Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (760)

Search Parameters:
Keywords = chlorine concentration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3465 KiB  
Article
Inhibitory Effects of Selected Chemical Substances on the Growth of Filamentous Fungi Occurring in Cellar Management
by Karolina Kostelnikova, Romana Heralecka, Anna Krpatova, Filip Matousek, Jiri Sochor and Mojmir Baron
Microbiol. Res. 2025, 16(8), 182; https://doi.org/10.3390/microbiolres16080182 - 4 Aug 2025
Viewed by 152
Abstract
This study evaluated the inhibitory efficacy of sulphur dioxide, hydrogen peroxide, copper sulphate pentahydrate, chlorine-based formulations, a chlorine-free formulation, ethanol, and acetic acid against Cladosporium cladosporioides, Aspergillus niger, and Penicillium expansum. An in vitro inhibition test was employed to investigate [...] Read more.
This study evaluated the inhibitory efficacy of sulphur dioxide, hydrogen peroxide, copper sulphate pentahydrate, chlorine-based formulations, a chlorine-free formulation, ethanol, and acetic acid against Cladosporium cladosporioides, Aspergillus niger, and Penicillium expansum. An in vitro inhibition test was employed to investigate the inhibitory properties. The results demonstrated different sensitivities of filamentous fungi to the inhibitors. All tested substances displayed fungicidal properties. Sulphur dioxide (40% NH4HSO3 solution) inhibited growth at a 4% v/v concentration. No minimum effective concentration was established for H2O2; only a 30% w/v solution inhibited P. expansum. CuSO4·5H2O completely inhibited fungal growth at 5% w/v solution, with 2.5% w/v also proving effective. For the chlorine-based product, 40% w/v solution (48 g∙L−1 active chlorine) had the most substantial effect, though it only slowed growth, and NaClO solution completely inhibited growth at 2.35 g NaClO per 100 g of product (50% w/v solution). FungiSAN demonstrated fungicidal effects; however, the recommended dose was insufficient for complete inhibition. Ethanol exhibited the lowest efficacy, while the inhibitory threshold for CH3COOH was found to be a 5% v/v solution. The findings of this study may serve as a basis for informed decision-making when selecting the most suitable product, depending on specific application conditions. Full article
Show Figures

Graphical abstract

22 pages, 7156 KiB  
Communication
Water Management, Environmental Challenges, and Rehabilitation Strategies in the Khyargas Lake–Zavkhan River Basin, Western Mongolia: A Case Study of Ereen Lake
by Tseren Ochir Soyol-Erdene, Ganbat Munguntsetseg, Zambuu Burmaa, Ulziibat Bilguun, Shagijav Oyungerel, Soninkhishig Nergui, Nyam-Osor Nandintsetseg, Michael Walther and Ulrich Kamp
Geographies 2025, 5(3), 38; https://doi.org/10.3390/geographies5030038 - 1 Aug 2025
Viewed by 493
Abstract
The depletion of water resources caused by climate change and human activities is a pressing global issue. Lake Ereen is one of the ten natural landmarks of the Gobi-Altai of western Mongolia is included in the list of “important areas for birds” recognized [...] Read more.
The depletion of water resources caused by climate change and human activities is a pressing global issue. Lake Ereen is one of the ten natural landmarks of the Gobi-Altai of western Mongolia is included in the list of “important areas for birds” recognized by the international organization Birdlife. However, the construction of the Taishir Hydroelectric Power Station, aimed at supplying electricity to the western provinces of Mongolia, had a detrimental effect on the flow of the Zavkhan River, resulting in a drying-up and pollution of Lake Ereen, which relies on the river as its water source. This study assesses the pollution levels in Ereen Lake and determines the feasibility of its rehabilitation by redirecting the flow of the Zavkhan River. Field studies included the analysis of water quality, sediment contamination, and the composition of flora. The results show that the concentrations of ammonium, chlorine, fluorine, and sulfate in the lake water exceed the permissible levels set by the Mongolian standard. Analyses of elements from sediments revealed elevated levels of arsenic, chromium, and copper, exceeding international sediment quality guidelines and posing risks to biological organisms. Furthermore, several species of diatoms indicative of polluted water were discovered. Lake Ereen is currently in a eutrophic state and, based on a water quality index (WQI) of 49.4, also in a “polluted” state. Mass balance calculations and box model analysis determined the period of pollutant replacement for two restoration options: drying-up and complete removal of contaminated sediments and plants vs. dilution-flushing without direct interventions in the lake. We recommend the latter being the most efficient, eco-friendly, and cost-effective approach to rehabilitate Lake Ereen. Full article
Show Figures

