. The average FL (fork length) and BW (body weight) of the Amur River samples were 37.1 ± 2.9 mm and 0.42 ± 0.09 g, respectively, while the Ussuri River samples’ FL and BW were 34.9 ± 3.7 mm and 0.36 ± 0.08 g, respectively. The empty stomach rate of the samples was zero, and the prey category of the samples was composed of fish, aquatic insects, copepods, and cladocerans, of which Ephemeroptera had the largest percentage index of relative importance (IRI%), with a value of 58.45%. The size of the downstream-migrating juvenile chum salmon in this study is similar to the size of those in some other rivers, and the CPUE varies depending on the river conditions. Full article
Show Figures

Figure 1

12 pages, 3123 KiB  
Article
Amino Acid Composition of a Chum Salmon (Oncorhynchus keta) Skin Gelatin Hydrolysate and Its Antiapoptotic Effects on Etoposide-Induced Osteoblasts
by Hong-Fang Liu, Xiao-Wen Pan, Hua-Qiang Li, Xiao-Nan Zhang and Xin-Huai Zhao
Foods 2023, 12(12), 2419; https://doi.org/10.3390/foods12122419 - 20 Jun 2023
Cited by 2 | Viewed by 1929
Abstract
A gelatin hydrolysate with a hydrolysis degree of 13.7% was generated using the skin gelatin of chum salmon (Oncorhynchus keta) and papain-catalyzed enzymatic hydrolysis. The results of analysis demonstrated that four amino acids, namely Ala, Gly, Pro, and 4-Hyp, were the [...] Read more.
A gelatin hydrolysate with a hydrolysis degree of 13.7% was generated using the skin gelatin of chum salmon (Oncorhynchus keta) and papain-catalyzed enzymatic hydrolysis. The results of analysis demonstrated that four amino acids, namely Ala, Gly, Pro, and 4-Hyp, were the most abundant in the obtained gelatin hydrolysate with measured molar percentages ranging from 7.2% to 35.4%; more importantly, the four amino acids accounted for 2/3 of the total measured amino acids. However, two amino acids, Cys and Tyr, were not detected in the generated gelatin hydrolysate. The experimental results indicated that the gelatin hydrolysate at a dose of 50 µg/mL could combat etoposide-induced apoptosis in human fetal osteoblasts (hFOB 1.19 cells), causing a decrease in the total apoptotic cells from 31.6% to 13.6% (via apoptotic prevention) or 13.3% to 11.8% (via apoptotic reversal). Meanwhile, the osteoblasts exposed to the gelatin hydrolysate showed expression changes for 157 genes (expression folds > 1.5-fold), among which JNKK, JNK1, and JNK3 were from the JNK family with a 1.5–2.7-fold downregulated expression. Furthermore, the protein expressions of JNKK, JNK1, JNK3, and Bax in the treated osteoblasts showed a 1.25–1.41 fold down-regulation, whereas JNK2 expression was not detected in the osteoblasts. It is thus suggested that gelatin hydrolysate is rich in the four amino acids and has an in vitro antiapoptotic effect on etoposide-stimulated osteoblasts via mitochondrial-mediated JNKK/JNK(1,3)/Bax downregulation. Full article
(This article belongs to the Special Issue Bioactivity of Protein Hydrolysates Extracted from Foods)
Show Figures

