Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (192)

Search Parameters:
Keywords = choline-deficient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 13309 KiB  
Article
Biomarker-Driven Optimization of Saponin Therapy in MASLD: From Mouse Models to Human Liver Organoids
by Hye Young Kim, Ju Hee Oh, Hyun Sung Kim and Dae Won Jun
Antioxidants 2025, 14(8), 943; https://doi.org/10.3390/antiox14080943 (registering DOI) - 31 Jul 2025
Viewed by 245
Abstract
(1) Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by liver damage similar to alcoholic fatty liver disease, including triglyceride infiltration of hepatocytes, regardless of alcohol consumption. It leads to progressive liver damage, such as loss of liver function, cirrhosis, and liver [...] Read more.
(1) Background: Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by liver damage similar to alcoholic fatty liver disease, including triglyceride infiltration of hepatocytes, regardless of alcohol consumption. It leads to progressive liver damage, such as loss of liver function, cirrhosis, and liver cancer, and the response rate of drugs under clinical research is less than 50%. There is an urgent need for biomarkers to evaluate the efficacy of these drugs. (2) Methods: MASLD was induced in mice using a High-Fat diet (HF), Western diet (WD), and Methionine/Choline-Deficient diet (MCD) for 20 weeks (4 weeks for MCD). Liver tissue biopsies were performed, and the treatment effects of saponin and non-saponin feeds were evaluated. Fat accumulation and hepatic inflammation were measured, and mRNA sequencing analysis was conducted. The therapeutic effects were validated using patient-derived liver organoids. (3) Results: The NAFLD Activity Score (NAS) significantly increased in all MASLD models compared with controls. Saponin treatment decreased NAS in the HF and WD groups but not in the MCD group. RNA sequencing and PCA analysis showed that the HF saponin response samples were similar to normal controls. DAVID analysis revealed significant changes in lipid, triglyceride, and fatty acid metabolic processes. qRT-PCR confirmed decreased fibrosis markers in the HF saponin response group, and GSEA analysis showed reduced HAMP1 gene expression. (4) Conclusions: Among the diets, red ginseng was most effective in the HF diet, with significant effects in the saponin-treated group. The therapeutic efficacy was better when HAMP1 expression was increased. Therefore, we propose HAMP1 as a potential exploratory biomarker to assess the saponin response in a preclinical setting. In addition, the reduction of inflammation and hepatic iron accumulation suggests that saponins may exert antioxidant effects through modulation of oxidative stress. Full article
Show Figures

Figure 1

17 pages, 1315 KiB  
Review
The Shuttling of Methyl Groups Between Folate and Choline Pathways
by Jonathan Bortz and Rima Obeid
Nutrients 2025, 17(15), 2495; https://doi.org/10.3390/nu17152495 - 30 Jul 2025
Viewed by 282
Abstract
Methyl groups can be obtained either from the diet (labile methyl groups) or produced endogenously (methylneogenesis) via one-carbon (C1-) metabolism as S-adenosylmethionine (SAM). The essential nutrients folate and choline (through betaine) are metabolically entwined to feed their methyl groups into C1-metabolism. A choline-deficient [...] Read more.
Methyl groups can be obtained either from the diet (labile methyl groups) or produced endogenously (methylneogenesis) via one-carbon (C1-) metabolism as S-adenosylmethionine (SAM). The essential nutrients folate and choline (through betaine) are metabolically entwined to feed their methyl groups into C1-metabolism. A choline-deficient diet in rats produces a 31–40% reduction in liver folate content, 50% lower hepatic SAM levels, and a doubling of plasma homocysteine. Similarly, folate deficiency results in decreased total hepatic choline. Thus, sufficient intakes of both folate and choline (or betaine) contribute to safeguarding the methyl balance in the body. A significant amount of choline (as phosphatidylcholine) is produced in the liver via the SAM-dependent phosphatidylethanolamine methyltransferase. Experimental studies using diets deficient in several methyl donors have shown that supplemental betaine was able to rescue not only plasma betaine but also plasma folate. Fasting plasma homocysteine concentrations are mainly determined by folate intake or status, while the effect of choline or betaine on fasting plasma homocysteine is minor. This appears to contradict the finding that approximately 50% of cellular SAM is provided via the betaine-homocysteine methyltransferase (BHMT) pathway, which uses dietary choline (after oxidation to betaine) or betaine to convert homocysteine to methionine and then to SAM. However, it has been shown that the relative contribution of choline and betaine to cellular methylation is better reflected by measuring plasma homocysteine after a methionine load test. Choline or betaine supplementation significantly lowers post-methionine load homocysteine, whereas folate supplementation has a minor effect on post-methionine load homocysteine concentrations. This review highlights the interactions between folate and choline and the essentiality of choline as a key player in C1-metabolism. We further address some areas of interest for future work. Full article
(This article belongs to the Section Nutrigenetics and Nutrigenomics)
Show Figures