Figure 1

22 pages, 1556 KiB  
Article
Long-Term Performance of Passive Volatile Organic Compounds (VOCs) Samplers for Indoor Air
by John H. Zimmerman, Brian Schumacher, Christopher C. Lutes, Brian Cosky and Heidi Hayes
Environments 2025, 12(8), 267; https://doi.org/10.3390/environments12080267 - 31 Jul 2025
Viewed by 316
Abstract
The reliability of passive samplers in measuring volatile organic compounds (VOCs) in indoor air depends on whether the uptake rate is constant given the environmental conditions and sampler exposure duration. The first phase of this study evaluated the performance of charcoal-based, solvent-extracted passive [...] Read more.
The reliability of passive samplers in measuring volatile organic compounds (VOCs) in indoor air depends on whether the uptake rate is constant given the environmental conditions and sampler exposure duration. The first phase of this study evaluated the performance of charcoal-based, solvent-extracted passive samplers (e.g., Radiello® 130 passive samplers with white diffusive bodies) over exposure periods ranging from 1 week to 1 year in a test house with known vapor intrusion (VI). Chloroform %Bias values exceeded the ±30% acceptance criterion after 4 weeks exposure. Benzene, hexane, and trichloroethylene (TCE) concentrations were within the acceptance criterion for up to three months. Toluene and tetrachloroethylene (PCE), the two least volatile compounds, demonstrated uniform uptake rates over one year. In the second phase of this study, testing of the longer exposure times of 6 months and 1 year were evaluated with three additional passive samplers: Waterloo Membrane SamplerTM (WMSTM), SKC 575 with secondary diffusive cover, and Radiello® 130 passive samplers with yellow diffusive bodies. The SKC 575 and Radiello® 130 passive samplers produced acceptable results (%Bias ≤ 30%) over the 6-month exposure period, while the WMSTM sampler results favored petroleum hydrocarbon more than chlorinated solvent uptake. After the 1-year exposure period, the passive sampler performances were acceptable under specific conditions of this study. The results suggest that all three samplers can produce acceptable results over exposure time periods beyond 30 days and up to a year for some compounds. Full article
Show Figures

Figure 1

13 pages, 1563 KiB  
Article
Activation of Peracetic Acid by Ozone for Recalcitrant Pollutant Degradation: Accelerated Kinetics, Byproduct Mitigation, and Microbial Inactivation
by Dihao Bai, Cong Liu, Siqing Zhang, Huiyu Dong, Lei Sun and Xiangjuan Yuan
Water 2025, 17(15), 2240; https://doi.org/10.3390/w17152240 - 28 Jul 2025
Viewed by 295
Abstract
Iopamidol (IPM), as a typical recalcitrant emerging pollutant and precursor of iodinated disinfection by-products (I-DBPs), is unsuccessfully removed by conventional wastewater treatment processes. This study comprehensively evaluated the ozone/peracetic acid (O3/PAA) process for IPM degradation, focusing on degradation kinetics, environmental impacts, [...] Read more.
Iopamidol (IPM), as a typical recalcitrant emerging pollutant and precursor of iodinated disinfection by-products (I-DBPs), is unsuccessfully removed by conventional wastewater treatment processes. This study comprehensively evaluated the ozone/peracetic acid (O3/PAA) process for IPM degradation, focusing on degradation kinetics, environmental impacts, transformation products, ecotoxicity, disinfection byproducts (DBPs), and microbial inactivation. The O3/PAA system synergistically activates PAA via O3 to generate hydroxyl radicals (OH) and organic radicals (CH3COO and CH3CO(O)O), achieving an IPM degradation rate constant of 0.10 min−1, which was significantly higher than individual O3 or PAA treatments. The degradation efficiency of IPM in the O3/PAA system exhibited a positive correlation with solution pH, achieving a maximum degradation rate constant of 0.23 min−1 under alkaline conditions (pH 9.0). Furthermore, the process demonstrated strong resistance to interference from coexisting anions, maintaining robust IPM removal efficiency in the presence of common aqueous matrix constituents. Furthermore, quenching experiments revealed OH dominated IPM degradation in O3/PAA system, while the direct oxidation by O3 and R-O played secondary roles. Additionally, based on transformation products (TPs) identification and ECOSAR predictions, the primary degradation pathways were elucidated and the potential ecotoxicity of TPs was systematically assessed. DBPs analysis after chlorination revealed that the O3/PAA (2.5:3) system achieved the lowest total DBPs concentration (99.88 μg/L), representing a 71.5% reduction compared to PAA alone. Amongst, dichloroacetamide (DCAM) dominated the DBPs profile, comprising > 60% of total species. Furthermore, the O3/PAA process achieved rapid 5–6 log reductions of E. coli. and S. aureus within 3 min. These results highlight the dual advantages of O3/PAA in effective disinfection and byproduct control, supporting its application in sustainable wastewater treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

