Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (211)

Search Parameters:
Keywords = chromium (Cr (III))

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 2473 KiB  
Proceeding Paper
Development of Photocatalytic Reduction Method of Cr(VI) with Modified g-C3N4 
by Miyu Sato, Mai Furukawa, Ikki Tateishi, Hideyuki Katsumata and Satoshi Kaneco
Chem. Proc. 2025, 17(1), 3; https://doi.org/10.3390/chemproc2025017003 - 29 Jul 2025
Viewed by 157
Abstract
Hexavalent chromium (Cr(VI)), a common contaminant in industrial wastewater, poses severe health risks due to its carcinogenic and mutagenic properties. Consequently, the development of efficient and environmentally friendly methods to reduce Cr(VI) to the less toxic trivalent chromium (Cr(III)) is of great importance. [...] Read more.
Hexavalent chromium (Cr(VI)), a common contaminant in industrial wastewater, poses severe health risks due to its carcinogenic and mutagenic properties. Consequently, the development of efficient and environmentally friendly methods to reduce Cr(VI) to the less toxic trivalent chromium (Cr(III)) is of great importance. In this study, we present a cost-effective photocatalytic approach using graphitic carbon nitride (g-C3N4) modified with 1,3,5-trihydroxybenzene via one-step thermal condensation. The modified photo-catalyst exhibited improved surface area, porosity, visible-light absorption, and a narrowed band gap, all of which contributed to enhanced charge separation. As a result, nearly complete reduction in Cr(VI) was achieved within 90 min under visible-light irradiation. Further optimization of catalyst dosage and EDTA concentration gave even higher reduction efficiency. This work offers a promising strategy for the design of high-performance photocatalysts for environmental remediation. Full article
Show Figures

Figure 1

21 pages, 3530 KiB  
Article
Sources, Distribution, and Health Risks of Heavy Metal Contamination in the Tongren Mercury Mining Area: A Case Study on Mercury and Cadmium
by Shuo Wang, Yani Guo, Huimin Hu, Yingqi Liang, Kun Li, Kuifu Zhang, Guiqiong Hou, Chunhai Li, Jiaxun Zhang and Zhenxing Wang
Toxics 2025, 13(7), 527; https://doi.org/10.3390/toxics13070527 - 23 Jun 2025
Viewed by 448
Abstract
This study assessed heavy metal contamination and associated health risks in soils and crops in the vicinity of a mercury mine located in Tongren, Guizhou Province, China, focusing on mercury (Hg), cadmium (Cd), arsenic (As), lead (Pb), and chromium (Cr). The study used [...] Read more.
This study assessed heavy metal contamination and associated health risks in soils and crops in the vicinity of a mercury mine located in Tongren, Guizhou Province, China, focusing on mercury (Hg), cadmium (Cd), arsenic (As), lead (Pb), and chromium (Cr). The study used the Index of Geological Accumulation (Igeo) and Health Risk Assessment (HRA) to quantify the level of contamination and assess the potential risks. The results showed that Area I was the most severely contaminated, with 94.24% of the sample sites being heavily contaminated with mercury, followed by Area II and Area III with severe cadmium contamination. The health risk assessment showed that children were exposed to non-carcinogenic risks of mercury and cadmium that exceeded the safety thresholds, with mercury being the major non-carcinogenic factor, especially through oral intake. The study also assessed the contribution of each heavy metal to pollution, with mercury contributing the most to ecological and health risks, especially in Areas I and III. The study highlights the urgent need to strengthen pollution control strategies, focusing on mining activities and agricultural inputs, to reduce risks and protect public health. Full article
Show Figures