Figure 1

18 pages, 4037 KiB  
Article
A Genetically-Engineered Thyroid Gland Built for Selective Triiodothyronine Secretion
by Cintia E. Citterio, Berenice Morales-Rodriguez, Xiao-Hui Liao, Catherine Vu, Rachel Nguyen, Jessie Tsai, Jennifer Le, Ibrahim Metawea, Ming Liu, David P. Olson, Samuel Refetoff and Peter Arvan
Int. J. Mol. Sci. 2025, 26(15), 7166; https://doi.org/10.3390/ijms26157166 - 24 Jul 2025
Viewed by 344
Abstract
Thyroid hormones (thyroxine, T4, and triiodothyronine, T3) are indispensable for sustaining vertebrate life, and their deficiency gives rise to a wide range of symptoms characteristic of hypothyroidism, affecting 5–10% of the world’s population. The precursor for thyroid hormone synthesis [...] Read more.
Thyroid hormones (thyroxine, T4, and triiodothyronine, T3) are indispensable for sustaining vertebrate life, and their deficiency gives rise to a wide range of symptoms characteristic of hypothyroidism, affecting 5–10% of the world’s population. The precursor for thyroid hormone synthesis is thyroglobulin (Tg), a large iodoglycoprotein consisting of upstream regions I-II-III (responsible for synthesis of most T4) and the C-terminal CholinEsterase-Like (ChEL) domain (responsible for synthesis of most T3, which can also be generated extrathyroidally by T4 deiodination). Using CRISPR/Cas9-mediated mutagenesis, we engineered a knock-in of secretory ChEL into the endogenous TG locus. Secretory ChEL acquires Golgi-type glycans and is properly delivered to the thyroid follicle lumen, where T3 is first formed. Homozygous knock-in mice are capable of thyroidal T3 synthesis but largely incompetent for T4 synthesis such that T4-to-T3 conversion contributes little. Instead, T3 production is regulated thyroidally by thyrotropin (TSH). Compared to cog/cog mice with conventional hypothyroidism (low serum T4 and T3), the body size of ChEL-knock-in mice is larger; although, these animals with profound T4 deficiency did exhibit a marked elevation of serum TSH and a large goiter, despite normal circulating T3 levels. ChEL knock-in mice exhibited a normal expression of hepatic markers of thyroid hormone action but impaired locomotor activities and increased anxiety-like behavior, highlighting tissue-specific differences in T3 versus T4 action, reflecting key considerations in patients receiving thyroid hormone replacement therapy. Full article
Show Figures

Figure 1

17 pages, 916 KiB  
Review
Choline—An Essential Nutrient with Health Benefits and a Signaling Molecule
by Brianne C. Burns, Jitendra D. Belani, Hailey N. Wittorf, Eugen Brailoiu and Gabriela C. Brailoiu
Int. J. Mol. Sci. 2025, 26(15), 7159; https://doi.org/10.3390/ijms26157159 - 24 Jul 2025
Viewed by 659
Abstract
Choline has been recognized as an essential nutrient involved in various physiological functions critical to human health. Adequate daily intake of choline has been established by the US National Academy of Medicine in 1998, considering choline requirements for different ages, sex differences and [...] Read more.
Choline has been recognized as an essential nutrient involved in various physiological functions critical to human health. Adequate daily intake of choline has been established by the US National Academy of Medicine in 1998, considering choline requirements for different ages, sex differences and physiological states (e.g., pregnancy). By serving as a precursor for acetylcholine and phospholipids, choline is important for cholinergic transmission and the structural integrity of cell membranes. In addition, choline is involved in lipid and cholesterol transport and serves as a methyl donor after oxidation to betaine. Extracellular choline is transported across the cell membrane via various transport systems (high-affinity and low-affinity choline transporters) with distinct features and roles. An adequate dietary intake of choline during pregnancy supports proper fetal development, and throughout life supports brain, liver, and muscle functions, while choline deficiency is linked to disease states like fatty liver. Choline has important roles in neurodevelopment, cognition, liver function, lipid metabolism, and cardiovascular health. While its signaling role has been considered mostly indirect via acetylcholine and phosphatidylcholine which are synthesized from choline, emerging evidence supports a role for choline as an intracellular messenger acting on Sigma-1R, a non-opioid intracellular receptor. These new findings expand the cell signaling repertoire and increase the current understanding of the role of choline while warranting more research to uncover the molecular mechanisms and significance in the context of GPCR signaling, the relevance for physiology and disease states. Full article
Show Figures