16 pages, 1192 KiB  
Article
Application of the AI-Based Framework for Analyzing the Dynamics of Persistent Organic Pollutants (POPs) in Human Breast Milk
by Gordana Jovanović, Timea Bezdan, Snježana Herceg Romanić, Marijana Matek Sarić, Martina Biošić, Gordana Mendaš, Andreja Stojić and Mirjana Perišić
Toxics 2025, 13(8), 631; https://doi.org/10.3390/toxics13080631 - 27 Jul 2025
Viewed by 332
Abstract
Human milk has been used for over 70 years to monitor pollutants such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Despite the growing body of data, our understanding of the pollutant exposome, particularly co-exposure patterns and their interactions, remains limited. Artificial intelligence [...] Read more.
Human milk has been used for over 70 years to monitor pollutants such as polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Despite the growing body of data, our understanding of the pollutant exposome, particularly co-exposure patterns and their interactions, remains limited. Artificial intelligence (AI) offers considerable potential to enhance biomonitoring efforts through advanced data modelling, yet its application to pollutant dynamics in complex biological matrices such as human milk remains underutilized. This study applied an AI-based framework, integrating machine learning, metaheuristic hyperparameter optimization, explainable AI, and postprocessing, to analyze PCB-170 levels in breast milk samples from 186 mothers in Zadar, Croatia. Among 24 analyzed POPs, the most influential predictors of PCB-170 concentrations were hexa- and hepta-chlorinated PCBs (PCB-180, -153, and -138), alongside p,p’-DDE. Maternal age and other POPs exhibited negligible global influence. SHAP-based interaction analysis revealed pronounced co-behavior among highly chlorinated congeners, especially PCB-138–PCB-153, PCB-138–PCB-180, and PCB-180–PCB-153. These findings highlight the importance of examining pollutant interactions rather than individual contributions alone. They also advocate for the revision of current monitoring strategies to prioritize multi-pollutant assessment and focus on toxicologically relevant PCB groups, improving risk evaluation in real-world exposure scenarios. Full article
Show Figures