Figure 1

18 pages, 5328 KiB  
Article
Disentangling Population Level Differences in Juvenile Migration Phenology for Three Species of Salmon on the Yukon River
by Katharine B. Miller and Courtney M. Weiss
J. Mar. Sci. Eng. 2023, 11(3), 589; https://doi.org/10.3390/jmse11030589 - 10 Mar 2023
Viewed by 2564
Abstract
Migration phenology influences many important ecological processes. For juvenile Pacific salmon, the timing of the seaward migration from fresh to marine waters is linked to early marine survival and adult returns. Seaward migration phenology is determined by interactions between the intrinsic attributes of [...] Read more.
Migration phenology influences many important ecological processes. For juvenile Pacific salmon, the timing of the seaward migration from fresh to marine waters is linked to early marine survival and adult returns. Seaward migration phenology is determined by interactions between the intrinsic attributes of individual species and environmental factors that are acting upon them. Temperature and discharge are two factors of the freshwater environment that have been shown to influence intra- and interannual variation in juvenile salmon phenology, but these factors may affect the migrations of sympatric species differently. Understanding how variations in phenology change with environmental heterogeneity is a critical first step in evaluating how the future climate may affect salmon. This is especially crucial for high-latitude rivers, where the pace of climate change is nearly twice as rapid as it is for more temperate areas. This research investigates the influence of river conditions on the seaward migration phenology of Chinook, chum, and coho salmon in the Yukon River. The results identified species-specific differences in the factors affecting migration duration, concentration, and skew and provide a starting point for a more detailed examination of how phenological variability may affect the temporal matching of juvenile salmon with biological resources and environmental conditions for optimal survival. Full article
(This article belongs to the Special Issue Ecosystem-Based Fishery Management in the Bering Sea)
Show Figures

Figure 1

14 pages, 2186 KiB  
Article
Transcriptional Contribution of Transposable Elements in Relation to Salinity Conditions in Teleosts and Silencing Mechanisms Involved
by Elisa Carotti, Federica Carducci, Samuele Greco, Marco Gerdol, Daniele Di Marino, Nunzio Perta, Anna La Teana, Adriana Canapa, Marco Barucca and Maria Assunta Biscotti
Int. J. Mol. Sci. 2022, 23(9), 5215; https://doi.org/10.3390/ijms23095215 - 6 May 2022
Cited by 8 | Viewed by 3299
Abstract
Fish are an interesting taxon comprising species adapted to a wide range of environments. In this work, we analyzed the transcriptional contribution of transposable elements (TEs) in the gill transcriptomes of three fish species exposed to different salinity conditions. We considered the giant [...] Read more.
Fish are an interesting taxon comprising species adapted to a wide range of environments. In this work, we analyzed the transcriptional contribution of transposable elements (TEs) in the gill transcriptomes of three fish species exposed to different salinity conditions. We considered the giant marbled eel Anguilla marmorata and the chum salmon Oncorhynchus keta, both diadromous, and the marine medaka Oryzias melastigma, an euryhaline organism sensu stricto. Our analyses revealed an interesting activity of TEs in the case of juvenile eels, commonly adapted to salty water, when exposed to brackish and freshwater conditions. Moreover, the expression assessment of genes involved in TE silencing mechanisms (six in heterochromatin formation, fourteen known to be part of the nucleosome remodeling deacetylase (NuRD) complex, and four of the Argonaute subfamily) unveiled that they are active. Finally, our results evidenced for the first time a krüppel-associated box (KRAB)-like domain specific to actinopterygians that, together with TRIM33, might allow the functioning of NuRD complex also in fish species. The possible interaction between these two proteins was supported by structural prediction analyses. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

