Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = chromium catalysts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 13059 KB  
Article
Nanoscale Nickel–Chromium Powder as a Catalyst in Reducing the Temperature of Hydrogen Desorption from Magnesium Hydride
by Alan Kenzhiyev, Viktor N. Kudiiarov, Alena A. Spiridonova, Daria V. Terenteva, Dmitrii B. Vrublevskii, Leonid A. Svyatkin, Dmitriy S. Nikitin and Egor B. Kashkarov
Hydrogen 2025, 6(4), 123; https://doi.org/10.3390/hydrogen6040123 - 17 Dec 2025
Viewed by 902
Abstract
The composite material MgH2-EEWNi-Cr (20 wt. %) with a hydrogen content of 5.2 ± 0.1 wt.% is characterized by improved hydrogen interaction properties compared to the original MgH2. The dissociation of the material occurs in three temperature ranges (86–117, [...] Read more.
The composite material MgH2-EEWNi-Cr (20 wt. %) with a hydrogen content of 5.2 ± 0.1 wt.% is characterized by improved hydrogen interaction properties compared to the original MgH2. The dissociation of the material occurs in three temperature ranges (86–117, 152–162, and 281–351 °C), associated with a complex of effects consisting of changes in the specific surface area of the material, alterations in the crystal lattice during ball milling, and changes in the electronic structure in the presence of a Ni–Cr catalyst, based on first-principles calculations. The decrease in desorption activation energy (Ed = 65–96 ± 1 kJ/mol, ΔEd = 59–90 kJ/mol) is due to the catalytic effect of N–Cr, leading to a faster decomposition of the hydride phase. Based on the results of ab initio calculations, Ni–Cr on the MgH2 surface leads to a significant decrease in hydrogen binding energy (ΔEb = 60%) compared to pure magnesium hydride due to the formation of Ni–H and Cr–H covalent bonds, which reduces the degree of H–Mg ionic bonding. The results obtained allow us to expand our understanding of the mechanisms of hydrogen interaction with storage materials and the possibility of using these as mobile hydrogen storage and transportation materials. Full article
Show Figures

Figure 1

13 pages, 5771 KB  
Article
Efficient Adsorptive Desulfurization of Dibenzothiophene Using Bimetallic Ni-Cr/ZSM-5 Zeolite Catalysts
by Safa Al-deen A. Juboori and Gholamreza Moradi
Catalysts 2025, 15(12), 1164; https://doi.org/10.3390/catal15121164 - 12 Dec 2025
Viewed by 704
Abstract
Sulfur compounds in fossil fuels pose significant environmental and industrial challenges, creating a demand for efficient and sustainable desulfurization strategies. Among the available techniques, adsorptive desulfurization has emerged as a promising approach due to its operational simplicity and low energy requirements. In this [...] Read more.
Sulfur compounds in fossil fuels pose significant environmental and industrial challenges, creating a demand for efficient and sustainable desulfurization strategies. Among the available techniques, adsorptive desulfurization has emerged as a promising approach due to its operational simplicity and low energy requirements. In this study, a Ni–Cr modified ZSM-5 zeolite was synthesized to enhance the removal of dibenzothiophene (DBT) from model fuel. The catalyst was prepared by incorporating varying metal loadings and evaluated to identify optimal performance. Structural and chemical characterizations, including FESEM, XRD, NH3-TPD, FTIR, EDS, and BET analyses, confirmed the successful integration of nickel and chromium within the zeolite framework and demonstrated improved acidity and surface features favorable for adsorption. The catalyst containing 3% chromium and 5% nickel exhibited the highest activity, removing approximately 76% of DBT. Moreover, the optimized material maintained its adsorption efficiency over three consecutive reuse cycles, indicating strong stability and regeneration capability. Overall, the results demonstrate that Ni–Cr/ZSM-5 is a promising and sustainable adsorbent for sulfur removal applications and offers valuable potential for cleaner fuel processing technologies. Full article
(This article belongs to the Section Environmental Catalysis)
Show Figures