Figure 1

16 pages, 3260 KiB  
Article
Rifaximin Attenuates Liver Fibrosis and Hepatocarcinogenesis in a Rat MASH Model by Suppressing the Gut–Liver Axis and Epiregulin–IL-8-Associated Angiogenesis
by Naoki Nishimura, Kosuke Kaji, Norihisa Nishimura, Junichi Hanatani, Tatsuya Nakatani, Masafumi Oyama, Akihiko Shibamoto, Yuki Tsuji, Koh Kitagawa, Shinya Sato, Tadashi Namisaki, Satoru Tamaoki and Hitoshi Yoshiji
Int. J. Mol. Sci. 2025, 26(14), 6710; https://doi.org/10.3390/ijms26146710 - 12 Jul 2025
Viewed by 385
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disease linked to fibrosis and hepatocellular carcinoma (HCC). Gut-derived lipopolysaccharide (LPS) promotes hepatic inflammation, fibrosis, and angiogenesis through toll-like receptor 4 (TLR4) signaling. This study examined the effects of rifaximin, a non-absorbable, gut-targeted antibiotic, on [...] Read more.
Metabolic dysfunction-associated steatohepatitis (MASH) is a progressive liver disease linked to fibrosis and hepatocellular carcinoma (HCC). Gut-derived lipopolysaccharide (LPS) promotes hepatic inflammation, fibrosis, and angiogenesis through toll-like receptor 4 (TLR4) signaling. This study examined the effects of rifaximin, a non-absorbable, gut-targeted antibiotic, on MASH-related liver fibrosis and early hepatocarcinogenesis, with a focus on the LPS–epiregulin–IL-8–angiogenesis axis.MASH was induced in Fischer 344 rats using a choline-deficient, L-amino acid-defined high-fat diet (CDAHFD). Rifaximin (30 mg/kg/day) was orally administered for 12 weeks. Liver histology, gene expression, intestinal permeability, LPS levels, and angiogenic markers were evaluated. Rifaximin reduced hepatic inflammation, fibrosis, hydroxyproline content, and fibrogenic gene expression. The number and size of GST-P-positive preneoplastic lesions and proliferation-related genes were decreased. Portal LPS levels and Kupffer cell activation declined, with downregulation of Lbp, Cd14, Tlr4, and inflammatory cytokines. Rifaximin decreased hepatic epiregulin and IL-8 expression, attenuated CD34-positive neovascularization, and suppressed proangiogenic gene expression, accompanied by improved intestinal barrier function and reduced gut permeability. Rifaximin mitigates MASH progression by restoring gut barrier integrity, limiting LPS translocation, and inhibiting fibrogenic and angiogenic pathways. These results suggest its potential as a chemopreventive agent in MASH-related hepatocarcinogenesis. Full article
(This article belongs to the Special Issue Liver Diseases: From Molecular Basis to Potential Therapy)
Show Figures