Graphical abstract

13 pages, 2792 KiB  
Article
Engineering C–S–H Sorbents via Hydrothermal Synthesis of PV Glass and Carbide Sludge for Chromium(III) Removal
by Tran Ngo Quan, Le Phan Hoang Chieu and Pham Trung Kien
Coatings 2025, 15(6), 733; https://doi.org/10.3390/coatings15060733 - 19 Jun 2025
Viewed by 609
Abstract
This study investigates the hydrothermal synthesis of calcium silicate hydrate (C-S-H) from photovoltaic (PV) waste glass and carbide sludge as a strategy for resource recovery and sustainable chromium removal from wastewater. Waste-derived precursors were co-ground, blended at controlled Ca/Si molar ratios (0.8, 1.0, [...] Read more.
This study investigates the hydrothermal synthesis of calcium silicate hydrate (C-S-H) from photovoltaic (PV) waste glass and carbide sludge as a strategy for resource recovery and sustainable chromium removal from wastewater. Waste-derived precursors were co-ground, blended at controlled Ca/Si molar ratios (0.8, 1.0, 1.2), and hydrothermally treated at 180 °C for 96 h to yield C-S-H with tunable morphology and crystallinity. Comprehensive characterization using XRD, FT-IR, SEM-EDX, and UV-Vis spectroscopy revealed that a Ca/Si ratio of 1.0 produced a well-ordered tobermorite/xonotlite structure with a high surface area and fibrous network, which is optimal for adsorption. Batch adsorption experiments showed that this material achieved rapid and efficient Cr(III) removal, exceeding 90% uptake within 9 h through a combination of surface complexation, ion exchange (Ca2+/Na+ ↔ Cr3+), and precipitation of CaCrO4 phases. Morphological and structural evolution during adsorption was confirmed by SEM, FT-IR, and XRD, while EDX mapping established the progressive incorporation of Cr into the C-S-H matrix. These findings highlight the viability of upcycling industrial waste into advanced C-S-H sorbents for heavy metal remediation. Further work is recommended to address sorbent regeneration, long-term stability, and application to other contaminants, providing a foundation for circular approaches in advanced wastewater treatment. Full article
Show Figures

Figure 1

15 pages, 3440 KiB  
Article
Catechol-Modified Alkali Lignin for Cr (VI) Removal from Synthetic Wastewater
by Chenkun Yu, Ze Liang, Ruoyao Zhou, Tingting Gao, Zhaojiang Wang, Xiaoxia Cai, Qian Lu, Cong Li, Jinshui Yao and Qinze Liu
Polymers 2025, 17(12), 1658; https://doi.org/10.3390/polym17121658 - 15 Jun 2025
Viewed by 562
Abstract
Chromium (III) ions are essential for biological functions, whereas chromium (VI) ions (Cr (VI)) pose toxicity risks to both humans and animals. Therefore, it is crucial to remove these ions from industrial sources. In this work, to remove hazardous Cr (VI) from wastewater [...] Read more.
Chromium (III) ions are essential for biological functions, whereas chromium (VI) ions (Cr (VI)) pose toxicity risks to both humans and animals. Therefore, it is crucial to remove these ions from industrial sources. In this work, to remove hazardous Cr (VI) from wastewater or convert it to Cr (III), catechol-modified alkali lignin (CAL) was prepared using catechol, acetone, and alkali lignin, which is a byproduct in the paper-pulping process. The sample was characterized using a combination of techniques, including scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Various factors influencing the adsorption behavior of CAL were investigated. The adsorption behavior aligns with the pseudo-second-order kinetic model and adheres to the Langmuir isotherm model. CAL simultaneously achieves Cr (VI) adsorption (498.4 mg/g) and reduction (54.6% to Cr (III)), surpassing single-function lignin adsorbents by integrating catechol’s redox capacity with lignin’s structural stability, which is another way to efficiently utilize Cr (VI) solutions. The mechanism of adsorption and reduction is discussed, which is influenced by its functional groups. In brief, this method paves a new path for the utilization of alkali lignin and provides novel opportunities for the removal of Cr (VI) contamination. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