Figure 1

16 pages, 5209 KB  
Article
Elucidating the Synergism by Applying Ni-Cu/Cr2O3 Catalysts for Green Methanol Fuel Synthesis by CO2 Hydrogenation
by Israf Ud Din, Abdulrahman I. Alharthi, Mshari A. Alotaibi, Md Afroz Bakht, Rida Ihsan, Tooba Saeed, Ho Soon Min and Abdul Naeem
Catalysts 2025, 15(9), 877; https://doi.org/10.3390/catal15090877 - 12 Sep 2025
Viewed by 937
Abstract
The CO2 hydrogenation process is thought to be one of the feasible methods for producing methanol fuel, which might be used to fulfill future energy demands. Improving the catalytic efficiency and understanding of the process are essential elements for the viability of [...] Read more.
The CO2 hydrogenation process is thought to be one of the feasible methods for producing methanol fuel, which might be used to fulfill future energy demands. Improving the catalytic efficiency and understanding of the process are essential elements for the viability of CO2 conversion routes. Here, a co-precipitation method was used to synthesize Ni-Cu bimetallic catalysts supported by chromium oxide (Cr2O3). To examine nickel (Ni)’s promoting role, the synthesized catalysts were incorporated with different concentrations of Ni. The N2 adsorption–desorption isotherm exposed the mesoporous nature of Cr2O3-based Ni-Cu catalysts. A Fourier Transform Infrared (FTIR) spectroscopy investigation revealed the effective doping of Ni-Cu metal oxides on the surface of Cr2O3 by instigating an FTIR absorption band in the region associated with the FTIR absorption of metal oxides. The uniform morphology and homogenous, as well as highly dispersed, form of both Ni and Cu metal were recorded using a Field Emission Scanning Electron Microscope (FESEM) and X-ray Diffraction (XRD) techniques. The surface chemistry, metal–metal, and metal–support interactions of the Ni-Cu/Cr2O3 catalysts were disclosed via temperature program reduction (TPR) as well as X-ray photoelectron spectroscopy (XPS). The synergism between the Ni and Cu metals was revealed using both XPS and TPR techniques, which resulted in improving the catalytic profile of Ni-Cu/Cr2O3 catalysts. The activity data obtained by applying a slurry reactor demonstrated the active profile of Ni for CO2 reduction to methanol in terms of the methanol synthesis rate. The promoting role of Ni was established by observing the progressing and linear increase in methanol selectivity by Ni enrichment to the Ni-Cu/Cr2O3 catalysts. Structure and activity studies recognized the promoting role of Ni by experiencing metal–metal and metal–support interactions with highly dispersed metal oxides over the Cr2O3 support in the current case. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Figure 1

8 pages, 2473 KB  
Proceeding Paper
Development of Photocatalytic Reduction Method of Cr(VI) with Modified g-C3N4 
by Miyu Sato, Mai Furukawa, Ikki Tateishi, Hideyuki Katsumata and Satoshi Kaneco
Chem. Proc. 2025, 17(1), 3; https://doi.org/10.3390/chemproc2025017003 - 29 Jul 2025
Viewed by 1076
Abstract
Hexavalent chromium (Cr(VI)), a common contaminant in industrial wastewater, poses severe health risks due to its carcinogenic and mutagenic properties. Consequently, the development of efficient and environmentally friendly methods to reduce Cr(VI) to the less toxic trivalent chromium (Cr(III)) is of great importance. [...] Read more.
Hexavalent chromium (Cr(VI)), a common contaminant in industrial wastewater, poses severe health risks due to its carcinogenic and mutagenic properties. Consequently, the development of efficient and environmentally friendly methods to reduce Cr(VI) to the less toxic trivalent chromium (Cr(III)) is of great importance. In this study, we present a cost-effective photocatalytic approach using graphitic carbon nitride (g-C3N4) modified with 1,3,5-trihydroxybenzene via one-step thermal condensation. The modified photo-catalyst exhibited improved surface area, porosity, visible-light absorption, and a narrowed band gap, all of which contributed to enhanced charge separation. As a result, nearly complete reduction in Cr(VI) was achieved within 90 min under visible-light irradiation. Further optimization of catalyst dosage and EDTA concentration gave even higher reduction efficiency. This work offers a promising strategy for the design of high-performance photocatalysts for environmental remediation. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Catalysis Sciences)
Show Figures