35 pages, 19988 KiB  
Article
Transduction of Brain Neurons in Juvenile Chum Salmon (Oncorhynchus keta) with Recombinant Adeno-Associated Hippocampal Virus Injected into the Cerebellum during Long-Term Monitoring
by Evgeniya V. Pushchina, Maria E. Bykova, Ekaterina V. Shamshurina and Anatoly A. Varaksin
Int. J. Mol. Sci. 2022, 23(9), 4947; https://doi.org/10.3390/ijms23094947 - 29 Apr 2022
Cited by 3 | Viewed by 2733
Abstract
Corpus cerebelli in juvenile chum salmon is a multiprojective region of the brain connected via afferent and efferent projections with the higher regions of the brainstem and synencephalon, as well as with multiprojection regions of the medulla oblongata and spinal cord. During the [...] Read more.
Corpus cerebelli in juvenile chum salmon is a multiprojective region of the brain connected via afferent and efferent projections with the higher regions of the brainstem and synencephalon, as well as with multiprojection regions of the medulla oblongata and spinal cord. During the postembryonic development of the cerebellum in chum salmon, Oncorhynchus keta, the lateral part of the juvenile cerebellum gives rise to the caudomedial part of the definitive cerebellum, which is consistent with the data reported for zebrafish and mouse cerebellum. Thus, the topographic organization of the cerebellum and its efferents are similar between fish (chum salmon and zebrafish) and mammals, including mice and humans. The distributions of recombinant adeno-associated viral vectors (rAAVs) after an injection of the base vector into the cerebellum have shown highly specific patterns of transgene expression in bipolar neurons in the latero-caudal lobe of the juvenile chum tectum opticum. The distribution of rAAVs in the dorsal thalamus, epithalamus, nucleus rotundus, and pretectal complex indicates the targeted distribution of the transgene via the thalamo-cerebellar projections. The detection of GFP expression in the cells of the epiphysis and posterior tubercle of juvenile chum salmon is associated with the transgene’s distribution and with the cerebrospinal fluid flow, the brain ventricles and its outer surface. The direct delivery of the rAAV into the central nervous system by intracerebroventricular administration allows it to spread widely in the brain. Thus, the presence of special projection areas in the juvenile chum salmon cerebellum, as well as outside it, and the identification of the transgene’s expression in them confirm the potential ability of rAAVs to distribute in both intracerebellar and afferent and efferent extracerebellar projections of the cerebellum. Full article
(This article belongs to the Special Issue Advances in Research on Neurogenesis)
Show Figures

Graphical abstract

15 pages, 1578 KiB  
Article
The Spatial Distribution and Morphological Characteristics of Chum Salmon (Oncorhynchus keta) in South Korea
by Donghyun Hong, Gea-Jae Joo, Eunsong Jung, Jeong-Soo Gim, Ki Baik Seong, Doo-Ho Kim, Maurice J. M. Lineman, Hyun-Woo Kim and Hyunbin Jo
Fishes 2022, 7(1), 27; https://doi.org/10.3390/fishes7010027 - 24 Jan 2022
Cited by 5 | Viewed by 4450
Abstract
Chum salmon (Oncorhyncus keta) is a cold-water species reported to migrate within a wide range of habitats, including Korea, Japan, North America, and Russia, playing important roles in the river–sea nutrient cycle and food web. However, research on this species has [...] Read more.
Chum salmon (Oncorhyncus keta) is a cold-water species reported to migrate within a wide range of habitats, including Korea, Japan, North America, and Russia, playing important roles in the river–sea nutrient cycle and food web. However, research on this species has not been widely performed in South Korea owing to its geographical location at the southern edge of migration. In this study, we analyzed the spatial distribution and morphological characteristics of chum salmon migrating to South Korea using the length–weight relationship. We also analyzed 3 years of catch, sex ratio, and individual information (total length (cm), weight (kg), n = 4400) from ten rivers (eight in the East coast and two on the South coast) with a total of 17 years of water quality and the distance they traveled (n = 50) using multivariate analysis. As a result, we discovered a trend of less migration in the southern part of South Korea for all individuals migrating to South Korea. Furthermore, the weight ratio of males/females was significantly different (p < 0.05). Based on the length–weight relationship analysis, the a and b values were between 0.0011 and 0.038 and 2.65 and 3.49, respectively. In the correlation analysis, catch is negatively correlated with distance traveled and temperature (p < 0.05), and positively correlated with pH, dissolved oxygen, distance, and female ratio (p < 0.05). This is possibly the result of differences in water quality during early life stages or the presence of an estuarine barrage at the mouth of the Nakdong River. This research may be used as fundamental distribution and morphological variations of chum salmon in South Korea. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Graphical abstract