Figure 1

23 pages, 6722 KiB  
Article
Identification of Glycolysis-Related Genes in MAFLD and Their Immune Infiltration Implications: A Multi-Omics Analysis with Experimental Validation
by Jiawei Chen, Siqi Yang, Diwen Shou, Bo Liu, Shaohan Li, Tongtong Luo, Huiting Chen, Chen Huang and Yongjian Zhou
Biomedicines 2025, 13(7), 1636; https://doi.org/10.3390/biomedicines13071636 - 3 Jul 2025
Viewed by 568
Abstract
Background: Metabolic-associated fatty liver disease (MAFLD) is characterized by metabolic syndrome and immune infiltration, with glycolysis pathway activation emerging as a pivotal contributor. This study aims to identify glycolysis-associated key genes driving MAFLD progression and elucidate their crosstalk with immune infiltration through [...] Read more.
Background: Metabolic-associated fatty liver disease (MAFLD) is characterized by metabolic syndrome and immune infiltration, with glycolysis pathway activation emerging as a pivotal contributor. This study aims to identify glycolysis-associated key genes driving MAFLD progression and elucidate their crosstalk with immune infiltration through bioinformatics analysis and experimental validation. Methods: Integrative multi-omics analysis was performed on bulk RNA-seq, single-cell RNA-seq, and spatial transcriptomic datasets from MAFLD patients and controls. Differential expression analysis and WGCNA were employed to pinpoint glycolysis-correlated key genes. The relationship with immune infiltration was analyzed using single-cell and spatial transcriptomics technologies. Machine learning was applied to identify feature genes for matching shared TFs and miRNAs. External cohort validation and in vivo experiments (methionine choline-deficient diet murine models) were conducted for biological confirmation. Results: Five glycolysis-associated key genes (ALDH3A1, CDK1, DEPDC1, HKDC1, SOX9) were identified and validated as MAFLD discriminators. Single-cell analysis revealed that the hepatocyte–fibroblast–macrophage axis constitutes the predominant glycolysis-active niche. Spatial transcriptomics showed that CDK1, SOX9, and HKDC1 were colocalized with the monocyte-derived macrophage marker CCR2. Using four machine learning models, four feature genes were identified, along with their common transcription factors YY1 and FOXC1, and the miRNA “hsa-miR-590-3p”. External datasets and experimental validation confirmed that the key genes were upregulated in MAFLD samples. Conclusions: In this study, we identified five glycolysis-related key genes in MAFLD and explored their relationship with immune infiltration, providing new insights for diagnosis and metabolism-directed immunomodulation strategies in MAFLD. Full article
Show Figures

Figure 1

12 pages, 1434 KiB  
Article
Protective Effects of the Ethyl Acetate Fraction of Distylium racemosum Against Metabolic Dysfunction-Associated Steatohepatitis
by Young-Hyeon Lee, Min-Ho Yeo, Kyung-Soo Chang, Weon-Jong Yoon, Hye-Sook Kim, Jongwan Kim and Hye-Ran Kim
Appl. Sci. 2025, 15(13), 7238; https://doi.org/10.3390/app15137238 - 27 Jun 2025
Viewed by 307
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), previously referred to as non-alcoholic steatohepatitis (NASH), which is a progressive non-alcoholic fatty liver disease, is accompanied by hepatic steatosis, inflammation, and fibrosis. Despite its increasing prevalence, available treatment options for MASH are limited. Here, we investigated the protective [...] Read more.
Metabolic dysfunction-associated steatohepatitis (MASH), previously referred to as non-alcoholic steatohepatitis (NASH), which is a progressive non-alcoholic fatty liver disease, is accompanied by hepatic steatosis, inflammation, and fibrosis. Despite its increasing prevalence, available treatment options for MASH are limited. Here, we investigated the protective effects of the Distylium racemosum ethyl acetate fraction (DRE) using MASH models and explored its key physiologically active components. Palmitic acid (PA)-induced AML12 hepatocytes and high-fat methionine- and choline-deficient-fed C57BL/6 mice were used as MASH models. Lipid accumulation was evaluated via triglyceride measurement, oil red O staining, and histological analysis. Lipid accumulation, inflammation, and fibrosis-associated gene expression were evaluated via real-time polymerase chain reaction. The physiologically active components of DRE were identified via high-performance liquid chromatography. Lipid accumulation and triglyceride levels were significantly reduced in PA-treated AML12 cells following DRE treatment. Additionally, DRE inhibited the expression of genes involved in lipogenesis (FAS and SREBP1c), inflammation (CD68, IL-6, and MCP-1), and fibrosis (COL1A1, COL1A2, and TIMP1). DRE reduced the liver weight, liver-to-body weight ratio, and hepatic steatosis in MASH model mice. It increased carnitine palmitoyltransferase-1 levels and decreased CD36 and transforming growth factor-β levels in the MASH mouse liver. High-performance liquid chromatography revealed that the extract contained rutin flavonoid family members. Overall, DRE was involved in lipid metabolism, inflammation, and fibrosis regulation, exerting potent hepatoprotective effects partly attributed to rutin and serving as a potential preventive candidate for MASH. Full article
Show Figures