17 pages, 3002 KiB  
Article
Microwave-Assisted Dried Cells of the Fungus Arthrinium malaysianum as a Potential Biomaterial with Sustainable Bioremediation of Toxic Heavy Metals
by Swagata Roy Chowdhury, Arpita Das, Sanmitra Ghosh, Saptarshi Chatterjee and Rajib Majumder
Appl. Microbiol. 2025, 5(2), 55; https://doi.org/10.3390/applmicrobiol5020055 - 11 Jun 2025
Viewed by 519
Abstract
Significant heavy metals contamination is often caused by rapid industrialization, which is devastating to both public health and the environment. Conventional processes of metal removal also result in the accumulation of secondary waste. This work proposes the use of a novel fungal biomass [...] Read more.
Significant heavy metals contamination is often caused by rapid industrialization, which is devastating to both public health and the environment. Conventional processes of metal removal also result in the accumulation of secondary waste. This work proposes the use of a novel fungal biomass (microwave heat dried) from Arthrinium malaysianum for the biosorption of toxic chromium. We have meticulously explored and investigated the interactions of hexavalent chromium with dried biomass using several cutting-edge techniques like FTIR for studying the involvement of functional groups on the biomass surface, XRD for the surface architecture changes after metal binding, XPS to unravel the reduction of hexavalent chromium into its non-toxic form, and FESEM-EDX for the visualization of the ultra-structure of fungal cell surface. The Langmuir isotherm demonstrates that the maximum removal capacity Qmax of Cr(VI) is 102.310 mgg−1, at a pH of 3.5 with 100% removal of Cr(VI). There were substantial changes in the surface architecture during adsorption, confirmed by FESEM and AFM studies. FTIR and XPS data analysis indicated that carbonyl, hydroxyl, phosphate, and amine groups were responsible for the conversion of Cr(VI) (toxic) to Cr(III) (non-toxic). The IR spectra of biomass treated with Cr showed a decreased C-O stretching intensity and slight shriveling of the -OH band, and the bands in the FTIR spectra at 1642 cm−1 to 1635 cm−1 and at 1549 cm−1 to 1547 cm−1 shifted and appeared quite distinct. XRD revealed that the chromium-treated biomass had greater crystalline features and also the appearance of a wide peak where 2θ = 20°, approximately, indicating an amorphous nature at 576.0 eV and in highly loaded chromium (500 mg/L) biomass, with the Cr2p level displaying a slight shift, eventually terminating in a (576.0 eV) Cr2O3 to Cr(III) peak. Since the FTIR and XPS data obtained revealed that Cr(VI) reduces to Cr(III), this fungal biomass can also be used for generating metallic nanoparticles during biosorption. Thus, we suggest that the above-mentioned fungal biomass could be a very useful biomaterial for future translational research. We are in the process of fabricating beads with powdered biomass for further studies. Full article
Show Figures

Figure 1

17 pages, 3101 KiB  
Article
Enhanced Removal of Hexavalent Chromium from Water by Nitrogen-Doped Wheat Straw Biochar Loaded with Nanoscale Zero-Valent Iron: Adsorption Characteristics and Mechanisms
by Hansheng Li, Ahmad Razali Ishak, Mohd Shukri Mohd Aris, Siti Norashikin Mohamad Shaifuddin, Su Ding and Tiantian Deng
Processes 2025, 13(6), 1714; https://doi.org/10.3390/pr13061714 - 30 May 2025
Viewed by 671
Abstract
The widespread industrial use of chromium has exacerbated water contamination issues globally. In this study, a nitrogen-doped wheat straw biochar loaded with nanoscale zero-valent iron composite (nZVI/N-KBC) was synthesized via a liquid-phase reduction method, and its adsorption properties for hexavalent chromium (Cr(VI)) in [...] Read more.
The widespread industrial use of chromium has exacerbated water contamination issues globally. In this study, a nitrogen-doped wheat straw biochar loaded with nanoscale zero-valent iron composite (nZVI/N-KBC) was synthesized via a liquid-phase reduction method, and its adsorption properties for hexavalent chromium (Cr(VI)) in aqueous solutions were systematically investigated. The material was characterized using SEM, XRD, Raman spectroscopy, FTIR, and XPS. Experimental results demonstrated that under optimal conditions (pH 2, 0.05 g adsorbent dosage, and 50 mg/L initial Cr(VI) concentration), the adsorption capacity reached 41.29 mg/g. Isothermal adsorption analysis revealed that the process followed the Langmuir model, indicating monolayer adsorption with a maximum capacity of 100.9 mg/g. Kinetic studies show that the adsorption conforms to the pseudo-second-order kinetic model, and thermodynamic and XPS analyses jointly prove that chemical adsorption is dominant. Thermodynamic analyses confirmed the endothermic and entropy-driven nature of adsorption. Mechanistic studies via XPS and FTIR revealed a dual mechanism: (1) partial adsorption of Cr(VI) onto the nZVI/N-KBC surface, and (2) predominant reduction in Cr(VI) to Cr(III) mediated by Fe0 and Fe2+. This study highlights the synergistic role of nitrogen doping and nZVI loading in enhancing Cr(VI) removal, offering a promising approach for remediating chromium-contaminated water. Full article
Show Figures

