Inhibiting the Production of Polychlorinated Organic Pollutants in the Hydrolysis Oxidation Process of 1,2-Dichlorobenzene
Abstract
1. Introduction
2. Materials and Methods
2.1. Catalyst Preparation
2.2. Catalyst Characterization
2.3. Evaluation of Catalytic Performance
3. Results and Discussion
3.1. 1,2-DCB Hydrolysis Oxidative Activity and Inorganic Product Analysis
3.2. Distribution of Chlorinated Organic By-Products
3.3. Catalyst XRD Analysis
3.4. Hydroxyl Group Changes on the Catalyst Surface
3.5. The Surface Acidity and Basicity of the Catalyst
3.6. Catalyst Surface Redox Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jia, H.; Xing, Y.; Zhang, L.; Zhang, W.; Wang, J.; Zhang, H.; Su, W. Progress of catalytic oxidation of typical chlorined volatile organic compounds (CVOCs): A review. Sci. Total Environ. 2023, 865, 161063. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Yang, L. Zeolite-based materials for the catalytic oxidation of VOCs: A mini review. Front. Chem. 2021, 10, 751581. [Google Scholar] [CrossRef] [PubMed]
- Jahn, L.G.; Bhattacharyya, N.; Blomdahl, D.; Tang, M.; Abue, P.; Novoselac, A.; Ruiz, L.H.; Misztal, P.K. Influence of application method on disinfectant byproduct formation during indoor bleach cleaning: A case study on phenol chlorination. ACS EST Air 2024, 1, 16–24. [Google Scholar] [CrossRef]
- Odabasi, M.; Elbir, T.; Dumanoglu, Y.; Sofuoglu, S.C. Halogenated volatile organic compounds in chlorine-bleach-containing household products and implications for their use. Atm. Environ. 2014, 92, 376–383. [Google Scholar] [CrossRef]
- Chen, G.; Cai, Y.; Zhang, H.; Hong, D.; Shao, S.; Tu, C.; Chen, Y.; Wang, F.; Chen, B.; Bai, Y.; et al. Pt and Mo Co-decorated MnO2 nanorods with superior resistance to H2O, sintering, and HCl for catalytic oxidation of chlorobenzene. Environ. Sci. Technol. 2021, 55, 14204–14214. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.; Zhao, Y.; Zhang, B.; Wang, D. Progress in degradation of volatile organic compounds by catalytic oxidation: A review based on the kinds of active components of catalysts. Water Air Soil Poll. 2024, 235, 7. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, S.; Bai, B.; Li, L.; Kang, Y.; Hu, X.; Liao, Z.; He, C. Biotemplate fabrication of hollow tubular CexSr1–xTiO3 with regulable surface acidity and oxygen mobility for efficient destruction of chlorobenzene: Intrinsic synergy effect and reaction mechanism. Environ. Sci. Technol. 2022, 56, 5796–5807. [Google Scholar] [CrossRef]
- Li, N.; Cheng, J.; Xing, X.; Sun, Y.; Hao, Z. Distribution and formation mechanisms of polychlorinated organic by-products upon the catalytic oxidation of 1,2-dichlorobenzene with palladium-loaded catalysts. J. Hazard. Mater. 2020, 393, 122412. [Google Scholar] [CrossRef]
- Dai, Q.; Shen, K.; Deng, W.; Cai, Y.; Yan, J.; Wu, J.; Guo, L.; Liu, R.; Wang, X.; Zhan, W. HCl-tolerant HxPO4/RuOx–CeO2 catalysts for extremely efficient catalytic elimination of chlorinated VOCs. Environ. Sci. Technol. 2021, 55, 4007–4016. [Google Scholar] [CrossRef]
- Xing, D.; Wang, S.; Fan, Y.; Zhang, H.; Wang, T.; Wang, M.; Wang, S.; Wang, J.; Pan, D.; Song, X. Formation of PCDD/Fs, PCBs and HCl during catalytic combustion of chlorobenzene over supported transition metal (Cr, V and Cu) oxide catalysts. J. Environ. Chem. Eng. 2023, 11, 109267. [Google Scholar] [CrossRef]
- Van den Brink, R.; Louw, R.; Mulder, P. Increased combustion rate of chlorobenzene on Pt/γ-Al2O3 in binary mixtures with hydrocarbons and with carbon monoxide. Appl. Catal. B Environ. 2000, 25, 229–237. [Google Scholar] [CrossRef]