Figure 1

22 pages, 107288 KiB  
Article
Integration of Pseudotargeted Metabolomics and Microbiomics Reveals That Hugan Tablets Ameliorate NASH with Liver Fibrosis in Mice by Modulating Bile Acid Metabolism via the Gut Microbiome
by Wenran Dong, Ying Wang, Huajinzi Li, Huilin Ma, Yingxi Gong, Gan Luo and Xiaoyan Gao
Metabolites 2025, 15(7), 433; https://doi.org/10.3390/metabo15070433 - 24 Jun 2025
Viewed by 604
Abstract
Background/Objectives: Non-alcoholic steatohepatitis (NASH) carries a high risk of developing hepatic fibrosis. Hugan tablets (HGTs), a traditional Chinese medicine, have exhibited potent anti-hepatic fibrosis effects, though the underlying mechanisms remain unclarified. This study aims to assess the efficacy of HGTs against NASH-related [...] Read more.
Background/Objectives: Non-alcoholic steatohepatitis (NASH) carries a high risk of developing hepatic fibrosis. Hugan tablets (HGTs), a traditional Chinese medicine, have exhibited potent anti-hepatic fibrosis effects, though the underlying mechanisms remain unclarified. This study aims to assess the efficacy of HGTs against NASH-related liver fibrosis in mice and investigate the underlying mechanisms via the integration of pseudotargeted metabolomics and microbiomics. Methods: C57BL/6 mice were fed a choline-deficient, ethionine-supplemented (CDE) diet and treated with HGTs. The therapeutic effects of HGTs in CDE mice were assessed. The underlying mechanism of HGTs was investigated by the integration of microbiomics, a pseudo-sterile model, untargeted followed by pseudotargeted metabolomics, and molecular docking. Results: HGTs alleviated NASH-related hepatic fibrosis in CDE mice and restored the composition of the gut microbiota. The depletion of the gut microbiota eliminated the anti-hepatic fibrosis effect of HGTs. HGTs increased intestinal 7-ketolithocholic acid and tauroursodeoxycholic acid via 7α/β-hydroxysteroid dehydrogenase (7α/βHSDH), while reducing deoxycholic acid (DCA) and taurodeoxycholic acid through inhibition of bile acid 7α-dehydratase (BaiE), leading to lower hepatic DCA. Six intestinal components of HGTs interacted with 7αHSDH, 7βHSDH, and BaiE, which are expressed in the bacterial genera altered by HGTs. Conclusions: HGTs alleviate NASH fibrosis by reshaping the gut microbiome, acting on microbial BA-metabolizing enzymes, and regulating the BA metabolism in the liver and gut. Full article
(This article belongs to the Section Microbiology and Ecological Metabolomics)
Show Figures

Figure 1

9 pages, 373 KiB  
Case Report
Management of Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) in Pregnancy
by Matthew A. Shear, Allie LaTray, Irene J. Chang, Annalisa Post and Renata C. Gallagher
Metabolites 2025, 15(7), 432; https://doi.org/10.3390/metabo15070432 - 24 Jun 2025
Viewed by 605
Abstract
Multiple acyl-CoA dehydrogenase deficiency (MADD), also known as glutaric acidemia/glutaric aciduria type II (GA II), is an inborn error of fatty acid, amino acid, and choline metabolism. The chronic management of MADD involves both dietary fat and protein restriction to reduce the substrates [...] Read more.
Multiple acyl-CoA dehydrogenase deficiency (MADD), also known as glutaric acidemia/glutaric aciduria type II (GA II), is an inborn error of fatty acid, amino acid, and choline metabolism. The chronic management of MADD involves both dietary fat and protein restriction to reduce the substrates of the dehydrogenases affected, the avoidance of prolonged fasting as in any fat metabolism disorder, and monitoring for potential complications. Due to its rarity, there is little published experience on the management of MADD in pregnancy. Herein, we report the successful management of a pregnancy in a patient with late-onset or type III MADD, with considerations for preconception, antepartum, intrapartum, and postpartum care. Full article
21 pages, 2606 KiB  
Article
Choline in Pediatric Nutrition: Assessing Formula, Fortifiers and Supplements Across Age Groups and Clinical Indications
by Wolfgang Bernhard, Anna Shunova, Ute Graepler-Mainka, Johannes Hilberath, Cornelia Wiechers, Christian F. Poets and Axel R. Franz
Nutrients 2025, 17(10), 1632; https://doi.org/10.3390/nu17101632 - 9 May 2025
Viewed by 981
Abstract
Background: Sufficient choline supply is essential for tissue functions via phosphatidylcholine and sphingomyelin within membranes and secretions like bile, lipoproteins and surfactant, and in one-carbon metabolism via betaine. Choline requirements are linked to age and genetics, folate and cobalamin via betaine, and [...] Read more.
Background: Sufficient choline supply is essential for tissue functions via phosphatidylcholine and sphingomyelin within membranes and secretions like bile, lipoproteins and surfactant, and in one-carbon metabolism via betaine. Choline requirements are linked to age and genetics, folate and cobalamin via betaine, and arachidonic (ARA) and docosahexaenoic (DHA) acid transport via the phosphatidylcholine moiety of lipoproteins. Groups at risk of choline deficiency include preterm infants, children with cystic fibrosis (CF) and patients dependent on parenteral nutrition. Fortifiers, formula and supplements may differently impact their choline supply. Objective: To evaluate added amounts of choline, folate, cobalamin, ARA and DHA in fortifiers, supplements and formula used in pediatric care from product files. Methods: Nutrient contents from commonly used products, categorized by age and patient groups, were obtained from public sources. Data are shown as medians and interquartile ranges. Results: 105 nutritional products including fortifiers, formula and products for special indications were analyzed. Choline concentrations were comparable in preterm and term infant formulas (≤6 months) (31.9 [27.6–33.3] vs. 33.3 [30.8–35.2] mg/100 kcal). Products for toddlers, and patients with CF, kidney or Crohn’s disease showed Choline levels from 0 to 39 mg/100 kcal. Several products contain milk components and lecithin-based emulsifiers potentially increasing choline content beyond indicated amounts. Conclusions: Choline addition is standardized in formula for term and preterm infants up to 6 months, but not in other products. Choline content may be higher in several products due to non-declared sources. The potential impact of insufficient choline supply in patients at risk for choline deficiency suggests the need for biochemical analysis of products. Full article
Show Figures