Figure 1

20 pages, 1759 KB  
Article
Chromium Ferrite Supported on Activated Carbon from Olive Mill Solid Waste for the Photo-Fenton Degradation of Pollutants from Wastewater Using LED Irradiation
by Malak Hamieh, Sireen Al Khawand, Nabil Tabaja, Khaled Chawraba, Mohammad Hammoud, Sami Tlais, Tayssir Hamieh and Joumana Toufaily
AppliedChem 2025, 5(3), 15; https://doi.org/10.3390/appliedchem5030015 - 11 Jul 2025
Viewed by 1072
Abstract
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were [...] Read more.
In this study, chromium ferrite (FeCr; CrFe2O4) nanoparticles supported on activated carbon (AC), obtained from agricultural olive mill solid waste, were synthesized via a simple hydrothermal process. The structural, morphological, optical, and chemical properties of the FeCr/AC composite were characterized using XRD, SEM, EDX, DRS, BET, and FTIR techniques. The FeCr/AC composite was applied as a heterogeneous photo-Fenton catalyst for the degradation of methylene blue (MB) dye in an aqueous solution under 25 W visible-light LED irradiation. Critical operational factors, such as FeCr/AC dosage, pH, MB concentration, and H2O2 levels, were optimized. Under optimal conditions, 97.56% of MB was removed within 120 min of visible-light exposure, following pseudo-first-order kinetics. The composite also exhibited high efficiency in degrading methyl orange dye (95%) and tetracycline antibiotic (88%) within 180 min, with corresponding first-order rate constants of 0.0225 min−1 and 0.0115 min−1, respectively. This study highlights the potential of FeCr/AC for treating water contaminated with dyes and pharmaceuticals, in line with the Sustainable Development Goals (SDGs) for water purification. Full article
Show Figures

Graphical abstract

15 pages, 3289 KB  
Article
Enhancing the Catalytic Performance of PdNPs for Cr(VI) Reduction by Increasing Pd(0) Content
by Hongfei Lai, Ling Tan, Zhenkun Shi, Shiyi Huang, Wenjia Yu, Guotong Wei, Jianping Xie, Shuang Zhou and Chaoyu Tian
Microorganisms 2025, 13(6), 1346; https://doi.org/10.3390/microorganisms13061346 - 10 Jun 2025
Viewed by 862
Abstract
Hexavalent chromium [Cr(VI)] is a hazardous environmental contaminant, and palladium nanoparticles (PdNPs) have shown promise as catalysts for its reduction. This study explores the primary factor influencing the catalytic performance of PdNPs in Cr(VI) reduction by investigating the crystal structure and composition of [...] Read more.
Hexavalent chromium [Cr(VI)] is a hazardous environmental contaminant, and palladium nanoparticles (PdNPs) have shown promise as catalysts for its reduction. This study explores the primary factor influencing the catalytic performance of PdNPs in Cr(VI) reduction by investigating the crystal structure and composition of PdNPs in fungal-based catalysts. Five Pd-loaded catalysts were synthesized by treating fungal biomass with different chemical reagents, resulting in varying Pd(0) contents. The nanoparticle morphology, chemical states, and functional group interactions during Pd adsorption and reduction were investigated using multiple analytical techniques. The results showed that fungal hyphae remained structurally intact throughout the treatment process. PdNPs smaller than 2 nm were observed, with both Pd(0) and PdO present. The proportion of Pd(0) ranged from 6.4% to 37.2%, depending on the chemical reagent used. In addition, functional groups such as phosphate, amine, hydroxyl, and carboxyl were found to play key roles in palladium binding, underscoring the importance of surface chemistry in the adsorption and reduction process. A strong positive correlation was observed between the Pd(0) content and catalytic activity. Notably, the NCPdSF sample (palladium-loaded biomass treated with sodium formate) exhibited the highest Pd(0) content of 59.2% and achieved the most effective Cr(VI) reduction. These results suggest that Pd(0) content is a key determinant of catalytic efficiency in Cr(VI) reduction and that optimizing chemical treatments to enhance Pd(0) levels can substantially improve catalyst performance. Full article
(This article belongs to the Special Issue Biotechnology for Environmental Remediation)
Show Figures