- Van den Brink, R.W.; De Jong, V.; Louw, R.; Maggi, P.; Mulder, P. Hydrogen–deuterium isotope effects in the reactions of chlorobenzene and benzene on a Pt/γ-Al2O3 catalyst. Catal. Lett. 2001, 71, 15–20. [Google Scholar] [CrossRef]
- Brink, R.v.D.; Krzan, M.; Feijen-Jeurissen, M.; Louw, R.; Mulder, P. The role of the support and dispersion in the catalytic combustion of chlorobenzene on noble metal based catalysts. Appl. Catal. B Environ. 2000, 24, 255–264. [Google Scholar] [CrossRef]
- Scirè, S.; Minicò, S. The role of the support in the oxidative destruction of chlorobenzene on Pt/zeolite catalysts: An FT-IR investigation. Catal. Lett. 2003, 91, 199–205. [Google Scholar] [CrossRef]
- Scirè, S.; Minicò, S.; Crisafulli, C. Pt catalysts supported on H-type zeolites for the catalytic combustion of chlorobenzene. Appl. Catal. B Environ. 2003, 45, 117–125. [Google Scholar] [CrossRef]
- Giraudon, J.M.; Elhachimi, A.; Leclercq, G. Catalytic oxidation of chlorobenzene over Pd/perovskites. Appl. Catal. B Environ. 2008, 84, 251–261. [Google Scholar] [CrossRef]
- Giraudon, J.M.; Nguyen, T.; Leclercq, G.; Siffert, S.; Lamonier, J.F.; Aboukaïs, A.; Vantomme, A.; Su, B.L. Chlorobenzene total oxidation over palladium supported on ZrO2, TiO2 nanostructured supports. Catal. Today 2008, 137, 379–384. [Google Scholar] [CrossRef]
- Zhu, B.; Wei, Z.B.; Lim, T.; Thye, L.T. Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles: Reactive sites, catalyst stability, particle aging, and regeneration. Environ. Sci. Technol. 2007, 41, 7523–7529. [Google Scholar] [CrossRef]
- Aznárez, A.; Delaigle, R.; Eloy, P.; Gaigneaux, E.; Korili, S.; Gil, A. Catalysts based on pillared clays for the oxidation of chlorobenzene. Catal. Today 2015, 246, 15–27. [Google Scholar] [CrossRef]
- Cho, C.H.; Ihm, S.K. Development of new vanadium-based oxide catalysts for decomposition of chlorinated aromatic pollutants. Environ. Sci. Technol. 2002, 36, 1600–1606. [Google Scholar] [CrossRef]
- Yang, P.; Yang, S.; Shi, Z.; Meng, Z.; Zhou, R. Deep oxidation of chlorinated VOCs over CeO2-based transition metal mixed oxide catalysts. Appl. Catal. B Environ. 2015, 162, 227–235. [Google Scholar] [CrossRef]
- Yang, P.; Shi, Z.; Yang, S.; Zhou, R. High catalytic performances of CeO2–CrOx catalysts for chlorinated VOCs elimination. Chem. Eng. Sci. 2015, 126, 361–369. [Google Scholar] [CrossRef]
- Cai, T.; Huang, H.; Deng, W.; Dai, Q.; Liu, W.; Wang, X. Catalytic combustion of 1,2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts. Appl. Catal. B Environ. 2015, 166, 393–405. [Google Scholar] [CrossRef]
- Huang, H.; Dai, Q.; Wang, X. Morphology effect of Ru/CeO2 catalysts for the catalytic combustion of chlorobenzene. Appl. Catal. B Environ. 2014, 158, 96–105. [Google Scholar] [CrossRef]
- Weng, X.; Sun, P.; Long, Y.; Meng, Q.; Wu, Z. Catalytic oxidation of chlorobenzene over MnxCe1–xO2/HZSM-5 catalysts: A study with practical implications. Environ. Sci. Technol. 2017, 51, 8057–8066. [Google Scholar] [CrossRef]
- Sun, P.; Wang, W.; Dai, X.; Weng, X.; Wu, Z. Mechanism study on catalytic oxidation of chlorobenzene over MnxCe1-xO2/H-ZSM5 catalysts under dry and humid conditions. Appl. Catal. B Environ. 2016, 198, 389–397. [Google Scholar] [CrossRef]
- Liu, X.; Chen, L.; Zhu, T.; Ning, R. Catalytic oxidation of chlorobenzene over noble metals (Pd, Pt, Ru, Rh) and the distributions of polychlorinated by-products. J. Hazard. Mater. 2019, 363, 90–98. [Google Scholar] [CrossRef]