Figure 1

20 pages, 2995 KiB  
Article
Genotoxic Effects of Chromium(III) and Cobalt(II) and Their Mixtures on the Selected Cell Lines
by Katarzyna Czarnek, Małgorzata Tatarczak-Michalewska, Eliza Blicharska, Andrzej K. Siwicki and Ryszard Maciejewski
Int. J. Mol. Sci. 2025, 26(11), 5056; https://doi.org/10.3390/ijms26115056 - 24 May 2025
Viewed by 2454
Abstract
Cr(III) and Co(II) can be potentially toxic to cells and induce a number of morphological and biochemical changes. These metals are widely used in many industries and can cause environmental pollution. They are the components of dietary supplements, vitamin and mineral products, and [...] Read more.
Cr(III) and Co(II) can be potentially toxic to cells and induce a number of morphological and biochemical changes. These metals are widely used in many industries and can cause environmental pollution. They are the components of dietary supplements, vitamin and mineral products, and energy drinks. Moreover, these metals are used in dentistry and orthopedics as components of implants. Data about the mechanism of genotoxic effects of Cr(III) and Co(II) are still incomplete. The aim of this study was to analyze the genotoxic effects of chromium(III) and cobalt(II) and their mixtures on two cell lines: mouse embryo fibroblast cell line BALB/3T3 and human hepatocellular carcinoma cell line G2 (HepG2). The BALB/3T3 and HepG2 cell lines were exposed to chromium chloride and cobalt chloride at concentrations ranging from 100 to 1400 µM. The genotoxicity assays used were the comet and micronucleus assays. On the basis of the results obtained from the first stage of the research, the concentrations of elements were selected in order to determine the interactions between them. The tested cell lines were treated with mixtures of the following compounds: chromium chloride at the concentration of 200 μM and cobalt chloride at the concentration of 1000 μM or chromium chloride at the concentration of 1000 μM and cobalt chloride at the concentration of 200 μM in the genotoxicity assays. This study shows that both cobalt(II) and chromium(III) cause genotoxic effects in the BALB/3T3 and HepG2 cell lines. A statistically significant increase in the percentage of comets was observed with increasing concentrations of Co(II) and Cr(III) compared to the control. A statistically significant induction of chromosomal aberrations was also observed in the micronucleus test. Moreover, chromium(III) at a concentration of 200 µM had a protective effect against the toxic concentration of cobalt(II) at a concentration of 1000 µM. The toxic effect of cobalt chloride and chromium chloride was confirmed in this study. Further research is needed on the genotoxic effects of cobalt(II) and chromium(III), especially due to the growing popularity of dietary supplements containing compounds of these metals and doubts as to the safety of their use. Full article
(This article belongs to the Special Issue Molecular Mechanism in DNA Replication and Repair)
Show Figures