Figure 1

12 pages, 1482 KB  
Article
Design and Optimization of Chromium-Based Polymeric Catalysts for Selective Electrocatalytic Synthesis of Hydrogen Peroxide
by Huiying Meng, Wen Luo, Yang Wu and Yifan Zhang
Catalysts 2025, 15(6), 513; https://doi.org/10.3390/catal15060513 - 23 May 2025
Cited by 29 | Viewed by 1334
Abstract
In this study, we designed and synthesized a series of chromium-based polymers (Cr-Ps) and their composites using oxidized carbon nanotubes (O-CNTs) through one-pot ligand engineering. The H2O2 production capacity of Cr-Ps increased with an increasing ratio of C–O and Cr–O [...] Read more.
In this study, we designed and synthesized a series of chromium-based polymers (Cr-Ps) and their composites using oxidized carbon nanotubes (O-CNTs) through one-pot ligand engineering. The H2O2 production capacity of Cr-Ps increased with an increasing ratio of C–O and Cr–O bonds, which is consistent with the trend observed in the Cr-Ps@O-CNT. The addition of O-CNTs during Cr-Ps synthesis led to a dense structure, which enhanced the electron donor effect and effectively improved the selectivity of the materials for the electrocatalytic production of H2O2. Furthermore, during the modulation of different ligands, we observed that the polymers and their complexes formed with terephthalic acid ligands containing para-carboxyl groups had the highest coordination activity and selectivity. The Cr-BDC@O-CNT, using terephthalic acid as the ligand, had the highest C–O and Cr–O densities, resulting in an H2O2 yield of 87% in an alkaline solution and an electron transfer number of about 2.2. Compared with Cr-BDC without O-CNTs, its selectivity increased by 32%, due to the higher number of C–O and Cr–O bonds in its dense structure. Moreover, the mass activity of the Cr-BDC@O-CNT reached 19.42 A g−1 at 0.2 V and the Faraday efficiency reached up to 94%, demonstrating excellent electroreduction activity. Our work provides insight into the design of efficient H2O2 electrocatalysts through ligand engineering, opening up new ideas for future research. Full article
(This article belongs to the Special Issue Powering the Future: Advances of Catalysis in Batteries)
Show Figures