33 pages, 8400 KiB  
Article
A Confocal Microscopic Study of Gene Transfer into the Mesencephalic Tegmentum of Juvenile Chum Salmon, Oncorhynchus keta, Using Mouse Adeno-Associated Viral Vectors
by Evgeniya V. Pushchina, Ilya A. Kapustyanov, Ekaterina V. Shamshurina and Anatoly A. Varaksin
Int. J. Mol. Sci. 2021, 22(11), 5661; https://doi.org/10.3390/ijms22115661 - 26 May 2021
Cited by 2 | Viewed by 3231
Abstract
To date, data on the presence of adenoviral receptors in fish are very limited. In the present work, we used mouse recombinant adeno-associated viral vectors (rAAV) with a calcium indicator of the latest generation GCaMP6m that are usually applied for the dorsal hippocampus [...] Read more.
To date, data on the presence of adenoviral receptors in fish are very limited. In the present work, we used mouse recombinant adeno-associated viral vectors (rAAV) with a calcium indicator of the latest generation GCaMP6m that are usually applied for the dorsal hippocampus of mice but were not previously used for gene delivery into fish brain. The aim of our work was to study the feasibility of transduction of rAAV in the mouse hippocampus into brain cells of juvenile chum salmon and subsequent determination of the phenotype of rAAV-labeled cells by confocal laser scanning microscopy (CLSM). Delivery of the gene in vivo was carried out by intracranial injection of a GCaMP6m-GFP-containing vector directly into the mesencephalic tegmentum region of juvenile (one-year-old) chum salmon, Oncorhynchus keta. AAV incorporation into brain cells of the juvenile chum salmon was assessed at 1 week after a single injection of the vector. AAV expression in various areas of the thalamus, pretectum, posterior-tuberal region, postcommissural region, medial and lateral regions of the tegmentum, and mesencephalic reticular formation of juvenile O. keta was evaluated using CLSM followed by immunohistochemical analysis of the localization of the neuron-specific calcium binding protein HuCD in combination with nuclear staining with DAPI. The results of the analysis showed partial colocalization of cells expressing GCaMP6m-GFP with red fluorescent HuCD protein. Thus, cells of the thalamus, posterior tuberal region, mesencephalic tegmentum, cells of the accessory visual system, mesencephalic reticular formation, hypothalamus, and postcommissural region of the mesencephalon of juvenile chum salmon expressing GCaMP6m-GFP were attributed to the neuron-specific line of chum salmon brain cells, which indicates the ability of hippocampal mammal rAAV to integrate into neurons of the central nervous system of fish with subsequent expression of viral proteins, which obviously indicates the neuronal expression of a mammalian adenoviral receptor homolog by juvenile chum salmon neurons. Full article
(This article belongs to the Special Issue Molecular Research in Neurotoxicology 2.0)
Show Figures

Figure 1

30 pages, 1442 KiB  
Review
Applications of Marine Organism-Derived Polydeoxyribonucleotide: Its Potential in Biomedical Engineering
by Tae-Hee Kim, Seong-Yeong Heo, Gun-Woo Oh, Soo-Jin Heo and Won-Kyo Jung
Mar. Drugs 2021, 19(6), 296; https://doi.org/10.3390/md19060296 - 22 May 2021
Cited by 37 | Viewed by 14307
Abstract
Polydeoxyribonucleotides (PDRNs) are a family of DNA-derived drugs with a molecular weight ranging from 50 to 1500 kDa, which are mainly extracted from the sperm cells of salmon trout or chum salmon. Many pre-clinical and clinical studies have demonstrated the wound healing and [...] Read more.
Polydeoxyribonucleotides (PDRNs) are a family of DNA-derived drugs with a molecular weight ranging from 50 to 1500 kDa, which are mainly extracted from the sperm cells of salmon trout or chum salmon. Many pre-clinical and clinical studies have demonstrated the wound healing and anti-inflammatory properties of PDRN, which are mediated by the activation of adenosine A2A receptor and salvage pathways, in addition to promoting osteoblast activity, collagen synthesis, and angiogenesis. In fact, PDRN is already marketed due to its therapeutic properties against various wound healing- and inflammation-related diseases. Therefore, this review assessed the most recent trends in marine organism-derived PDRN using the Google Scholar search engine. Further, we summarized the current applications and pharmacological properties of PDRN to serve as a reference for the development of novel PDRN-based technologies. Full article
(This article belongs to the Special Issue Wound Healing Potential of Marine Natural Products)
Show Figures