Figure 1

19 pages, 9889 KiB  
Article
Brazing of Thin-Walled Stainless Steel Using Environmentally Friendly Ni-Cr-P Electrodeposition: Degradation Mechanism of Brazed Joint and Corresponding Improvement Strategy
by Shubin Liu, Yuqi Luan and Ikuo Shohji
Materials 2025, 18(10), 2406; https://doi.org/10.3390/ma18102406 - 21 May 2025
Viewed by 422
Abstract
A new brazing process for thin-walled stainless steel was proposed by combining green and efficient Ni-Cr-P electrodeposition with brazing technology. Novel information was attained by analyzing the electrodeposited Ni-Cr-P interlayers and the brazed joints and characterizing them using a combination of advanced techniques. [...] Read more.
A new brazing process for thin-walled stainless steel was proposed by combining green and efficient Ni-Cr-P electrodeposition with brazing technology. Novel information was attained by analyzing the electrodeposited Ni-Cr-P interlayers and the brazed joints and characterizing them using a combination of advanced techniques. The incorporation mechanisms of impurities (i.e., oxygen and carbon) in the Ni-Cr-P interlayers electrodeposited from a Cr(III)–glycine solution were revealed. The oxygen mainly came from the Cr(III)–hydroxy complexes formed by the hydrolysis and olation between Cr(III) complexes and OH ions near the cathode. Glycine did not directly participate in the cathode reactions but decomposed on the anode surface. These byproducts (carbonyl compounds) were directly incorporated into the interlayers in a molecular pattern, forming a weak link to the metallic chromium. Brazing test results showed that a certain amount of Cr2O3 powder, formed by the decomposition of chromium hydroxides in the interlayers under high-temperature catalysis, would cause the degradation of the brazed joints. Using the step-wise brazing method, the brazing sheets were first annealed to eliminate the impurities by utilizing the strong reducing effect of hydrogen and the weak link characteristics between carbonyl compounds and metallic chromium atoms. An excellent joint with a shear strength of 63.0 MPa was obtained by subsequent brazing. The microstructural analysis showed that the brazed seam was mainly composed of a Ni-Fe-Cr solid solution, the Ni3P eutectic phase, and small quantities of the Ni5P2 phase scattered in the Ni3P eutectic phase. Fracture mode observations showed that the cracks extended along the interface between the brittle P-containing phase and the primary phase, resulting in fracture. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, 3rd Edition)
Show Figures

Figure 1

20 pages, 6567 KiB  
Article
Genome-Wide Analysis and Expression Profiling of the JAZ Gene Family in Response to Abiotic Stress in Alfalfa
by Xiaohong Li, Aneela Bashir, Huizheng Yang, Ansar Abbas, Yaoyao Li, Xin Zeng, Longkao Zhu, Qinke Shi, Mamateliy Tursunniyaz and Lijing Zhang
Int. J. Mol. Sci. 2025, 26(10), 4684; https://doi.org/10.3390/ijms26104684 - 14 May 2025
Viewed by 531
Abstract
The Jasmonate ZIM-domain (JAZ) proteins act as repressors in the Jasmonate (JAs) signaling pathway, and play a critical role in regulating plant growth, development, and responses to biotic and abiotic stresses. In this study, bioinformatics methods were employed to identify the JAZ gene [...] Read more.
The Jasmonate ZIM-domain (JAZ) proteins act as repressors in the Jasmonate (JAs) signaling pathway, and play a critical role in regulating plant growth, development, and responses to biotic and abiotic stresses. In this study, bioinformatics methods were employed to identify the JAZ gene family in the whole genome of alfalfa (Medicago sativa cv. Zhongmu No. 1) and systematically analyze their gene characteristics, subcellular localization, phylogenetic evolution, promoter cis-elements, expression patterns, and responses to abiotic stress. A total of nine MsJAZ gene family members with complete TIFY and Jas domains were identified; they were distributed unevenly across four chromosomes and encoding proteins ranging from 94 aa (MsJAZ2) to 337 aa (MsJAZ7), with molecular weights (MWs) from 19.33 to 38.03 kDa. Phylogenetic analysis showed that the MsJAZ gene family could be classified into four clades (Clades I–II, IV–V), which are closely related to citrus. Most MsJAZ family members contain light-responsive, hormone-responsive, and stress-responsive cis-elements. Subcellular localization results indicated that all MsJAZ genes are expressed and function in the nucleus. The RT-qPCR results showed that MsJAZ genes were primarily expressed in the leaves and petioles. Under salt and drought stress, all MsJAZ genes exhibited varying degrees of response, with MsJAZ4 and MsJAZ7 showing the most pronounced reactions. Meanwhile, under chromium (Cr) and MeJA stress, both MsJAZ4 and MsJAZ9 exhibited strong responses. Subcellular localization results showed that the MsJAZ4/7 protein was localized on the plasma membrane and nucleus. The yeast adversity test showed that the MsJAZ4/7 gene was more sensitive to salt stress. This study provides a foundation for future research on the function of the MsJAZ genes and its regulatory mechanism, as well as for identifying candidate genes for alfalfa stress tolerance breeding. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 5623 KiB  
Article
The Comparative Removal of Chromium and Cadmium Ions from Aqueous Solutions Using Silica Support Immobilized with 3-Aminopropyl Trimethoxysilane Salicylate
by Kenneth O. Amanze, Janet O. Amanze, Appolinus I. C. Ehirim, Lynda C. Ngozi-Olehi, Rosemary I. Uchegbu, Glory J. Okore, Pamela I. Okeke and Christian E. Enyoh
Physchem 2025, 5(2), 20; https://doi.org/10.3390/physchem5020020 - 13 May 2025
Viewed by 716
Abstract
A 3-Amino-Propyl Trimethoxy Silane (APTS) functionalized silica was prepared and investigated. The functionalized silica showed a powerful removal behavior towards Chromium (III) [Cr (III)] and Cadmium (II) [Cd (II)] ions in aqueous solution. Different factors affecting the heavy metal ions adsorption on these [...] Read more.
A 3-Amino-Propyl Trimethoxy Silane (APTS) functionalized silica was prepared and investigated. The functionalized silica showed a powerful removal behavior towards Chromium (III) [Cr (III)] and Cadmium (II) [Cd (II)] ions in aqueous solution. Different factors affecting the heavy metal ions adsorption on these substrates such as pH, initial concentration, contact time, and temperature were investigated. FT-IR analyses were carried out to characterize the functionalization of salicylaldehyde unto 3-aminopropyl silica. Results showed that optimum adsorption of the metal ions occurred at a pH of 7 and 6 by the pure silica and functionalized silica, respectively. Removal efficiencies of the adsorbents showed the trend: Salicylaldehyde-APTS modified > pure silica. The adsorption was described by the Langmuir adsorption isotherm. The kinetic results showed that the adsorption was described well with the pseudo second-order kinetic model. The study reveals that both pure silica and functionalized silica can be used as good adsorbents for the removal of the heavy metal pollutants from aqueous solutions and may be applied in the treatment of industrial waste waters, and they may be useful in detoxifying our already polluted environments. Full article
(This article belongs to the Section Kinetics and Thermodynamics)
Show Figures

