Kinetics of H2O2 Decomposition and Bacteria Inactivation in a Continuous-Flow Reactor with a Fixed Bed of Cobalt Ferrite Catalyst
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis and Characterization of the Catalyst
2.3. H2O2 Decomposition in Continuous-Flow Mode
2.4. Determination of the Properties of Natural River Water
2.5. Bacterial Count and Disinfection Testing
3. Results and Discussion
3.1. Catalyst Characterization
3.2. H2O2 Decomposition Kinetics
3.3. Bacterial Inactivation
3.3.1. Testing Natural River Water for Bacterial Contamination
3.3.2. Inactivation of Bacteria in a Flow Reactor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CFU | Colony-forming unit |
EDS | Energy-dispersive X-ray spectroscopy |
SEM | Scanning electron microscopy |
ROS | Reactive oxygen species |
TDS | Total dissolved solids |
WHO | World Health Organization |
XRD | X-ray diffraction |
XRF | X-ray fluorescence |
References
- Anh, N.T.; Can, L.D.; Nhan, N.T.; Schmalz, B.; Le Luu, T. Influences of key factors on river water quality in urban and rural areas: A review. Case Stud. Chem. Environ. Eng. 2023, 8, 100424. [Google Scholar] [CrossRef]
- Essert, S.M.; Zacharias, N.; Precht, T.; Pankratz, D.; Funken, K.; Mutters, N.T.; Kistemann, T.; Schreiber, C. Persistence of MRSA and ESBL-producing E. coli and K. oxytoca in river water. Hyg. Environ. Health Adv. 2023, 7, 100072. [Google Scholar] [CrossRef]
- Mazhar, M.A.; Madhav, S.; Ahmed, S.; Kumar, P.; Springer, C. Drinking Water Chlorination and Disinfection by-Products: Formation, History, and Regulations. In Drinking Water Disinfection By-Products; Springer Nature: Cham, Switzerland, 2024; pp. 21–34. [Google Scholar] [CrossRef]
- Mazhar, M.A.; Khan, N.A.; Ahmed, S.; Khan, A.H.; Hussain, A.; Rahisuddin; Changani, F.; Yousefi, M.; Ahmadi, S.; Vambol, V. Chlorination disinfection by-products in municipal drinking water—A review. J. Clean. Prod. 2020, 273, 123159. [Google Scholar] [CrossRef]
- Zheng, W.; Chen, Y.; Zhang, J.; Peng, X.; Xu, P.; Niu, Y.; Dong, B. Control of chlorination disinfection by-products in drinking water by combined nanofiltration process: A case study with trihalomethanes and haloacetic acids. Chemosphere 2024, 358, 142121. [Google Scholar] [CrossRef]
- Demir, M.Z.; Guven, H.; Ersahin, M.E.; Ozgun, H.; Pasaoglu, M.E.; Koyuncu, I. Comparative Life Cycle Assessment of Four Municipal Water Disinfection Methods. Sustainability 2024, 16, 6104. [Google Scholar] [CrossRef]
- Afitiri, A.-R.; Appah Aram, S.; Martienssen, M. Systematic review of the effects of advanced oxidation processes integration with solar water disinfection for improved drinking water production. Waste Manag. Bull. 2024, 1, 52–59. [Google Scholar] [CrossRef]
- Blanco-Canella, P.; Lama, G.; Sanromán, M.A.; Pazos, M. Disinfection through Advance Oxidation Processes: Optimization and Application on Real Wastewater Matrices. Toxics 2022, 10, 512. [Google Scholar] [CrossRef] [PubMed]
- Venâncio, J.P.F.; Ribeirinho-Soares, S.; Lopes, L.C.; Madeira, L.M.; Nunes, O.C.; Rodrigues, C.S.D. Disinfection of treated urban effluents for reuse by combination of coagulation/flocculation and Fenton processes. Environ. Res. 2023, 218, 115028. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Xu, L.J. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application. Crit. Rev. Environ. Sci. Technol. 2012, 42, 251–325. [Google Scholar] [CrossRef]
- Tatarchuk, T.; Bilovol, V.; Shyichuk, A.; Danyliuk, I.; Sokołowski, K.; Gajewska, M. Mesoporous Co-Mn ferrites as highly radical-forming catalysts for wet peroxide oxidation of 4-nitrophenol. App. Surf. Sci. 2025, 690, 162610. [Google Scholar] [CrossRef]
- Tatarchuk, T.; Shyichuk, A.; Naushad, M.; Danyliuk, N.; Lapchuk, I. Copper-substituted magnetite as a Fenton-like catalyst boosted with electromagnetic heating. J. Water Process Eng. 2024, 60, 105170. [Google Scholar] [CrossRef]
- Tatarchuk, T. Studying the Defects in Spinel Compounds: Discovery, Formation Mechanisms, Classification, and Influence on Catalytic Properties. Nanomaterials 2024, 14, 1640. [Google Scholar] [CrossRef]
- Tatarchuk, T.; Shyichuk, A.; Danyliuk, N.; Lapchuk, I.; Macyk, W. Water disinfection using hydrogen peroxide with fixed bed hematite catalyst—Kinetic and activity studies. Environ. Sci. Pollut. Res. 2024, 31, 26592–26605. [Google Scholar] [CrossRef]
- Tatarchuk, T.; Shyichuk, A.; Danyliuk, N.; Lapchuk, I.; Husak, V.; Macyk, W. Fenton-like water disinfection using fixed-bed reactor filled with a CoFe2O4 catalyst: Mechanisms, the impact of anions, electromagnetic heating, and toxicity evaluation. Sep. Purif. Technol. 2024, 348, 127748. [Google Scholar] [CrossRef]
- Nogueira, R.; Oliveira, M.; Paterlini, W. Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta 2005, 66, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Bystrytsia Nadvirnianska. Available online: https://en.wikipedia.org/wiki/Bystrytsia_Nadvirnianska (accessed on 30 June 2025).