- Duan, X.; Zhao, T.; Niu, B.; Wei, Z.; Li, G.; Zhang, Z.; Cheng, J.; Hao, Z. Simultaneously constructing active sites and regulating Mn–O strength of Ru-substituted perovskite for efficient oxidation and hydrolysis oxidation of chlorobenzene. Adv. Sci. 2023, 10, 2205054. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Rivas, J.A.; Amiridis, M.D. Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides. J. Catal. 2000, 193, 264–272. [Google Scholar] [CrossRef]
- Wu, S.; Lv, X.; Hao, X.; Chen, J.; Jia, H. Enhancement of mineralization ability and water resistance of vanadium-based catalysts for catalytic oxidation of chlorobenzene by platinum loading. Environ. Sci. Technol. 2024, 58, 15836–15845. [Google Scholar] [CrossRef]
- González-Velasco, J.; Aranzabal, A.; López-Fonseca, R.; Ferret, R.; González-Marcos, J. Enhancement of the catalytic oxidation of hydrogen-lean chlorinated VOCs in the presence of hydrogen-supplying compounds. Appl. Catal. B Environ. 2000, 24, 33–43. [Google Scholar] [CrossRef]
- López-Fonseca, R.; Gutiérrez-Ortiz, J.I.; Gutiérrez-Ortiz, M.A.; González-Velasco, J.R. Catalytic oxidation of aliphatic chlorinated volatile organic compounds over Pt/H-BETA zeolite catalyst under dry and humid conditions. Catal. Today 2005, 107, 200–207. [Google Scholar] [CrossRef]
- Pitkäaho, S.; Ojala, S.; Maunula, T.; Savimäki, A.; Kinnunen, T.; Keiski, R.L. Oxidation of dichloromethane and perchloroethylene as single compounds and in mixtures. Appl. Catal. B Environ. 2011, 102, 395–403. [Google Scholar] [CrossRef]
- López-Fonseca, R.; Aranzabal, A.; Steltenpohl, P.; Gutiérrez-Ortiz, J.; González-Velasco, J. Performance of zeolites and product selectivity in the gas-phase oxidation of 1,2-dichloroethane. Catal. Today 2000, 62, 367–377. [Google Scholar] [CrossRef]
- López-Fonseca, R.; Aranzabal, A.; Gutiérrez-Ortiz, J.; Álvarez-Uriarte, J.; González-Velasco, J. Comparative study of the oxidative decomposition of trichloroethylene over H-type zeolites under dry and humid conditions. Appl. Catal. B Environ. 2001, 30, 303–313. [Google Scholar] [CrossRef]
- López-Fonseca, R.; de Rivas, B.; Gutiérrez-Ortiz, J.; Aranzabal, A.; González-Velasco, J. Enhanced activity of zeolites by chemical dealumination for chlorinated VOC abatement. Appl. Catal. B Environ. 2003, 41, 31–42. [Google Scholar] [CrossRef]
- Bertinchamps, F.; Attianese, A.; Mestdagh, M.; Gaigneaux, E.M. Catalysts for chlorinated VOCs abatement: Multiple effects of water on the activity of VOx based catalysts for the combustion of chlorobenzene. Catal. Today 2006, 112, 165–168. [Google Scholar] [CrossRef]
- Lomnicki, S.; Lichtenberger, J.; Xu, Z.; Waters, M.; Kosman, J.; Amiridis, M.D. Catalytic oxidation of 2,4,6-trichlorophenol over vanadia/titania-based catalysts. Appl. Catal. B Environ. 2003, 46, 105–119. [Google Scholar] [CrossRef]
- Abdullah, A.Z.; Bakar, M.Z.A.; Bhatia, S. Combustion of chlorinated volatile organic compounds (VOCs) using bimetallic chromium-copper supported on modified H-ZSM-5 catalyst. J. Hazard. Mater. 2006, 129, 39–49. [Google Scholar] [CrossRef]
- Wang, P.; Ding, S.; Wu, S.; Fang, N.; Zhang, Q.; Chu, Y. Investigation of the by-product selectivity of industrialized support for the catalytic elimination of o-DCB over Pt-catalysts. Microporous Mesoporous Mater. 2025, 381, 113334. [Google Scholar] [CrossRef]