Figure 1

18 pages, 8764 KiB  
Article
Synergistic Removal of Cr(VI) Utilizing Oxalated-Modified Zero-Valent Iron: Enhanced Electron Selectivity and Dynamic Fe(II) Regeneration
by Song Hou, Jiangkun Du, Haibo Ling, Sen Quan, Jianguo Bao and Chuan Yi
Nanomaterials 2025, 15(9), 669; https://doi.org/10.3390/nano15090669 - 28 Apr 2025
Viewed by 478
Abstract
To address the challenges of environmental adaptability and passivation in nanoscale zero-valent iron (nFe0) systems, we developed oxalate-modified nFe0 (nFeoxa) through a coordination-driven synthesis strategy, aiming to achieve high-efficiency Cr(VI) removal with improved stability and reusability. Structural characterization [...] Read more.
To address the challenges of environmental adaptability and passivation in nanoscale zero-valent iron (nFe0) systems, we developed oxalate-modified nFe0 (nFeoxa) through a coordination-driven synthesis strategy, aiming to achieve high-efficiency Cr(VI) removal with improved stability and reusability. Structural characterization (STEM and FT-IR) confirmed the formation of a FeC2O4/nFe0 heterostructure, where oxalate coordinated with Fe(II) to construct a semiconductor interface that effectively inhibits anoxic passivation while enabling continuous electron supply, achieving 100% Cr(VI) removal efficiency within 20 min at an optimal oxalate/Fe molar ratio of 1/29. Mechanistic studies revealed that the oxalate ligand accelerates electron transfer from the Fe0 core to the surface via the FeC2O4-mediated pathway, as evidenced by EIS and LSV test analyses. This process dynamically regenerates surface Fe(II) active sites rather than relying on static-free Fe(II) adsorption. XPS and STEM further demonstrated that Cr(VI) was reduced to Cr(III) and uniformly co-precipitated with Fe(II/III)-oxalate complexes, effectively immobilizing chromium. The synergy between the protective semiconductor layer and the ligand-enhanced electron transfer endows nFeoxa with superior reactivity. This work provides a ligand-engineering strategy to design robust nFe0-based materials for sustainable remediation of metal oxyanion-contaminated water. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