Figure 1

16 pages, 2458 KiB  
Article
Kinetics of H2O2 Decomposition and Bacteria Inactivation in a Continuous-Flow Reactor with a Fixed Bed of Cobalt Ferrite Catalyst
by Nazarii Danyliuk, Viktor Husak, Volodymyra Boichuk, Dorota Ziółkowska, Ivanna Danyliuk and Alexander Shyichuk
Appl. Sci. 2025, 15(15), 8195; https://doi.org/10.3390/app15158195 - 23 Jul 2025
Viewed by 224
Abstract
As a result of the catalytic decomposition of H2O2, hydroxyl radicals are produced. Hydroxyl radicals are strong oxidants and effectively inactivate bacteria, ensuring water disinfection without toxic chlorinated organic by-products. The kinetics of bacterial inactivation were studied in a [...] Read more.
As a result of the catalytic decomposition of H2O2, hydroxyl radicals are produced. Hydroxyl radicals are strong oxidants and effectively inactivate bacteria, ensuring water disinfection without toxic chlorinated organic by-products. The kinetics of bacterial inactivation were studied in a laboratory-scale flow catalytic reactor. A granular cobalt ferrite catalyst was thoroughly characterized using XRD and XRF techniques, SEM with EDS, and Raman spectroscopy. At lower H2O2 concentrations, H2O2 decomposition follows first-order reaction kinetics. At higher H2O2 concentrations, the obtained kinetics lines suggest that the reaction order increases. The kinetics of bacterial inactivation in the developed flow reactor depends largely on the initial number of bacteria. The initial bacterial concentrations in laboratory tests were within the range typical of real river water. A regression model was developed that relates the degree of bacterial inactivation to the initial number of bacteria, the initial H2O2 concentration, and the contact time of water with the catalyst. Full article
(This article belongs to the Special Issue Water Pollution and Wastewater Treatment Chemistry)
Show Figures

Figure 1

17 pages, 2670 KiB  
Article
The Influence of Some Physicochemical Parameters of Surface Waters on the Formation of Trihalomethanes During the Drinking Water Treatment Process
by Alexandra Scarlat (Matei), Cristina Modrogan, Magdalena Bosomoiu and Oanamari Daniela Orbuleț
Molecules 2025, 30(14), 2983; https://doi.org/10.3390/molecules30142983 - 16 Jul 2025
Viewed by 328
Abstract
Trihalomethanes (THMs) are a class of disinfectant by-products present in chlorinated tap water. Mainly due to their carcinogenic potential, their concentration in drinking water is now limited by regulations. In Romania, little is known about their distribution in urban drinking water supply systems, [...] Read more.
Trihalomethanes (THMs) are a class of disinfectant by-products present in chlorinated tap water. Mainly due to their carcinogenic potential, their concentration in drinking water is now limited by regulations. In Romania, little is known about their distribution in urban drinking water supply systems, their magnitude, or their seasonal variation. Drinking water suppliers periodically adapt and optimise their water treatment methods for economic reasons and in response to regulatory changes and technological developments. The formation of THMs is influenced by the physicochemical parameters of water (pH, temperature, total organic carbon—TOC) and by environmental factors (geographical, climatological). Most of these factors have significant seasonal variations that lead to the formation of THMs in variable concentrations. In this study, we analysed the seasonal trends in surface water quality (considering variations in temperature, pH, and TOC) and correlated them with the concentration of THMs in drinking water over two calendar years. Water samples were collected from the Arges River, in a geographical area comprised of plains. The results show that the formation of THMs is enhanced by increasing temperature over the course of a year, with the highest concentrations being obtained in July 2022 (98.7 µg/L THMs at 30.5 °C) and in August 2023 (81.9 µg/L THMs at 30.4 °C). The main parameters that trigger the formation of THMs are the organic matter content and the disinfectant dose; the pH has a moderate effect, and its effect is correlated with the concentration of organic matter. There were noted strong seasonal changes in the concentration of THMs, with the maximum peak being in the middle and late summer and the minimum peak being in winter. This indicates the possibility that the quality of drinking water may change as a result of climate change. In addition, monitoring and chlorination experiments have established that the concentration of THMs is directly proportional with the TOC. Full article
Show Figures