- Lv, X.; Wu, S.; Shao, S.; Yan, D.; Xu, W.; Jia, H.; He, H. Efficient catalytic elimination of chlorobenzene based on the water vapor-promoting effect within Mn-based catalysts: Activity enhancement and polychlorinated byproduct inhibition. Environ. Sci. Technol. 2024, 58, 3985–3996. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Xing, X.; Cheng, J.; Zhang, Z.; Hao, Z. Influence of oxygen and water content on the formation of polychlorinated organic by-products from catalytic degradation of 1,2-dichlorobenzene over a Pd/ZSM-5 catalyst. J. Hazard. Mater. 2021, 403, 123952. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Sun, Z.; Yang, T.; Wang, J.; Tang, Q.; Huang, T.; Tang, C.; Gao, F.; Dong, L. Effect of different introduction methods of cerium and tin on the properties of titanium-based catalysts for the selective catalytic reduction of NO by NH3. J. Colloid. Interface Sci. 2022, 613, 320–336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wen, Z.; Chai, C.; Li, N.; Zong, K.; Li, Z. Amine-free synthesis of high-silica ZSM-5 assisted with calcined silicalite-1 and ethanol with the investigation of mechanism. Microporous Mesoporous Mater. 2024, 375, 113160. [Google Scholar] [CrossRef]
- Badvi, K.; Javanbakht, V. Enhanced photocatalytic degradation of dye contaminants with TiO2 immobilized on ZSM-5 zeolite modified with nickel nanoparticles. J. Clean. Prod. 2021, 280, 124518. [Google Scholar] [CrossRef]
- Aristizábal, B.H.; de Correa, C.M.; Serykh, A.I.; Hetrick, C.E.; Amiridis, M.D. In situ FTIR study of the adsorption and reaction of ortho-dichlorobenzene over Pd-promoted Co-HMOR. Microporous Mesoporous Mater. 2008, 112, 432–440. [Google Scholar] [CrossRef]
- Aranzabal, A.; Romero-Sáez, M.; Elizundia, U.; González-Velasco, J.R.; González-Marcos, J.A. Deactivation of H-zeolites during catalytic oxidation of trichloroethylene. J. Catal. 2012, 296, 165–174. [Google Scholar] [CrossRef]
- González-Velasco, J.; López-Fonseca, R.; Aranzabal, A.; Gutiérrez-Ortiz, J.; Steltenpohl, P. Evaluation of H-type zeolites in the destructive oxidation of chlorinated volatile organic compounds. Appl. Catal. B Environ. 2000, 24, 233–242. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, Q.; Su, G.; Pang, J.; Sun, B.; Meng, J.; Shi, B. Catalytic degradation of chlorinated volatile organic compounds (CVOCs) over Ce-Mn-Ti composite oxide catalysts. J. Environ. Sci. 2024, 138, 326–338. [Google Scholar] [CrossRef]
- Wang, S.; Shen, Z.; Osatiashtiani, A.; Nabavi, S.A.; Clough, P.T. Ni-based bimetallic catalysts for hydrogen production via (sorption-enhanced) steam methane reforming. Chem. Eng. J. 2024, 486, 150170. [Google Scholar] [CrossRef]
Catalysts | T10 (°C) | T50 (°C) | T90 (°C) |
---|---|---|---|
0.5%Pd-10%Ni/ZSM-5(25) | 265 | 351 | 394 |
0.5%Pd-1%Ti-9%Ni/ZSM-5(25) | 257 | 332 | 371 |
0.5%Pd-2%Ti-8%Ni/ZSM-5(25) | 252 | 319 | 365 |
0.5%Pd-8%Ti-2%Ni/ZSM-5(25) | 261 | 341 | 386 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Lv, B.; Li, N.; Li, Y.; Song, W.; Zhou, J. Inhibiting the Production of Polychlorinated Organic Pollutants in the Hydrolysis Oxidation Process of 1,2-Dichlorobenzene. Atmosphere 2025, 16, 750. https://doi.org/10.3390/atmos16060750
Li Y, Lv B, Li N, Li Y, Song W, Zhou J. Inhibiting the Production of Polychlorinated Organic Pollutants in the Hydrolysis Oxidation Process of 1,2-Dichlorobenzene. Atmosphere. 2025; 16(6):750. https://doi.org/10.3390/atmos16060750
Chicago/Turabian StyleLi, Yuqing, Bisi Lv, Na Li, Yingjie Li, Wenjie Song, and Jiahui Zhou. 2025. "Inhibiting the Production of Polychlorinated Organic Pollutants in the Hydrolysis Oxidation Process of 1,2-Dichlorobenzene" Atmosphere 16, no. 6: 750. https://doi.org/10.3390/atmos16060750
APA StyleLi, Y., Lv, B., Li, N., Li, Y., Song, W., & Zhou, J. (2025). Inhibiting the Production of Polychlorinated Organic Pollutants in the Hydrolysis Oxidation Process of 1,2-Dichlorobenzene. Atmosphere, 16(6), 750. https://doi.org/10.3390/atmos16060750