Figure 1

14 pages, 2976 KB  
Article
Chromium-Doped Biomass-Based Hydrochar-Catalyzed Synthesis of 5-Hydroxymethylfurfural from Glucose
by Huimin Gao, Wei Mao, Pize Xiao, Chutong Ling, Zhiming Wu and Jinghong Zhou
Polymers 2025, 17(10), 1413; https://doi.org/10.3390/polym17101413 - 20 May 2025
Viewed by 822
Abstract
5-Hydroxymethylfurfural (HMF) is a versatile carbohydrate-derived platform chemical that has been used for the synthesis of a number of commercially valuable compounds. In this study, several chromium (Cr)-doped, biomass-derived hydrochar catalysts were synthesized via the one-pot method using starch, eucalyptus wood, and bagasse [...] Read more.
5-Hydroxymethylfurfural (HMF) is a versatile carbohydrate-derived platform chemical that has been used for the synthesis of a number of commercially valuable compounds. In this study, several chromium (Cr)-doped, biomass-derived hydrochar catalysts were synthesized via the one-pot method using starch, eucalyptus wood, and bagasse as carbon sources. Then, the performance of these synthesized materials for the catalytic conversion of glucose into HMF was evaluated by, primarily, the yield of HMF. The synergistic interactions between the Cr salt and the different biomass components were investigated, along with their effects on the catalytic efficiency. The differences in the catalytic activity of the synthesized materials were analyzed through structural characterization, as well as assessments of the acid density and strength. Among the catalysts, Cr5BHC180 derived from bagasse presented the highest activity, achieving an HMF yield of 64.5% in an aqueous solvent system of dimethyl sulfoxide (DMSO) and saturated sodium chloride (NaCl) at 170 °C after 5 h. After four cycles, the HMF yield of Cr5BHC180 decreased to 38.7%. Characterization techniques such as N2 adsorption–desorption and Py-FTIR suggested that such a decline in the HMF yield is due to pore blockage and acid site coverage by humic by-products, as demonstrated by the fact that regeneration by calcination at 300 °C restored the HMF yield to 50.5%. Full article
Show Figures

Figure 1

13 pages, 5840 KB  
Article
CrS2 Supported Transition Metal Single Atoms as Efficient Bifunctional Electrocatalysts: A Density Functional Theory Study
by Ying Wang
ChemEngineering 2025, 9(3), 43; https://doi.org/10.3390/chemengineering9030043 - 23 Apr 2025
Viewed by 1495
Abstract
Transition metal dichalcogenides (TMDs) are recognized for their exceptional energy storage capabilities and electrochemical potential, stemming from their unique electronic structures and physicochemical properties. In this study, we focus on chromium disulfide (CrS2) as the primary research subject and employ a [...] Read more.
Transition metal dichalcogenides (TMDs) are recognized for their exceptional energy storage capabilities and electrochemical potential, stemming from their unique electronic structures and physicochemical properties. In this study, we focus on chromium disulfide (CrS2) as the primary research subject and employ a combination of density functional theory (DFT) and first-principle calculations to investigate the effects of incorporating transition metal elements onto the surface of CrS2. This approach aims to develop a class of bifunctional single-atom catalysts with high efficiency and to analyze their catalytic performance in detail. Theoretical calculations reveal that the Au@CrS2 single-atom catalyst demonstrates outstanding catalytic activity, with a low overpotential of 0.34 V for the oxygen evolution reaction (OER) and 0.37 V for the oxygen reduction reaction (ORR). These results establish Au@CrS2 as a highly effective bifunctional catalyst. Moreover, the catalytic performance of Au@CrS2 surpasses that of traditional commercial catalysts, such as Pt (0.45 V) and IrO2 (0.56 V), suggesting its potential to replace these materials in fuel cells and other energy applications. This study provides a novel approach to the design and development of advanced transition metal-based catalytic materials. Full article
Show Figures