Figure 1

17 pages, 5043 KiB  
Article
Cannabigerol Alleviates Liver Damage in Metabolic Dysfunction-Associated Steatohepatitis Female Mice via Inhibition of Transforming Growth Factor Beta 1
by Raznin Joly, Fariha Tasnim, Kelsey Krutsinger, Zhuorui Li, Nicholas A. Pullen and Yuyan Han
Nutrients 2025, 17(9), 1524; https://doi.org/10.3390/nu17091524 - 30 Apr 2025
Viewed by 618
Abstract
Background and Aims: Metabolic dysfunction-associated steatohepatitis (MASH), a progressive form of metabolic dysfunction-associated steatotic liver disease (MASLD), involves inflammation, fibrosis, steatosis, and oxidative stress. Previous research from our lab shows that cannabigerol (CBG) reduces inflammation and fibrosis in male MASH mice, but its [...] Read more.
Background and Aims: Metabolic dysfunction-associated steatohepatitis (MASH), a progressive form of metabolic dysfunction-associated steatotic liver disease (MASLD), involves inflammation, fibrosis, steatosis, and oxidative stress. Previous research from our lab shows that cannabigerol (CBG) reduces inflammation and fibrosis in male MASH mice, but its effects in females remain unknown. Given immune cell population changes in MASLD patients, this study examines CBG’s impact on methionine-choline deficient (MCD) diet-induced MASH in female mice. Methods: MCD-fed female mice are supplemented with two different doses for three weeks. Liver fibrosis, steatosis, oxidative stress, ductular reaction, and inflammation are assessed via Sirius Red, Oil Red O, immunohistochemistry, and immunofluorescence staining. Immune cell changes in non-parenchymal cells (NPCs) are analyzed via flow cytometry. Results: CBG treatment improves liver health by reducing leukocyte infiltration. Both CBG doses significantly decrease fibrosis, oxidative stress, ductular proliferation, and inflammation in MCD-fed mice, including monocyte and T lymphocyte reductions. Additionally, CBG downregulates mast cell activation, inhibiting transforming growth factor (TGF)-β1 release, thereby suppressing hepatic stellate cell activation. This reduces collagen deposition, fibrosis, and ductular proliferation. Conclusions: Our findings provide insights for pre-clinical and clinical research, highlighting CBG’s potential therapeutic role and dosage considerations in mitigating liver fibrosis and inflammation in female patients. Full article
Show Figures