19 pages, 5449 KiB  
Article
Three-Dimensional Porous Artemia Cyst Shell Biochar-Supported Iron Oxide Nanoparticles for Efficient Removal of Chromium from Wastewater
by Yu Gao, Ying Liu, Xu Zhao, Xinchao Liu, Qina Sun and Tifeng Jiao
Molecules 2025, 30(8), 1743; https://doi.org/10.3390/molecules30081743 - 13 Apr 2025
Viewed by 599
Abstract
Chromium-containing wastewater poses severe threats to ecosystems and human health due to the high toxicity of hexavalent chromium (Cr(VI)). Although iron oxide nanoparticles (IONPs) show promise for Cr(VI) removal, their practical application is hindered by challenges in recovery and reuse. Herein, a novel [...] Read more.
Chromium-containing wastewater poses severe threats to ecosystems and human health due to the high toxicity of hexavalent chromium (Cr(VI)). Although iron oxide nanoparticles (IONPs) show promise for Cr(VI) removal, their practical application is hindered by challenges in recovery and reuse. Herein, a novel three-dimensional porous nanocomposite, Artemia cyst shell biochar-supported iron oxide nanoparticles (ACSC@ IONP), was synthesized via synchronous pyrolysis of Fe3+-impregnated Artemia cyst shells (ACSs) and in situ reduction of iron. The optimized composite C@Fe-3, prepared with 1 mol/L Fe3+ and pyrolyzed at 450 °C for 5 h, exhibited rapid removal equilibrium within 5–10 min for both Cr(VI) and total chromium (Cr(total)), attributed to synergistic reduction of Cr(VI) to Cr(III) and adsorption of Cr(VI) and Cr(III). The maximum Cr(total) adsorption capacity was 110.1 mg/g at pH 2, as determined by the Sips isothermal model for heterogeneous adsorption. Competitive experiments demonstrated robust selectivity for Cr(VI) removal even under a 64-fold excess of competing anions, with an interference order of SO42− > NO3 > Cl. Remarkably, C@Fe-3 retained 65% Cr(VI) removal efficiency after four adsorption–desorption cycles. This study provides a scalable and eco-friendly strategy for fabricating reusable adsorbents with dual functionality for chromium remediation. Full article
(This article belongs to the Special Issue Porous Carbon Materials: Preparation and Application)
Show Figures

Graphical abstract

30 pages, 10226 KiB  
Article
Environmentally Friendly Solutions as Potential Alternatives to Chromium-Based Anodization and Chromate Sealing for Aeronautic Applications
by Norica Godja and Florentina-Daniela Munteanu
Coatings 2025, 15(4), 439; https://doi.org/10.3390/coatings15040439 - 8 Apr 2025
Viewed by 754
Abstract
The adoption of chrome-free anodizing and sealing systems for aluminum alloys, particularly AA2024, is gaining prominence due to environmental and health concerns associated with traditional Cr(VI)-based processes. This study evaluates the environmental and economic impacts of sulfuric acid anodizing (SAA) combined with sealing [...] Read more.
The adoption of chrome-free anodizing and sealing systems for aluminum alloys, particularly AA2024, is gaining prominence due to environmental and health concerns associated with traditional Cr(VI)-based processes. This study evaluates the environmental and economic impacts of sulfuric acid anodizing (SAA) combined with sealing based on fluorozirconate, molybdate, and cerate. Comparative analyses were conducted against conventional Cr(VI) systems and SAA with Cr(III) sealing, focusing on corrosion resistance, energy consumption, washing steps and material flows. The entire anodizing process was examined, including pretreatment, anodization, and sealing. Electrochemical analyses and surface characterization through SEM/EDS, FIB, and XPS were conducted. The results demonstrate that the chromium-free system offers competitive corrosion resistance while significantly reducing environmental and economic costs. Furthermore, fluorozirconate, molybdate, and cerate-based post-treatments broaden its application spectrum in corrosion science and warrant further exploration. However, adopting new sealing technologies in aerospace requires extensive certification involving corrosion resistance, durability assessments, and stringent environmental simulations. Compliance with regulatory standards set by the FAA (Federal Aviation Administration) and EASA (European Union Aviation Safety Agency) necessitates thorough documentation, third-party validation, and testing to ensure safety and performance before industrial implementation. These challenges underscore the complexity of transitioning to more sustainable anodizing and sealing technologies in the aerospace industry. Full article
(This article belongs to the Special Issue Corrosion Protection of Metals and Alloys in Extreme Environments)
Show Figures