Graphical abstract

34 pages, 15096 KiB  
Article
Mechanical Brain Injury Increases Cells’ Production of Cystathionine β-Synthase and Glutamine Synthetase, but Reduces Pax2 Expression in the Telencephalon of Juvenile Chum Salmon, Oncorhynchus keta
by Evgeniya V. Pushchina, Eva I. Zharikova and Anatoly A. Varaksin
Int. J. Mol. Sci. 2021, 22(3), 1279; https://doi.org/10.3390/ijms22031279 - 28 Jan 2021
Cited by 11 | Viewed by 3061
Abstract
The considerable post-traumatic brain recovery in fishes makes them a useful model for studying the mechanisms that provide reparative neurogenesis, which is poorly represented in mammals. After a mechanical injury to the telencephalon in adult fish, lost neurons are actively replaced due to [...] Read more.
The considerable post-traumatic brain recovery in fishes makes them a useful model for studying the mechanisms that provide reparative neurogenesis, which is poorly represented in mammals. After a mechanical injury to the telencephalon in adult fish, lost neurons are actively replaced due to the proliferative activity of neuroepithelial cells and radial glia in the neurogenic periventricular zone. However, it is not enough clear which signaling mechanisms are involved in the activation of adult neural stem cells (aNSC) after the injury (reactive proliferation) and in the production of new neurons (regenerative neurogenesis) from progenitor cells (NPC). In juvenile Pacific salmon, the predominant type of NSCs in the telencephalon are neuroepithelial cells corresponding to embryonic NSCs. Expression of glutamine synthetase (GS), a NSC molecular marker, was detected in the neuroepithelial cells of the pallium and subpallium of juvenile chum salmon, Oncorhynchus keta. At 3 days after a traumatic brain injury (TBI) in juvenile chum salmon, the GS expression was detected in the radial glia corresponding to aNSC in the pallium and subpallium. The maximum density of distribution of GS+ radial glia was found in the dorsal pallial region. Hydrogen sulfide (H2S) is a proneurogenic factor that reduces oxidative stress and excitotoxicity effects, along with the increased GS production in the brain cells of juvenile chum salmon. In the fish brain, H2S producing by cystathionine β-synthase in neurogenic zones may be involved in maintaining the microenvironment that provides optimal conditions for the functioning of neurogenic niches during constitutive neurogenesis. After injury, H2S can determine cell survivability, providing a neuroprotective effect in the area of injury and reducing the process of glutamate excitotoxicity, acting as a signaling molecule involved in changing the neurogenic environment, which leads to the reactivation of neurogenic niches and cell regeneration programs. The results of studies on the control of the expression of regulatory Sonic Hedgehog genes (Shh) and the transcription factors Paired Box2 (Pax2) regulated by them are still insufficient. A comparative analysis of Pax2 expression in the telencephalon of intact chum salmon showed the presence of constitutive patterns of Pax2 expression in neurogenic areas and non-neurogenic parenchymal zones of the pallium and subpallium. After mechanical injury, the patterns of Pax2 expression changed, and the amount of Pax2+ decreased (p < 0.05) in lateral (Dl), medial (Dm) zones of the pallium, and the lateral zone (Vl) of the subpallium compared to the control. We believe that the decrease in the expression of Pax2 may be caused by the inhibitory effect of the Pax6 transcription factor, whose expression in the juvenile salmon brain increases upon injury. Full article
(This article belongs to the Special Issue Molecular Aspects in Fish and Amphibian Reproduction and Development)
Show Figures

Figure 1

Back to TopTop