- Hongve, D.; Akesson, G. Spectrophotometric determination of water colour in hazen units. Water Res. 1996, 30, 2771–2775. [Google Scholar] [CrossRef]
- Kougia, E.; Ioannou, E.; Roussis, V.; Tzovenis, I.; Chentir, I.; Markou, G. Iron (Fe) biofortification of Arthrospira platensis: Effects on growth, biochemical composition and in vitro iron bioaccessibility. Algal Res. 2023, 70, 103016. [Google Scholar] [CrossRef]
- Tazin, N.; Patel, D.; Lambert, C.J.; Shad, M.H.M.; Campbell, J.; Gale, B.K. Automated passive serial dilution microfluidic chip for calcium quantification based on the Arsenazo III method. Sens. Diagn. 2022, 1, 810–820. [Google Scholar] [CrossRef]
- Tatarchuk, T.; Danyliuk, N.; Shyichuk, A.; Kotsyubynsky, V.; Lapchuk, I.; Mandzyuk, V. Green synthesis of cobalt ferrite using grape extract: The impact of cation distribution and inversion degree on the catalytic activity in the decomposition of hydrogen peroxide. Emergent Mater. 2022, 5, 89–103. [Google Scholar] [CrossRef]
- Tatarchuk, T.; Shyichuk, A.; Danyliuk, N.; Naushad, M.; Kotsyubynsky, V.; Boychuk, V. Cobalt ferrite as an electromagnetically boosted metal oxide hetero-Fenton catalyst for water treatment. Chemosphere 2023, 326, 138364. [Google Scholar] [CrossRef]
- Liaskovska, M.; Tatarchuk, T.; Kotsyubynsky, V. Green Synthesis of Cobalt–Zinc Ferrites and Their Activity in Dye Elimination via Adsorption and Catalytic Wet Peroxide Oxidation. Metals 2025, 15, 44. [Google Scholar] [CrossRef]
- Thang, P.D.; Rijnders, G.; Blank, D.H.A. Spinel cobalt ferrite by complexometric synthesis. J. Magn. Magn. Mater. 2005, 295, 251–256. [Google Scholar] [CrossRef]
- Anchal; Sarita; Jakhar, N.; Alvi, P.A.; Choudhary, B.L. Comprehensive analysis of Cu-doped CoFe2O4 nanocrystals: Structural, morphological, optoelectronic, and magnetic properties. Adv. Powder Technol. 2025, 36, 104748. [Google Scholar] [CrossRef]
- Alfonso-González, J.G.; Granja-Banguera, C.P.; Morales-Morales, J.A.; Dector, A. A Facile Glycerol-Assisted Synthesis of Low-Cu2+-Doped CoFe2O4 for Electrochemical Sensing of Acetaminophen. Biosensors 2023, 13, 997. [Google Scholar] [CrossRef] [PubMed]
- Health Canada. Guidelines for Canadian Drinking Water Quality: Guideline Technical Document—pH; Health Canada: Ottawa, ON, Canada, 2016. [Google Scholar]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Kirschner, A.K.T.; Schachner-Groehs, I.; Kavka, G.; Hoedl, E.; Kovacs, A.; Farnleitner, A.H. Long-term impact of basin-wide wastewater management on faecal pollution levels along the entire Danube River. Environ. Sci. Pollut. Res. 2024, 31, 45697–45710. [Google Scholar] [CrossRef] [PubMed]
- Sefcik, K.; Speshock, J.; Brady, S.; Meik, J.M.; Brady, J.A. Tracking the Culprits: Microbial Source Tracking Uncovers Elevated Fecal Indicators along the Texas Coast. Adv. Microbiol. 2025, 15, 217–231. [Google Scholar] [CrossRef]