Figure 1

22 pages, 10354 KiB  
Article
Leaching Characteristics of Exogenous Cl in Rain-Fed Potato Fields and Residual Estimation Model Validation
by Jiaqi Li, Jingyi Li, Hao Sun, Xin Li, Lei Sun and Wei Li
Plants 2025, 14(14), 2171; https://doi.org/10.3390/plants14142171 - 14 Jul 2025
Viewed by 308
Abstract
Potato (Solanum tuberosum L.) is a chlorine-sensitive crop. When soil Cl concentrations exceed optimal thresholds, the yield and quality of potatoes are limited. Consequently, chloride-containing fertilizers are rarely used in actual agricultural production. Therefore, two years of field experiments under natural [...] Read more.
Potato (Solanum tuberosum L.) is a chlorine-sensitive crop. When soil Cl concentrations exceed optimal thresholds, the yield and quality of potatoes are limited. Consequently, chloride-containing fertilizers are rarely used in actual agricultural production. Therefore, two years of field experiments under natural rainfall regimes with three chlorine application levels (37.5 kg ha−1/20 mg kg−1, 75 kg ha−1/40 mg kg−1, and 112.5 kg ha−1/60 mg kg−1) were conducted to investigate the leaching characteristics of Cl in field soils with two typical textures for Northeast China (loam and sandy loam soils). In this study, the reliability of Cl residual estimation models across different soil types was evaluated, providing critical references for safe chlorine-containing fertilizer application in rain-fed potato production systems in Northeast China. The results indicated that the leaching efficiency of Cl was significantly positively correlated with both the rainfall amount and the chlorine application rate (p < 0.01). The Cl migration rate in sandy loam soil was significantly greater than that in loam soil. However, the influence of soil texture on the Cl leaching efficiency was only observed at lower rainfall levels. When the rainfall level exceeded 270 mm, the Cl content in all the soil layers became independent of the rainfall amount, soil texture, and chlorine application rate. Under rain-fed conditions, KCl application at 80–250 kg ha−1 did not induce Cl accumulation in the primary potato root zone (15–30 cm), suggesting a low risk of toxicity. In loam soil, the safe application range for KCl was determined to be 115–164 kg ha−1, while in sandy loam soil, the safe KCl application range was 214–237 kg ha−1. Furthermore, a predictive model for estimating Cl residuals in loam and sandy loam soils was validated on the basis of rainfall amount, soil clay content, and chlorine application rate. The model validation results demonstrated an exceptional goodness-of-fit between the predicted and measured values, with R2 > 0.9 and NRMSE < 0.1, providing science-based recommendations for Cl-containing fertilizer application to chlorine-sensitive crops, supporting both agronomic performance and environmental sustainability in rain-fed systems. Full article
(This article belongs to the Special Issue Fertilizer and Abiotic Stress)
Show Figures

Figure 1

10 pages, 682 KiB  
Article
The Presence of Microplastics in Human Semen and Their Associations with Semen Quality
by Yi Guo, Mengxun Rong, Yuping Fan, Xiaoming Teng, Liping Jin and Yan Zhao
Toxics 2025, 13(7), 566; https://doi.org/10.3390/toxics13070566 - 3 Jul 2025
Viewed by 821
Abstract
Microplastics (MPs) are becoming one of the most serious environmental threats worldwide. They have been shown to induce male reproductive toxicity in animal studies. However, evidence of their adverse effects on male reproductive health in human is still lacking. In this study, we [...] Read more.
Microplastics (MPs) are becoming one of the most serious environmental threats worldwide. They have been shown to induce male reproductive toxicity in animal studies. However, evidence of their adverse effects on male reproductive health in human is still lacking. In this study, we evaluated the presence of MPs in human semen and explored their associations with semen quality. A total of 45 semen samples from men attending a fertility center were collected. MPs in the semen samples were analyzed by laser direct infrared (LD-IR) spectroscopy. MPs were found in 34 out of 45 semen samples, with an average abundance of 17.0 (42.0) particles/g. The size of MPs ranged from 20.3 μm to 189.7 μm and the majority (57.8%) were smaller than 50 μm. A total of 15 distinct MPs polymers were identified, and polyethylene (PET) accounted for 35.9% of the total amount of MPs, followed by butadiene rubber (BR, 26.4%) and chlorinated polyethylene (CPE, 12.2%). Analysis of the association of MP exposure with semen quality showed that participants exposed to PET MPs experienced a reduction in sperm progressive motility (20.6% ± 12.8% vs. 34.9% ± 15.9%, p = 0.056). However, no significant association was found between MP exposure and sperm concentration or total sperm count. Our findings confirmed the presence of MPs in human semen and suggested that MP exposure might have adverse impacts on male reproductive health. However, further large-scale studies are needed to confirm these findings. Full article
Show Figures