Figure 1

20 pages, 17600 KB  
Article
Effects of the Intrinsic Structures of Graphite Felt and Carbon Cloth on the Working Condition of Iron-Chromium Redox Flow Batteries
by Jun Tian, Chuanyu Sun, Bowen Qu, Huan Zhang, Shuqi Liu, Meiqi Fei and Shuang Yan
Catalysts 2025, 15(4), 399; https://doi.org/10.3390/catal15040399 - 19 Apr 2025
Viewed by 1201
Abstract
The design parameters of large-scale iron-chromium redox flow batteries (ICRFB) encompass a wide range of internal and external operational conditions, including electrodes, membranes, flow rate, and temperature, among others. Among these factors, the intrinsic structures of graphite felt (GF) and carbon cloth (CC) [...] Read more.
The design parameters of large-scale iron-chromium redox flow batteries (ICRFB) encompass a wide range of internal and external operational conditions, including electrodes, membranes, flow rate, and temperature, among others. Among these factors, the intrinsic structures of graphite felt (GF) and carbon cloth (CC) play a pivotal role in determining the overall working conditions of ICRFBs. This study systematically investigates the multifaceted relationship between the intrinsic structure of the GF and CC and their impact on the operational performance of ICRFBs. The fundamental difference between the two types of electrodes lies in the intrinsic structure space available in them for electrolyte penetration. A systematic analysis of the structure–activity relation between the electrodes and the initial internal resistance, as well as the operating temperature of the cell, was performed. Additionally, the influence of the electrode structure on critical parameters, including the flow rate, membrane selection (Nafion 212 and Nafion 115), and performance of electrodeposition catalysts (bismuth and indium), is examined in detail. Under varying operating conditions, the intrinsic structures of GF and CC turn out to be a crucial factor, providing a robust basis for electrode selection and performance optimization in large-scale ICRFB systems. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

15 pages, 5204 KB  
Article
Bifunctional Chromium-Doped Phenolic Porous Hydrothermal Carbon Catalysts for the Catalytic Conversion of Glucose to 5-Hydroxymethylfurfural
by Pize Xiao, Wei Mao, Zhiming Wu, Huimin Gao, Chutong Ling and Jinghong Zhou
Int. J. Mol. Sci. 2025, 26(8), 3648; https://doi.org/10.3390/ijms26083648 - 12 Apr 2025
Cited by 1 | Viewed by 794
Abstract
A sustainable and efficient approach for converting carbohydrates into 5-hydroxymethylfurfural (HMF) via heterogeneous catalysis is crucial for effectively utilizing biomass. In this study, we synthesized a series of CrX-polyphenol-formaldehyde resin (PTF) catalysts, which are composites of Cr-doped phenolic-resin-based hydrothermal carbon, using a chelation-assisted [...] Read more.
A sustainable and efficient approach for converting carbohydrates into 5-hydroxymethylfurfural (HMF) via heterogeneous catalysis is crucial for effectively utilizing biomass. In this study, we synthesized a series of CrX-polyphenol-formaldehyde resin (PTF) catalysts, which are composites of Cr-doped phenolic-resin-based hydrothermal carbon, using a chelation-assisted multicomponent co-assembly strategy. The performance of the synthesized catalysts was assessed through various analytical techniques, including scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, X-ray photoelectron spectroscopy, pyrolysis–Fourier transform infrared spectroscopy, and Brunauer–Emmett–Teller analysis. Cr incorporation into the catalysts enhanced the total and Lewis acidities. Notably, the optimized catalyst, designated as Cr0.6-PTF, achieved an effective glucose conversion into HMF, yielding a maximum of 69.5% at 180 °C for 180 min in a saturated NaCl solution (NaClaq)/dimethyl sulfoxide (2: 18) solvent system. Furthermore, Cr0.6-PTF maintained excellent catalytic activity and a stable chemical structure after nine cyclic reactions, resulting in a 63.8% HMF yield from glucose. This study revealed an innovative approach for utilizing metal-doped phenolic resin hydrothermal carbon to transform glucose into platform chemicals. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Graphical abstract