Graphical abstract

12 pages, 2483 KiB  
Article
Aged Polystyrene Microplastics Accelerate the Photo-Reduction of Chromium(VI)
by Yongkang Cheng, Sainan Qin, Qing Wang, Puxing Zhang and Zhuozhi Ouyang
Water 2025, 17(7), 1102; https://doi.org/10.3390/w17071102 - 7 Apr 2025
Cited by 1 | Viewed by 548
Abstract
Microplastics (MPs) and hexavalent chromium (Cr(VI)) are typical environmental pollutants, yet their interactions in aquatic systems remain poorly understood. This study investigates the mutual influence between Cr(VI) and both virgin and aged polystyrene microplastics (PS-MPs) under light conditions. Concentration kinetics revealed that the [...] Read more.
Microplastics (MPs) and hexavalent chromium (Cr(VI)) are typical environmental pollutants, yet their interactions in aquatic systems remain poorly understood. This study investigates the mutual influence between Cr(VI) and both virgin and aged polystyrene microplastics (PS-MPs) under light conditions. Concentration kinetics revealed that the total chromium concentration remained stable across all systems, while Cr(VI) concentrations decreased over time, indicating that PS-MPs accelerate the reduction of Cr(VI) to Cr(III). Conversely, it had been found that Cr(VI) promoted the aging of PS-MPs, and this was evidenced by an increase in surface roughness and the generation of oxygen-containing functional groups. Cr(VI) led to a rise in the O/C ratio and carbonyl index, providing additional evidence for the aging of PS. Two-dimensional correlation spectroscopy (2D-COS) elucidated that under Cr(VI) exposure, the order of functional group alterations in PS and aged PS exhibited an opposite trend. Additionally, three-dimensional fluorescence spectroscopy revealed distinct changes in the fluorescence characteristics of leached substances from aged and pristine PS, both with and without Cr(VI), under light and dark conditions. These results furnish innovative understandings of environmental behavior and risks associated with the co-occurrence of MPs and heavy metals, highlighting the complex interplay between Cr(VI) and PS-MPs in aquatic environments. Full article
Show Figures

Figure 1

18 pages, 6291 KiB  
Article
A Study on the Oxidation Performance of Soil Chromium with Acid Birnessite and Cryptomelane
by Wei Zhang, Huan Yang, Shaohong You, Xia Zhong, Pingping Jiang, Xudong Lan and Rui Ma
Toxics 2025, 13(4), 262; https://doi.org/10.3390/toxics13040262 - 31 Mar 2025
Viewed by 536
Abstract
Current research focuses more on redox of toxic Cr(VI), with less attention to Cr(III) changes in flooded soil. First, the structure of acid birnessite and cryptomelane was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and other test [...] Read more.
Current research focuses more on redox of toxic Cr(VI), with less attention to Cr(III) changes in flooded soil. First, the structure of acid birnessite and cryptomelane was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and other test methods. This study investigated farmland soil in Yuxi, Yunnan Province, under flooding stress induced by the addition of two distinct concentrations of manganese oxides. Throughout the experiment, key physicochemical properties of the soil—including pH, redox potential (Eh), Cr(VI) concentration, and chromium speciation—were systematically measured and analyzed. Structural characterization demonstrated distinct morphological and surface area properties. Specifically, acid birnessite, with petal-like stacked spheres, has a specific surface area of 103.76 m2/g, while cryptomelane, strip-shaped, has an area of 95.92 m2/g. The submergence experiment yielded the following phenomena: (1) During the 60-day flooding experiment, soil amended with 0.5% or 1% acid birnessite or cryptomelane exhibited an increase in Eh compared to the control group. (2) At the end of the 60-day submergence period, the Cr(VI) concentration in the soil treated with 1% acid birnessite increased by 2.4 times compared to the control group. In addition, after 60 days, Cr(VI) concentrations in the soil exceeded 5 mg/L in soils with manganese oxide added to them. This study evaluates how manganese oxides oxidize Cr(III), aiding in assessing their environmental risks and long-term impacts on metal transformation. The findings help predict chromium behavior in farm soils and guide remediation strategies. Full article
Show Figures

Graphical abstract

Back to TopTop