Figure 1

20 pages, 2519 KiB  
Article
Slightly Acidic Electrolyzed Water Improves the Postharvest Quality of Litchi Fruit by Regulating the Phenylpropane Pathway
by Xuanjing Jiang, Xiangzhi Lin, Yuzhao Lin, Yazhen Chen, Yihui Chen and Hongbin Chen
Horticulturae 2025, 11(7), 751; https://doi.org/10.3390/horticulturae11070751 - 1 Jul 2025
Viewed by 351
Abstract
The market value of litchi fruit is declining quickly due to its susceptibility to disease and rapid pericarp browning. Slightly acidic electrolyzed water (SAEW) treatment is recognized as a safe disinfection technology that not only preserves the quality of postharvest produce, but also [...] Read more.
The market value of litchi fruit is declining quickly due to its susceptibility to disease and rapid pericarp browning. Slightly acidic electrolyzed water (SAEW) treatment is recognized as a safe disinfection technology that not only preserves the quality of postharvest produce, but also enhances disease resistance. This study assessed the efficacy of SAEW in preserving litchi fruit and boosting its resistance to disease. Litchi fruit underwent treatment with SAEW at various available chlorine concentrations (ACC) (10, 25, 50, and 75 mg/L) and subsequently stored at 25 °C for a duration of six days. The results revealed that SAEW with an ACC of 25 mg/L markedly improved the postharvest quality of litchi fruits, reduced disease incidence, and enhanced the appearance of the pericarp and nutrient levels in the arils. Additionally, this treatment enhanced the levels of disease resistance-related compounds, including lignin, flavonoids, and total phenolics, in the pericarp of litchis during the later storage stages (p < 0.05). Furthermore, in the final three days of storage, there were also noticeable increases (p < 0.01) in the activities of pericarp disease resistance enzymes (DREs), such as phenylalanine ammonialyase, cinnamate-4-hydroxylase, 4-coumarate CoA ligase, cinnamyl alcohol dehydrogenase, peroxidase, polyphenol oxidase, chitinase, and β-1,3-glucanase. Based on these results, it was concluded that SAEW triggered DRE activities and increased the accumulation of disease resistance-related compounds by regulating the phenylpropane pathway to suppress disease development, and elevated the storage quality of harvested litchi fruit. Consequently, SAEW has proven to be an effective and safe method for enhancing the storability of litchi fruit. Full article
Show Figures

Figure 1

17 pages, 3910 KiB  
Article
Extraction of Valuable Metals from Spent Li-Ion Batteries Combining Reduction Smelting and Chlorination
by Chen Wang, Wei Liu, Congren Yang and Hongbin Ling
Metals 2025, 15(7), 732; https://doi.org/10.3390/met15070732 - 30 Jun 2025
Viewed by 382
Abstract
Pyrometallurgical recycling of lithium-ion batteries presents distinct advantages including streamlined processing, simplified pretreatment requirements, and high throughput capacity. However, its industrial implementation faces challenges associated with high energy demands and lithium loss into slag phases. This investigation develops an integrated reduction smelting–chloridizing volatilization [...] Read more.
Pyrometallurgical recycling of lithium-ion batteries presents distinct advantages including streamlined processing, simplified pretreatment requirements, and high throughput capacity. However, its industrial implementation faces challenges associated with high energy demands and lithium loss into slag phases. This investigation develops an integrated reduction smelting–chloridizing volatilization process for the comprehensive recovery of strategic metals (Li, Mn, Cu, Co, Ni) from spent ternary lithium-ion batteries; calcium chloride was selected as the chlorinating agent for this purpose. Thermodynamic analysis was performed to understand the phase evolution during reduction smelting and to design an appropriate slag composition. Preliminary experiments compared carbon and aluminum powder as reducing agents to identify optimal operational parameters: a smelting temperature of 1450 °C, 2.5 times theoretical CaCl2 dosage, and duration of 120 min. The process achieved effective element partitioning with lithium and manganese volatilizing as chloride species, while transition metals (Cu, Ni, Co) were concentrated into an alloy phase. Process validation in an induction furnace with N2-O2 top blowing demonstrated enhanced recovery efficiency through optimized oxygen supplementation (four times the theoretical oxygen requirement). The recovery rates of Li, Mn, Cu, Co, and Ni reached 94.1%, 93.5%, 97.6%, 94.4%, and 96.4%, respectively. This synergistic approach establishes an energy-efficient pathway for simultaneous multi-metal recovery, demonstrating industrial viability for large-scale lithium-ion battery recycling through minimized processing steps and maximized resource utilization. Full article
(This article belongs to the Special Issue Green Technologies in Metal Recovery)
Show Figures