13 pages, 3475 KB  
Article
Bioethanol Steam Reforming for Hydrogen Production over Ni-Cr/SBA 15: Influence of Metal Loading and Ni/Cr Ratio
by Pedro J. Megía, Lourdes García-Moreno, Arturo J. Vizcaíno, José A. Calles and Alicia Carrero
Molecules 2025, 30(6), 1206; https://doi.org/10.3390/molecules30061206 - 7 Mar 2025
Cited by 2 | Viewed by 1293
Abstract
This work examines the influence of metal loading and the Ni/Cr ratio of Ni-Cr/SBA-15 catalysts on bioethanol steam reforming for the first time. The characterization of the synthesized samples reveals that higher Cr amounts result in lower Ni crystallite sizes due to the [...] Read more.
This work examines the influence of metal loading and the Ni/Cr ratio of Ni-Cr/SBA-15 catalysts on bioethanol steam reforming for the first time. The characterization of the synthesized samples reveals that higher Cr amounts result in lower Ni crystallite sizes due to the promoting effect of Cr, thereby enhancing the dispersion of the active phase. The catalytic performance has been evaluated in terms of ethanol conversion and H2 TOF (min−1). Ethanol conversion exhibits an increasing trend with higher Ni content, reaching up to 90% for samples containing 15 wt.%. By increasing the Cr content (lower Ni/Cr ratio) the results evidence a similar trend. A synergistic effect between Ni and Cr was appreciated in conversion values when the Ni content was below 11 wt.% and the Cr content exceeded 2 wt.%, which coincides with a smaller Ni crystallite size. Concerning the H2 TOF, the catalyst with the lowest Ni content (7 wt.%) exhibited a higher value with a notable enhancement upon increasing the Cr loading. However, a considerable decrease in H2 TOF was observed for samples with higher Ni loading. Therefore, the best catalytic performance, achieving nearly complete ethanol conversion and high hydrogen production, was reached when using catalysts with 7 wt.% Ni; the Cr loading should be increased to around 2 wt.%. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis for Sustainability and Carbon-Neutrality)
Show Figures

Graphical abstract

15 pages, 8108 KB  
Article
Effect of Chromium Precursor on the Catalytic Behavior of Chromium Oxide Catalysts in Oxidative Propane and Isobutane Dehydrogenation with Carbon Dioxide
by Marina A. Tedeeva, Mikhail Yu. Mashkin, Vladimir L. Baybursky, Petr V. Pribytkov, Elena V. Murashova, Konstantin B. Kalmykov, Anastasiya A. Shesterkina, Gennady I. Kapustin, Olga P. Tkachenko, Sergey F. Dunaev, Leonid M. Kustov and Alexander L. Kustov
Catalysts 2025, 15(3), 226; https://doi.org/10.3390/catal15030226 - 27 Feb 2025
Cited by 1 | Viewed by 1367
Abstract
A series of 5 wt.% Cr/SiO2 catalysts were prepared through incipient wet impregnation using different chromium salts as a source of Cr (chromium (III) sulfate, acetylacetonate, nitrate, ammonium dichromate). The obtained catalysts were characterized by SEM-EDX, TEM, DRIFT-CD3CN spectroscopy, UV-VIS [...] Read more.
A series of 5 wt.% Cr/SiO2 catalysts were prepared through incipient wet impregnation using different chromium salts as a source of Cr (chromium (III) sulfate, acetylacetonate, nitrate, ammonium dichromate). The obtained catalysts were characterized by SEM-EDX, TEM, DRIFT-CD3CN spectroscopy, UV-VIS diffuse reflectance spectroscopy, and the N2 low-temperature adsorption–desorption technique. The catalysts were tested in propane, and isobutane dehydrogenation assisted with CO2 at 600–750 °C. The highest activity in propane dehydrogenation was observed for the catalyst obtained from chromium acetylacetonate, the yield of propylene was 32% at 750 °C, and in the isobutane dehydrogenation reaction, the catalyst obtained from chromium sulfate was the best one; the yield of isobutene was ~30% at 600 °C. The obtained results show that the type of chromium precursor has a significant effect on the efficiency of the catalyst in the propane and isobutane dehydrogenation with CO2. Full article
Show Figures