Figure 1

22 pages, 22151 KiB  
Article
The Behavioral and Neuroinflammatory Impact of Ketamine in a Murine Model of Depression and Liver Damage
by Mădălina Iuliana Mușat, Ana-Maria Ifrim-Predoi, Smaranda Ioana Mitran, Eugen Osiac and Bogdan Cătălin
Int. J. Mol. Sci. 2025, 26(8), 3558; https://doi.org/10.3390/ijms26083558 - 10 Apr 2025
Viewed by 915
Abstract
Non-alcoholic fatty liver disease (NAFLD) has been associated with depression and inadequate response to antidepressants. While ketamine has demonstrated efficacy in treating depression, its impact on pre-existing liver injury and depression remains unclear. This study aimed to evaluate the effects of ketamine treatment [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) has been associated with depression and inadequate response to antidepressants. While ketamine has demonstrated efficacy in treating depression, its impact on pre-existing liver injury and depression remains unclear. This study aimed to evaluate the effects of ketamine treatment in a murine model of depression and liver damage, considering age-related differences. Young and aged male C57BL/6N mice were submitted to chronic unpredictable mild stress (CUMS) and methionine–choline-deficient (MCD) diet to induce depressive-like behavior and NAFLD. Behavioral testing (sucrose preference test, open field test, novel object recognition test, Crawley’s sociability test) were used to assess ketamine’s (50 mg/kg) effect on behavior. Hepatic ultrasonography was utilized to evaluate liver status. The cortical and hippocampal NeuN+, GFAP+, and Iba1+ signals were quantified for each animal. Ketamine administration proved effective in relieving anhedonia and anxiety-like behavior, regardless of liver damage. Although ketamine treatment did not improve memory in animals with liver damage, it enhanced sociability, particularly in aged subjects. The acute administration of ketamine did not affect the severity of liver injury, but seems to affect astrogliosis and neuronal loss. Although animal models of depression only replicate certain clinical features of the condition, they remain valuable for evaluating the complex and varied effects of ketamine. By applying such models, we could demonstrate ketamine’s therapeutic versatility, and also indicate that responses to the treatment may differ across different age groups. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

22 pages, 6985 KiB  
Article
Identification of Novel Therapeutic Targets for MAFLD Based on Bioinformatics Analysis Combined with Mendelian Randomization
by Jialin Ren and Min Wu
Int. J. Mol. Sci. 2025, 26(7), 3166; https://doi.org/10.3390/ijms26073166 - 29 Mar 2025
Viewed by 1104
Abstract
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver condition with limited therapeutic options. To identify novel drug targets, we integrated bioinformatics, Mendelian randomization (MR), and colocalization analyses. Using the Gene Expression Omnibus (GEO) database, we identified differentially expressed genes and constructed protein–protein [...] Read more.
Metabolic-associated fatty liver disease (MAFLD) is a chronic liver condition with limited therapeutic options. To identify novel drug targets, we integrated bioinformatics, Mendelian randomization (MR), and colocalization analyses. Using the Gene Expression Omnibus (GEO) database, we identified differentially expressed genes and constructed protein–protein interaction (PPI) networks, pinpointing 10 hub genes. MR and colocalization analyses revealed that Ubiquitin-like with PHD and ring finger domains 1 (UHRF1) is causally associated with MAFLD and driven by the same causal variant locus, suggesting its potential as a therapeutic target. Molecular docking identified disogenin as a candidate small-molecule drug targeting UHRF1. Drug affinity responsive target stability (DARTS) assays confirmed direct binding between UHRF1 and disogenin. In vitro, disogenin significantly reduced UHRF1 mRNA and protein levels induced by free fatty acids (FFA) in AML12 and HepG2 cells, accompanied by decreased cellular total cholesterol (TC) and triglyceride (TG) levels. In vivo, disogenin administration alleviated hepatic lipid accumulation, inflammation, and fibrosis in methionine/choline-deficient (MCD)-diet-fed mice. This study identifies UHRF1 as a promising therapeutic target for MAFLD and validates disogenin as a potential therapeutic agent, providing a foundation for further investigation. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