Figure 1

13 pages, 1035 KiB  
Article
The Formation of Disinfection By-Products in Reactive Chlorine Species (RCS)-Mediated Advanced Oxidation Process
by Zishao Li and Zhong Zhang
Water 2025, 17(13), 1954; https://doi.org/10.3390/w17131954 - 30 Jun 2025
Viewed by 349
Abstract
This study investigates the formation and toxicity of disinfection by-products (DBPs) arising from the reactions between individual reactive chlorine species (RCS) and dissolved organic matter (DOM) during water treatment. Individual chlorine radicals (Cl) and dichloride radicals (Cl2•−) were [...] Read more.
This study investigates the formation and toxicity of disinfection by-products (DBPs) arising from the reactions between individual reactive chlorine species (RCS) and dissolved organic matter (DOM) during water treatment. Individual chlorine radicals (Cl) and dichloride radicals (Cl2•−) were selectively generated with a laser flash photolysis technique, and their interactions with Suwannee River natural organic matter (SRNOM) were analyzed. Results demonstrated a biphasic pattern of DBP formation, where initial increases in RCS exposure enhanced DBP concentrations and toxicities, followed by subsequent decreases at higher RCS exposure. Variations among DBP classes, including trichloromethanes, chloroacetic acids, and chloroacetaldehydes, highlighted the complexity of RCS-DOM interactions. Toxicity assessments further indicated chloroacetonitriles and chloroacetic acids as major toxicity contributors at varying RCS exposures. This study highlights the impact of RCS exposure levels to DBP formation and toxicities, providing mechanistic insights for optimizing parameters in RCS-mediated advanced oxidation processes (AOPs) for safer water treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

16 pages, 2127 KiB  
Article
Residual Chlorine Interaction with Microelements in Plants Applied for Phytoremediation in Rain Gardens
by Ieva Andriulaityte, Marina Valentukeviciene, Viktoras Chadysas and Antonina Kalinichenko
Plants 2025, 14(13), 1957; https://doi.org/10.3390/plants14131957 - 26 Jun 2025
Viewed by 465
Abstract
Stormwater pollution from residual chlorine after outdoor disinfection with sodium hypochlorite is an increasing environmental challenge due to its potential negative impact on aquatic ecosystems. Even at low concentrations, residual chlorine can disrupt the stability of water ecosystems. In this regard, stormwater treatment [...] Read more.
Stormwater pollution from residual chlorine after outdoor disinfection with sodium hypochlorite is an increasing environmental challenge due to its potential negative impact on aquatic ecosystems. Even at low concentrations, residual chlorine can disrupt the stability of water ecosystems. In this regard, stormwater treatment requires innovative and green solutions such as green infrastructure (rain gardens) using the plant phytoremediation technique to reduce the amount of residual chlorine. This study explores the interactions between residual chlorine retained by plants in a rain garden and different microelements. Selected plants were analyzed via spectroscopy, and possible interactions with elements such as chlorine (Cl), phosphorus (P), zinc (Zn), iron (Fe), calcium (Ca), potassium (K), nickel (Ni), silicon (Si), manganese (Mn), magnesium (Mg), chromium (Cr), and cadmium (Cd) were determined using Python-based analysis. Chlorine presented significant positive correlations with cadmium (0.39–0.53) and potassium (0.51–0.55), while negative correlations were found between silicon and chlorine (−0.48–−0.54) and chlorine and iron (−0.45–−0.51). The correlations between chlorine and microelements suggest both common uptake mechanisms and mutual interactions. These results provide a better understanding of the behavior of chlorine in rain gardens and its interactions with other materials, which is especially valuable for designing green infrastructure. This research can help to develop sustainable solutions that reduce environmental pollution and strengthen urban adaptation to climate change. Full article
Show Figures