- Steele, J.A.; González-Fernández, A.; Griffith, J.F.; Ebentier McCargar, D.; Wallace, S.; Schiff, K.C. Extrapolating empirical measurements of wastewater exfiltration from sanitary sewers to estimate watershed-scale fecal pollution loading in urban stormwater runoff. Front. Environ. Sci. 2025, 12, 1458153. [Google Scholar] [CrossRef]
- Griffith, J.F.; Steele, J.A.; Gonzalez-Fernández, A.; Schiff, K.C. Towards quantifying exfiltration from in situ sanitary sewer pipes. Front. Environ. Sci. 2025, 12, 1458146. [Google Scholar] [CrossRef]
- da Cruz Nizer, W.S.; Allison, K.N.; Adams, M.E.; Vargas, M.A.; Ahmed, D.; Beaulieu, C.; Raju, D.; Cassol, E.; Howell, P.L.; Overhage, J. The role of exopolysaccharides Psl and Pel in resistance of Pseudomonas aeruginosa to the oxidative stressors sodium hypochlorite and hydrogen peroxide. Microbiol. Spectr. 2024, 12, e0092224. [Google Scholar] [CrossRef]
- Bao, Y.; Yang, B.; Yang, R.; Wang, J.; Geng, A.; Zhang, C.; Sun, Z. Regulation of microbial activity based on quorum sensing: Implications for biological wastewater treatment. Int. Biodeterior. Biodegrad. 2025, 199, 106029. [Google Scholar] [CrossRef]
- Burt, A.; Cassidy, C.K.; Stansfeld, P.J.; Gutsche, I. Alternative Architecture of the E. coli Chemosensory Array. Biomolecules 2021, 11, 495. [Google Scholar] [CrossRef] [PubMed]
- Das, I.; Das, S.; Das, S.; Ghangrekar, M.M. Proficient Sanitary Wastewater Treatment in Laboratory and Field-Scale Microbial Fuel Cell with Anti-Biofouling Cu0.5Mn0.5Fe2O4 as Cathode Catalyst. J. Electrochem. Soc. 2021, 168, 054519. [Google Scholar] [CrossRef]
- Kharti, H.; Touach, N.; Lotfi, E.M.; El Mahi, M.; Mouhir, L.; Fekhaoui, M.; Benzaouak, A. Bioenergy generation and wastewater treatment with nickel pyrophosphate as a novel cathode catalyst in single-chamber microbial fuel cells. Renew. Energy 2024, 231, 121011. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danyliuk, N.; Husak, V.; Boichuk, V.; Ziółkowska, D.; Danyliuk, I.; Shyichuk, A. Kinetics of H2O2 Decomposition and Bacteria Inactivation in a Continuous-Flow Reactor with a Fixed Bed of Cobalt Ferrite Catalyst. Appl. Sci. 2025, 15, 8195. https://doi.org/10.3390/app15158195
Danyliuk N, Husak V, Boichuk V, Ziółkowska D, Danyliuk I, Shyichuk A. Kinetics of H2O2 Decomposition and Bacteria Inactivation in a Continuous-Flow Reactor with a Fixed Bed of Cobalt Ferrite Catalyst. Applied Sciences. 2025; 15(15):8195. https://doi.org/10.3390/app15158195
Chicago/Turabian StyleDanyliuk, Nazarii, Viktor Husak, Volodymyra Boichuk, Dorota Ziółkowska, Ivanna Danyliuk, and Alexander Shyichuk. 2025. "Kinetics of H2O2 Decomposition and Bacteria Inactivation in a Continuous-Flow Reactor with a Fixed Bed of Cobalt Ferrite Catalyst" Applied Sciences 15, no. 15: 8195. https://doi.org/10.3390/app15158195
APA StyleDanyliuk, N., Husak, V., Boichuk, V., Ziółkowska, D., Danyliuk, I., & Shyichuk, A. (2025). Kinetics of H2O2 Decomposition and Bacteria Inactivation in a Continuous-Flow Reactor with a Fixed Bed of Cobalt Ferrite Catalyst. Applied Sciences, 15(15), 8195. https://doi.org/10.3390/app15158195