Figure 1

17 pages, 4274 KB  
Article
Experimental and Kinetic Studies on the Conversion of Glucose to Levulinic Acid Catalyzed by Synergistic Cr/HZSM-5 in GVL/H2O Biphasic System
by Han Wu, Rui Zhang, Jiantao Li, Jing Chang, Zhihua Liu, Jiale Chen, Jian Xiong, Yina Qiao, Zhihao Yu and Xuebin Lu
Catalysts 2025, 15(2), 162; https://doi.org/10.3390/catal15020162 - 10 Feb 2025
Cited by 1 | Viewed by 1265
Abstract
In this paper, modified HZSM-5 catalysts with different ratios of chromium (Cr/HZSM-5) were synthesized and the solvent effect of gamma valerolactone (GVL) on the enhancement of levulinic acid (LA) yield was investigated. Characterization of the Cr/HZSM-5 catalyst revealed that the introduction of Cr [...] Read more.
In this paper, modified HZSM-5 catalysts with different ratios of chromium (Cr/HZSM-5) were synthesized and the solvent effect of gamma valerolactone (GVL) on the enhancement of levulinic acid (LA) yield was investigated. Characterization of the Cr/HZSM-5 catalyst revealed that the introduction of Cr did not change the structure of HZSM-5. The LA yield was increased from 42.5% (H2O solvent system) to 51.4% (GVL/H2O solvent system) under optimal conditions. The influence of GVL on the reaction mechanism was investigated through kinetic analysis, revealing that the incorporation of GVL reduces the activation energy barrier for the conversion of glucose to LA, thereby enhancing the glucose dehydration process. The effect of GVL on the product (LA) was studied, based on molecular dynamics. It was found that the addition of GVL squeezes the water in the solvent system into the second solvation shell layer, which causes GVL to distribute around the carbonyl, hydroxyl, and carboxyl groups of LA, and reduces the likelihood of LA side reactions, thus increasing the yield of LA. Full article
(This article belongs to the Special Issue Catalysis on Zeolites and Zeolite-Like Materials, 3rd Edition)
Show Figures

Graphical abstract

17 pages, 3598 KB  
Article
The Effect of Corn Stover Carbon-Based Bimetallic Catalysts on the Depolarization Electrolysis Reaction of Sulfur Dioxide for Hydrogen Production
by Tiantian Qi, Yingxia Li, Feng Liu, Yongshui Qu and Quanyuan Wei
Catalysts 2025, 15(1), 93; https://doi.org/10.3390/catal15010093 - 20 Jan 2025
Cited by 1 | Viewed by 1252
Abstract
The hybrid sulfur cycle (HyS), as one of the most promising thermochemical cycles for hydrogen production, has received widespread attention in recent years. The HyS contains the sulfur dioxide depolarization electrolysis (SDE) reaction that produces hydrogen, and the anodic reaction process that determines [...] Read more.
The hybrid sulfur cycle (HyS), as one of the most promising thermochemical cycles for hydrogen production, has received widespread attention in recent years. The HyS contains the sulfur dioxide depolarization electrolysis (SDE) reaction that produces hydrogen, and the anodic reaction process that determines the efficiency of the SDE reaction has become a research focus in this field. In this study, high-temperature pyrolysis technology was used to prepare biomass-based carbon materials from corn stover and analyze their catalytic performance when loaded with platinum–chromium bimetal as an anode catalyst in the SDE reaction. The system investigates the influence of the structure of various components of corn stover (cellulose, holocellulose, and lignin), carbonization conditions, etc., on the structure of the stover-based carbon carrier and then uses it to prepare platinum–chromium bimetallic catalysts for characterization and electrochemical analysis. The results show that the holocellulose-based porous carbon has excellent performance, with a specific surface area reaching 519.81 m2/g and a pore volume of 0.65 cm3/g, and the catalyst can achieve a current density of 780 mA/cm2 under a voltage of 1.2 V, showing excellent electrocatalytic performance in the SDE. Therefore, corn stover carbon as a carbon carrier has very high application prospects. Full article
(This article belongs to the Special Issue Recent Advances in Catalytic Reforming for Hydrogen/Syngas Production)
Show Figures

Figure 1

Back to TopTop