Figure 1

11 pages, 1190 KiB  
Article
Effects of pH and Available Chlorine Concentration of Slightly Acidic Electrolyzed Water on Rice Seed Germination and GABA Accumulation
by Tiangang Hou, Fangming Cui, Hongguang Cui, Cuihong Liu, Mingjin Xin and Liyan Wu
Agriculture 2025, 15(13), 1327; https://doi.org/10.3390/agriculture15131327 - 20 Jun 2025
Viewed by 375
Abstract
Previous studies have demonstrated that slightly acidic electrolyzed water (SAEW) treatment can enhance rice seed growth and promote the accumulation of γ-aminobutyric acid (GABA), a bioactive compound. However, the underlying mechanisms remain unexplored. This study systematically investigated the effects of pH and available [...] Read more.
Previous studies have demonstrated that slightly acidic electrolyzed water (SAEW) treatment can enhance rice seed growth and promote the accumulation of γ-aminobutyric acid (GABA), a bioactive compound. However, the underlying mechanisms remain unexplored. This study systematically investigated the effects of pH and available chlorine concentration (ACC) of SAEW on rice seed germination and GABA biosynthesis. The changing trends were monitored within 7 days. The results revealed that the treatment group with moderate pH (S2, pH 5.74 ± 0.04) showed significantly higher GABA accumulation (71.27 ± 0.45 mg/100 g) compared with S1 (pH 5.04 ± 0.03) and S3 (pH 6.38 ± 0.04) (p < 0.05). Furthermore, a positive correlation was observed between ACC levels and GABA accumulation, suggesting that ACC plays a crucial regulatory role in rice seed germination. These findings were further substantiated by monitoring the enzymatic activity of glutamate decarboxylase (GAD) throughout the germination process. Notably, while higher ACCs negatively impacted rice seed growth, pH variations within the tested range showed no adverse effects on seed development. The results show that optimal SAEW parameters, considering both pH and ACC, should be carefully determined for practical applications in rice seed production. Full article
(This article belongs to the Section Seed Science and Technology)
Show Figures

Figure 1

14 pages, 1670 KiB  
Article
Inhibiting the Production of Polychlorinated Organic Pollutants in the Hydrolysis Oxidation Process of 1,2-Dichlorobenzene
by Yuqing Li, Bisi Lv, Na Li, Yingjie Li, Wenjie Song and Jiahui Zhou
Atmosphere 2025, 16(6), 750; https://doi.org/10.3390/atmos16060750 - 19 Jun 2025
Viewed by 357
Abstract
The hydrolysis oxidation of 1,2-chlorobenzene (1,2-DCB) over Pd-Ti-Ni/ZSM-5(25) catalysts has been investigated as a safe and environmentally friendly method for the removal of chlorinated aromatic organic compounds. Experimental results demonstrate that hydrolysis oxidation technology can effectively suppress the formation of polychlorinated organic compounds. [...] Read more.
The hydrolysis oxidation of 1,2-chlorobenzene (1,2-DCB) over Pd-Ti-Ni/ZSM-5(25) catalysts has been investigated as a safe and environmentally friendly method for the removal of chlorinated aromatic organic compounds. Experimental results demonstrate that hydrolysis oxidation technology can effectively suppress the formation of polychlorinated organic compounds. Among the catalysts studied, the 0.5%Pd-2%Ti-8%Ni/ZSM-5(25) catalyst exhibited optimal hydrolysis oxidation performance, achieving complete conversion of 1,2-DCB at 425 °C. Notably, this technology significantly inhibits the formation of polychlorinated organic by-products during the catalytic degradation of 1,2-DCB. Although trace amounts of chlorobenzene were still detected, the overall reduction in hazardous by-products is remarkable. Characterization techniques, including X-Ray Diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS), Pyridine adsorption infrared Spectroscopy (pyridine IR) and Fourier transform infrared spectroscopy (FT-IR) analysis, revealed that the acidity and redox properties of the catalyst surface play a pivotal role in the hydrolysis oxidation process. The hydrolysis oxidation of chlorinated volatile organic compounds not only effectively reduces pollutant concentrations but also prevents the generation of more toxic by-products. This dual benefit not only protects the environment but also minimizes ecological risks, highlighting the potential of this technology for sustainable environmental remediation. Full article
Show Figures

Figure 1

Back to TopTop