16 pages, 1660 KiB  
Article
Low Plasma Choline, High Trimethylamine Oxide, and Altered Phosphatidylcholine Subspecies Are Prevalent in Cystic Fibrosis Patients with Pancreatic Insufficiency
by Wolfgang Bernhard, Anna Shunova, Julia Boriga, Ute Graepler-Mainka and Johannes Hilberath
Nutrients 2025, 17(5), 868; https://doi.org/10.3390/nu17050868 - 28 Feb 2025
Cited by 2 | Viewed by 809
Abstract
Background: Exocrine pancreatic insufficiency in cystic fibrosis (CF) increases fecal choline losses, but the postnatal course of plasma choline and its metabolites in these patients is unknown. While choline homeostasis is crucial for cellular, bile, and lipoprotein metabolism, via phosphatidylcholine (PC) and via [...] Read more.
Background: Exocrine pancreatic insufficiency in cystic fibrosis (CF) increases fecal choline losses, but the postnatal course of plasma choline and its metabolites in these patients is unknown. While choline homeostasis is crucial for cellular, bile, and lipoprotein metabolism, via phosphatidylcholine (PC) and via betaine as a methyl donor, choline deficiency is associated with impaired lung and liver function, including hepatic steatosis. Objective: The goal of our study was to evaluate the plasma levels of choline, betaine, trimethylamine oxide (TMAO), PC, and PC subclasses in CF patients from infancy to adulthood and compare those with exocrine pancreatic insufficiency (EPI) to those with pancreatic sufficiency (EPS). Methods: Retrospective analysis of target parameters in plasma samples (July 2015–November 2023) of CF patients (0.64–24.6 years) with tandem mass spectrometry. Results: A total of 477 samples from 162 CF patients were analyzed. In CF patients with EPI (N = 148), plasma choline and betaine concentrations were lower and decreased with age compared to EPS patients showing normal values. TMAO concentrations, indicating intestinal choline degradation by bacterial colonization, were frequently elevated in EPI from infancy onwards, and inversely related to plasma choline and betaine levels. PC-containing linoleic acid levels were lower in EPI, but arachidonic and docosahexaenoic acid content was similar in both patient groups. Conclusion: CF patients with EPI are at risk of choline and betaine deficiency compared to exocrine pancreas-sufficient CF patients. Elevated TMAO concentrations in EPI patients indicate increased bacterial colonization leading to choline degradation before absorption. These findings indicate that laboratory testing of choline, betaine, and TMAO as well as clinical trials on choline supplementation are warranted in CF patients. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

24 pages, 17079 KiB  
Article
Enhancing the Therapeutic Efficacy of Berberine and Quercetin Through Salt Formulation for Liver Fibrosis Treatment
by Yangyang Cheng, Haoyang Yu, Sitong Yang, Xiaolian Tian, Mengyu Zhao, Ling Ren, Xiuping Guo, Chujuan Hu, Jiandong Jiang and Lulu Wang
Int. J. Mol. Sci. 2025, 26(5), 2193; https://doi.org/10.3390/ijms26052193 - 28 Feb 2025
Viewed by 1232
Abstract
Liver fibrosis, caused by chronic hepatic injury, is a major threat to human health worldwide, as there are no specific drugs available for its treatment. Natural compounds, such as berberine (BBR) and quercetin (QR), have shown the ability to regulate energy metabolism and [...] Read more.
Liver fibrosis, caused by chronic hepatic injury, is a major threat to human health worldwide, as there are no specific drugs available for its treatment. Natural compounds, such as berberine (BBR) and quercetin (QR), have shown the ability to regulate energy metabolism and protect the liver without significant adverse effects. Additionally, combination therapy (the cocktail therapy approach), using multiple drugs, has shown promise in treating complicated conditions, including liver injury. In this study, we prepared a salt formulation of BBR and QR (BQS) to enhance their combined effect on liver fibrosis. The formation of BQS was confirmed using various analytical techniques, including nuclear magnetic resonance spectroscopy (NMR), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FTIR), powder X-ray diffractometry (PXRD), and scanning electron microscopy (SEM). The results demonstrated that the dissolution efficiency and bioavailability of QR significantly increased in the BQS form, aligning with that of BBR, compared to the physically mixed (BQP) form. Moreover, BQS exhibited a superior inhibitory effect on fibrosis compared to BQP in the human hepatic stellate cell line LX-2 by modulating lipid accumulation, inflammation, apoptosis, and the cell cycle. Furthermore, in a mouse model of hepatic fibrosis induced by methionine and choline-deficient (MCD) diets, BQS demonstrated enhanced anti-fibrotic activities compared to BQP. These findings suggest that BQS holds promise as a potential alternative treatment for liver fibrosis. Importantly, this study provides novel insights into achieving a cocktail effect through the salt formation of two or more drugs. The results highlight the potential of salt formulations in enhancing the therapeutic efficacy and consistent biological processes of drug combinations. Full article
(This article belongs to the Special Issue Natural Products in Drug Discovery and Development)
Show Figures

Figure 1

Back to TopTop